Switch to: Citations

Add references

You must login to add references.
  1. Ontological Relativity and Other Essays.Willard Van Orman Quine - 1969 - New York: Columbia University Press.
    This volume consists of the first of the John Dewey Lectures delivered under the auspices of Columbia University's Philosophy Department as well as other essays by the author. Intended to clarify the meaning of the philosophical doctrines propounded by Professor Quine in 'Word and Objects', the essays included herein both support and expand those doctrines.
    Download  
     
    Export citation  
     
    Bookmark   1002 citations  
  • (2 other versions)Mathematical truth.Paul Benacerraf - 1973 - Journal of Philosophy 70 (19):661-679.
    Download  
     
    Export citation  
     
    Bookmark   760 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   624 citations  
  • Realism, Mathematics, and Modality.Hartry Field - 1988 - Philosophical Topics 16 (1):57-107.
    Download  
     
    Export citation  
     
    Bookmark   461 citations  
  • Are there genuine mathematical explanations of physical phenomena?Alan Baker - 2005 - Mind 114 (454):223-238.
    Many explanations in science make use of mathematics. But are there cases where the mathematical component of a scientific explanation is explanatory in its own right? This issue of mathematical explanations in science has been for the most part neglected. I argue that there are genuine mathematical explanations in science, and present in some detail an example of such an explanation, taken from evolutionary biology, involving periodical cicadas. I also indicate how the answer to my title question impacts on broader (...)
    Download  
     
    Export citation  
     
    Bookmark   259 citations  
  • Platonism and Anti-Platonism in Mathematics.Mark Balaguer - 1998 - Bulletin of Symbolic Logic 8 (4):516-518.
    This book does three main things. First, it defends mathematical platonism against the main objections to that view (most notably, the epistemological objection and the multiple-reductions objection). Second, it defends anti-platonism (in particular, fictionalism) against the main objections to that view (most notably, the Quine-Putnam indispensability objection and the objection from objectivity). Third, it argues that there is no fact of the matter whether abstract mathematical objects exist and, hence, no fact of the matter whether platonism or anti-platonism is true.
    Download  
     
    Export citation  
     
    Bookmark   282 citations  
  • Mathematical Explanation in Science.Alan Baker - 2009 - British Journal for the Philosophy of Science 60 (3):611-633.
    Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the prime-numbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   177 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • There is No Easy Road to Nominalism.M. Colyvan - 2010 - Mind 119 (474):285-306.
    Hartry Field has shown us a way to be nominalists: we must purge our scientific theories of quantification over abstracta and we must prove the appropriate conservativeness results. This is not a path for the faint hearted. Indeed, the substantial technical difficulties facing Field's project have led some to explore other, easier options. Recently, Jody Azzouni, Joseph Melia, and Stephen Yablo have argued that it is a mistake to read our ontological commitments simply from what the quantifiers of our best (...)
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • Weaseling away the indispensability argument.Joseph Melia - 2000 - Mind 109 (435):455-480.
    According to the indispensability argument, the fact that we quantify over numbers, sets and functions in our best scientific theories gives us reason for believing that such objects exist. I examine a strategy to dispense with such quantification by simply replacing any given platonistic theory by the set of sentences in the nominalist vocabulary it logically entails. I argue that, as a strategy, this response fails: for there is no guarantee that the nominalist world that go beyond the set of (...)
    Download  
     
    Export citation  
     
    Bookmark   207 citations  
  • Elements of Intuitionism.Michael Dummett - 1980 - British Journal for the Philosophy of Science 31 (3):299-301.
    Download  
     
    Export citation  
     
    Bookmark   208 citations  
  • (2 other versions)Philosophy of Logic.Willard V. O. Quine - 1986 - Philosophy 17 (3):392-393.
    With his customary incisiveness, W. V. Quine presents logic as the product of two factors, truth and grammar-but argues against the doctrine that the logical truths are true because of grammar or language. Rather, in presenting a general theory of grammar and discussing the boundaries and possible extensions of logic, Quine argues that logic is not a mere matter of words.
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Indispensability and Practice.Penelope Maddy - 1992 - Journal of Philosophy 89 (6):275.
    Download  
     
    Export citation  
     
    Bookmark   134 citations  
  • The explanatory power of phase spaces.Aidan Lyon & Mark Colyvan - 2008 - Philosophia Mathematica 16 (2):227-243.
    David Malament argued that Hartry Field's nominalisation program is unlikely to be able to deal with non-space-time theories such as phase-space theories. We give a specific example of such a phase-space theory and argue that this presentation of the theory delivers explanations that are not available in the classical presentation of the theory. This suggests that even if phase-space theories can be nominalised, the resulting theory will not have the explanatory power of the original. Phase-space theories thus raise problems for (...)
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • Abstract Explanations in Science.Christopher Pincock - 2014 - British Journal for the Philosophy of Science 66 (4):857-882.
    This article focuses on a case that expert practitioners count as an explanation: a mathematical account of Plateau’s laws for soap films. I argue that this example falls into a class of explanations that I call abstract explanations.explanations involve an appeal to a more abstract entity than the state of affairs being explained. I show that the abstract entity need not be causally relevant to the explanandum for its features to be explanatorily relevant. However, it remains unclear how to unify (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • A Role for Mathematics in the Physical Sciences.Chris Pincock - 2007 - Noûs 41 (2):253-275.
    Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable non-mathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • Mathematical Explanations Of Empirical Facts, And Mathematical Realism.Aidan Lyon - 2012 - Australasian Journal of Philosophy 90 (3):559-578.
    A main thread of the debate over mathematical realism has come down to whether mathematics does explanatory work of its own in some of our best scientific explanations of empirical facts. Realists argue that it does; anti-realists argue that it doesn't. Part of this debate depends on how mathematics might be able to do explanatory work in an explanation. Everyone agrees that it's not enough that there merely be some mathematics in the explanation. Anti-realists claim there is nothing mathematics can (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Does mathematics need new axioms.Solomon Feferman, Harvey M. Friedman, Penelope Maddy & John R. Steel - 1999 - Bulletin of Symbolic Logic 6 (4):401-446.
    Part of the ambiguity lies in the various points of view from which this question might be considered. The crudest di erence lies between the point of view of the working mathematician and that of the logician concerned with the foundations of mathematics. Now some of my fellow mathematical logicians might protest this distinction, since they consider themselves to be just more of those \working mathematicians". Certainly, modern logic has established itself as a very respectable branch of mathematics, and there (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • The consistency of Frege's foundations of arithmetic.George Boolos - 1987 - In Judith Jarvis Thomson, On Being and Saying: Essays for Richard Cartwright. MIT Press. pp. 3--20.
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Mathematics and indispensability.Elliott Sober - 1993 - Philosophical Review 102 (1):35-57.
    Realists persuaded by indispensability arguments af- firm the existence of numbers, genes, and quarks. Van Fraassen's empiricism remains agnostic with respect to all three. The point of agreement is that the posits of mathematics and the posits of biology and physics stand orfall together. The mathematical Platonist can take heart from this consensus; even if the existence of num- bers is still problematic, it seems no more problematic than the existence of genes or quarks. If the two positions just described (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Mathematics and aesthetic considerations in science.Mark Colyvan - 2002 - Mind 111 (441):69-74.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • (1 other version)Mathematics without Numbers: Towards a Modal-Structural Interpretation.Bob Hale & Geoffrey Hellman - 1992 - Philosophical Review 101 (4):919.
    Download  
     
    Export citation  
     
    Bookmark   97 citations  
  • Naturalized platonism versus platonized naturalism.Bernard Linsky & Edward N. Zalta - 1995 - Journal of Philosophy 92 (10):525-555.
    In this paper, we develop an alternative strategy, Platonized Naturalism, for reconciling naturalism and Platonism and to account for our knowledge of mathematical objects and properties. A systematic (Principled) Platonism based on a comprehension principle that asserts the existence of a plenitude of abstract objects is not just consistent with, but required (on transcendental grounds) for naturalism. Such a comprehension principle is synthetic, and it is known a priori. Its synthetic a priori character is grounded in the fact that it (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Set-theoretic pluralism and the Benacerraf problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Quine, Putnam, and the ‘Quine–Putnam’ Indispensability Argument.David Liggins - 2008 - Erkenntnis 68 (1):113 - 127.
    Much recent discussion in the philosophy of mathematics has concerned the indispensability argument—an argument which aims to establish the existence of abstract mathematical objects through appealing to the role that mathematics plays in empirical science. The indispensability argument is standardly attributed to W. V. Quine and Hilary Putnam. In this paper, I show that this attribution is mistaken. Quine's argument for the existence of abstract mathematical objects differs from the argument which many philosophers of mathematics ascribe to him. Contrary to (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • A platonist epistemology.Mark Balaguer - 1995 - Synthese 103 (3):303 - 325.
    A response is given here to Benacerraf's 1973 argument that mathematical platonism is incompatible with a naturalistic epistemology. Unlike almost all previous platonist responses to Benacerraf, the response given here is positive rather than negative; that is, rather than trying to find a problem with Benacerraf's argument, I accept his challenge and meet it head on by constructing an epistemology of abstract (i.e., aspatial and atemporal) mathematical objects. Thus, I show that spatio-temporal creatures like ourselves can attain knowledge about mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • In search of ultimate- L the 19th midrasha mathematicae lectures.W. Hugh Woodin - 2017 - Bulletin of Symbolic Logic 23 (1):1-109.
    We give a fairly complete account which first shows that the solution to the inner model problem for one supercompact cardinal will yield an ultimate version ofLand then shows that the various current approaches to inner model theory must be fundamentally altered to provide that solution.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Reply to Charles Parsons.W. V. O. Quine - 1986 - In Lewis Edwin Hahn & Paul Arthur Schilpp, The Philosophy of W.V. Quine. Chicago: Open Court. pp. 396-404.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • X*—Mathematical Intuition.Charles Parsons - 1980 - Proceedings of the Aristotelian Society 80 (1):145-168.
    Charles Parsons; X*—Mathematical Intuition, Proceedings of the Aristotelian Society, Volume 80, Issue 1, 1 June 1980, Pages 145–168, https://doi.org/10.1093/ari.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Response to Colyvan.Joseph Melia - 2002 - Mind 111 (441):75-80.
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • What Do We Want a Foundation to Do?Penelope Maddy - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya, Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 293-311.
    It’s often said that set theory provides a foundation for classical mathematics because every classical mathematical object can be modeled as a set and every classical mathematical theorem can be proved from the axioms of set theory. This is obviously a remarkable mathematical fact, but it isn’t obvious what makes it ‘foundational’. This paper begins with a taxonomy of the jobs set theory does that might reasonably be regarded as foundational. It then moves on to category-theoretic and univalent foundations, exploring (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Category theory as an autonomous foundation.Øystein Linnebo & Richard Pettigrew - 2011 - Philosophia Mathematica 19 (3):227-254.
    Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can be made for its logical and conceptual autonomy. Its justificatory autonomy turns on whether the objects of a foundation for mathematics should be specified only up to isomorphism, as is customary in other (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On "on what there is".Jody Azzouni - 1998 - Pacific Philosophical Quarterly 79 (1):1–18.
    All sides in the recent debates over the Quine‐Putnam Indispensability thesis presuppose Quine's criterion for determining what a discourse is ontologically committed to. I subject the criterion to scrutiny, especially in regard to the available competitor‐criteria, asking what means of evaluation there are for comparing alternative criteria against each other. Finding none, the paper concludes that ontological questions, in a certain sense, are philosophically indeterminate.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • (3 other versions)The Independence of the Continuum Hypothesis.Paul J. Cohen - 1963 - Proceedings of the National Academy of Sciences of the United States of America 50 (6):1143--8.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • (1 other version)Multiverse Conceptions in Set Theory.Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo - 2015 - Synthese 192 (8):2463-2488.
    We review different conceptions of the set-theoretic multiverse and evaluate their features and strengths. In Sect. 1, we set the stage by briefly discussing the opposition between the ‘universe view’ and the ‘multiverse view’. Furthermore, we propose to classify multiverse conceptions in terms of their adherence to some form of mathematical realism. In Sect. 2, we use this classification to review four major conceptions. Finally, in Sect. 3, we focus on the distinction between actualism and potentialism with regard to the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Multiple universes of sets and indeterminate truth values.Donald A. Martin - 2001 - Topoi 20 (1):5-16.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Mathematical recreation versus mathematical knowledge.Mark Colyvan - 2007 - In Mary Leng, Alexander Paseau & Michael D. Potter, Mathematical Knowledge. Oxford, England: Oxford University Press. pp. 109--122.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The creation problem.Harry Deutsch - 1991 - Topoi 10 (2):209-225.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Synthetic mechanics.John P. Burgess - 1984 - Journal of Philosophical Logic 13 (4):379 - 395.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   334 citations  
  • Mathematical pluralism.G. Priest - 2013 - Logic Journal of the IGPL 21 (1):4-13.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Non-uniqueness as a non-problem.Mark Balaguer - 1998 - Philosophia Mathematica 6 (1):63-84.
    A response is given here to Benacerraf's (1965) non-uniqueness (or multiple-reductions) objection to mathematical platonism. It is argued that non-uniqueness is simply not a problem for platonism; more specifically, it is argued that platonists can simply embrace non-uniqueness—i.e., that one can endorse the thesis that our mathematical theories truly describe collections of abstract mathematical objects while rejecting the thesis that such theories truly describe unique collections of such objects. I also argue that part of the motivation for this stance is (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 5 (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematics: Truth and Fiction? Review of Mark Balaguer's Platonism and Anti-Platonism in Mathematics.Mark Colyvan & Edward N. Zalta - 1999 - Philosophia Mathematica 7 (3):336-349.
    Mark Balaguer’s project in this book is extremely ambitious; he sets out to defend both platonism and fictionalism about mathematical entities. Moreover, Balaguer argues that at the end of the day, platonism and fictionalism are on an equal footing. Not content to leave the matter there, however, he advances the anti-metaphysical conclusion that there is no fact of the matter about the existence of mathematical objects.1 Despite the ambitious nature of this project, for the most part Balaguer does not shortchange (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A note on mathematical pluralism and logical pluralism.Graham Priest - 2019 - Synthese 198 (Suppl 20):4937-4946.
    Mathematical pluralism notes that there are many different kinds of pure mathematical structures—notably those based on different logics—and that, qua pieces of pure mathematics, they are all equally good. Logical pluralism is the view that there are different logics, which are, in an appropriate sense, equally good. Some, such as Shapiro, have argued that mathematical pluralism entails logical pluralism. In this brief note I argue that this does not follow. There is a crucial distinction to be drawn between the preservation (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • From full blooded platonism to really full blooded platonism.Jc Beall - 1999 - Philosophia Mathematica 7 (3):322-325.
    Mark Balaguer argues for full blooded platonism (FBP), and argues that FBP alone can solve Benacerraf's familiar epistemic challenge. I note that if FBP really can solve Benacerraf's epistemic challenge, then FBP is not alone in its capacity so to solve; RFBP—really full blooded platonism—can do the trick just as well, where RFBP differs from FBP by allowing entities from inconsistent mathematics. I also argue briefly that there is positive reason for endorsing RFBP.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Prime number selection of cycles in a predator‐prey model.Eric Goles, Oliver Schulz & Mario Markus - 2001 - Complexity 6 (4):33-38.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Mathematics needs new axioms.John Steel - 2000 - Bulletin of Symbolic Logic 6 (4):422-433.
    Download  
     
    Export citation  
     
    Bookmark   17 citations