Switch to: Citations

Add references

You must login to add references.
  1. The reason's proper study: essays towards a neo-Fregean philosophy of mathematics.Crispin Wright & Bob Hale - 2001 - Oxford: Clarendon Press. Edited by Crispin Wright.
    Here, Bob Hale and Crispin Wright assemble the key writings that lead to their distinctive neo-Fregean approach to the philosophy of mathematics. In addition to fourteen previously published papers, the volume features a new paper on the Julius Caesar problem; a substantial new introduction mapping out the program and the contributions made to it by the various papers; a section explaining which issues most require further attention; and bibliographies of references and further useful sources. It will be recognized as the (...)
    Download  
     
    Export citation  
     
    Bookmark   273 citations  
  • Mathematics as a science of patterns.Michael David Resnik - 1997 - New York ;: Oxford University Press.
    This book expounds a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defense of realism about the metaphysics of mathematics--the view that mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   242 citations  
  • Frege's conception of numbers as objects.Crispin Wright - 1983 - [Aberdeen]: Aberdeen University Press.
    Download  
     
    Export citation  
     
    Bookmark   242 citations  
  • Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.
    The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • The foundations of arithmetic: a logico-mathematical enquiry into the concept of number.Gottlob Frege - 1974 - Evanston, Ill.: Northwestern University Press. Edited by J. L. Austin.
    § i. After deserting for a time the old Euclidean standards of rigour, mathematics is now returning to them, and even making efforts to go beyond them. ...
    Download  
     
    Export citation  
     
    Bookmark   142 citations  
  • Frege’s Conception of Numbers as Objects.Crispin Wright - 1983 - Critical Philosophy 1 (1):97.
    Download  
     
    Export citation  
     
    Bookmark   346 citations  
  • The Tarskian Turn: Deflationism and Axiomatic Truth.Leon Horsten - 2011 - MIT Press.
    The work of mathematician and logician Alfred Tarski (1901--1983) marks the transition from substantial to deflationary views about truth.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Mathematical Thought and its Objects.Charles Parsons - 2007 - New York: Cambridge University Press.
    Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)The Structure of Appearance.Nelson Goodman - 1956 - Studia Logica 4:255-261.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • The plurality of bayesian measures of confirmation and the problem of measure sensitivity.Branden Fitelson - 1999 - Philosophy of Science 66 (3):378.
    Contemporary Bayesian confirmation theorists measure degree of (incremental) confirmation using a variety of non-equivalent relevance measures. As a result, a great many of the arguments surrounding quantitative Bayesian confirmation theory are implicitly sensitive to choice of measure of confirmation. Such arguments are enthymematic, since they tacitly presuppose that certain relevance measures should be used (for various purposes) rather than other relevance measures that have been proposed and defended in the philosophical literature. I present a survey of this pervasive class of (...)
    Download  
     
    Export citation  
     
    Bookmark   218 citations  
  • How Degrees of Belief Reflect Evidence.James M. Joyce - 2005 - Philosophical Perspectives 19 (1):153-179.
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Model theory for infinitary logic.H. Jerome Keisler - 1971 - Amsterdam,: North-Holland Pub. Co..
    Provability, Computability and Reflection.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • (1 other version)Logic, Logic and Logic.George Boolos & Richard C. Jeffrey - 1998 - Studia Logica 66 (3):428-432.
    Download  
     
    Export citation  
     
    Bookmark   171 citations  
  • Frege’s Conception of Logic.Patricia Blanchette - 2012 - Oxford, England: Oup Usa.
    In Frege's Conception of Logic Patricia A. Blanchette explores the relationship between Gottlob Frege's understanding of conceptual analysis and his understanding of logic.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Frege's theorem.Richard G. Heck - 2011 - New York: Clarendon Press.
    The book begins with an overview that introduces the Theorem and the issues surrounding it, and explores how the essays that follow contribute to our understanding of those issues.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Mathematical logic.J. Donald Monk - 1976 - New York: Springer Verlag.
    " There are 31 chapters in 5 parts and approximately 320 exercises marked by difficulty and whether or not they are necessary for further work in the book.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Mathematics as a science of patterns: Ontology and reference.Michael Resnik - 1981 - Noûs 15 (4):529-550.
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Mathematics in philosophy: selected essays.Charles Parsons - 1983 - Ithaca, N.Y.: Cornell University Press.
    This important book by a major American philosopher brings together eleven essays treating problems in logic and the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Arithmetization of Metamathematics in a General Setting.Solomon Feferman - 1960 - Journal of Symbolic Logic 31 (2):269-270.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Frege's theory of numbers.Charles Parsons - 1964 - In Max Black (ed.), Philosophy in America. Ithaca: Routledge. pp. 180-203.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Frege's philosophy of mathematics.William Demopoulos (ed.) - 1995 - Cambridge: Harvard University Press.
    Widespread interest in Frege's general philosophical writings is, relatively speaking, a fairly recent phenomenon. But it is only very recently that his philosophy of mathematics has begun to attract the attention it now enjoys. This interest has been elicited by the discovery of the remarkable mathematical properties of Frege's contextual definition of number and of the unique character of his proposals for a theory of the real numbers. This collection of essays addresses three main developments in recent work on Frege's (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (1 other version)Frege’s Theorem: An Introduction.Richard G. Heck - 1999 - The Harvard Review of Philosophy 7 (1):56-73.
    A brief, non-technical introduction to technical and philosophical aspects of Frege's philosophy of arithmetic. The exposition focuses on Frege's Theorem, which states that the axioms of arithmetic are provable, in second-order logic, from a single non-logical axiom, "Hume's Principle", which itself is: The number of Fs is the same as the number of Gs if, and only if, the Fs and Gs are in one-one correspondence.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Conceptual truth.Timothy Williamson - 2006 - Aristotelian Society Supplementary Volume 80 (1):1–41.
    The paper criticizes epistemological conceptions of analytic or conceptual truth, on which assent to such truths is a necessary condition of understanding them. The critique involves no Quinean scepticism about meaning. Rather, even granted that a paradigmatic candidate for analyticity is synonymy with a logical truth, both the former and the latter can be intelligibly doubted by linguistically competent deviant logicians, who, although mistaken, still constitute counterexamples to the claim that assent is necessary for understanding. There are no analytic or (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Abstract Objects.John P. Burgess - 1992 - Philosophical Review 101 (2):414.
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • (1 other version)Reals by Abstraction.Bob Hale - 2000 - Philosophia Mathematica 8 (2):100--123.
    On the neo-Fregean approach to the foundations of mathematics, elementary arithmetic is analytic in the sense that the addition of a principle wliich may be held to IMJ explanatory of the concept of cardinal number to a suitable second-order logical basis suffices for the derivation of its basic laws. This principle, now commonly called Hume's principle, is an example of a Fregean abstraction principle. In this paper, I assume the correctness of the neo-Fregean position on elementary aritlunetic and seek to (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • On formal and informal provability.Hannes Leitgeb - 2009 - In Ø. Linnebo O. Bueno (ed.), New Waves in Philosophy of Mathematics. Palgrave-Macmillan. pp. 263--299.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Cardinality, Counting, and Equinumerosity.Richard G. Heck - 2000 - Notre Dame Journal of Formal Logic 41 (3):187-209.
    Frege, famously, held that there is a close connection between our concept of cardinal number and the notion of one-one correspondence, a connection enshrined in Hume's Principle. Husserl, and later Parsons, objected that there is no such close connection, that our most primitive conception of cardinality arises from our grasp of the practice of counting. Some empirical work on children's development of a concept of number has sometimes been thought to point in the same direction. I argue, however, that Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Is Hume's principle analytic?Crispin Wright - 1999 - Notre Dame Journal of Formal Logic 40 (1):307-333.
    This paper is a reply to George Boolos's three papers (Boolos (1987a, 1987b, 1990a)) concerned with the status of Hume's Principle. Five independent worries of Boolos concerning the status of Hume's Principle as an analytic truth are identified and discussed. Firstly, the ontogical concern about the commitments of Hume's Principle. Secondly, whether Hume's Principle is in fact consistent and whether the commitment to the universal number by adopting Hume's Principle might be problematic. Also the so-called `surplus content' worry is discussed, (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Frege meets dedekind: A neologicist treatment of real analysis.Stewart Shapiro - 2000 - Notre Dame Journal of Formal Logic 41 (4):335--364.
    This paper uses neo-Fregean-style abstraction principles to develop the integers from the natural numbers (assuming Hume’s principle), the rational numbers from the integers, and the real numbers from the rationals. The first two are first-order abstractions that treat pairs of numbers: (DIF) INT(a,b)=INT(c,d) ≡ (a+d)=(b+c). (QUOT) Q(m,n)=Q(p,q) ≡ (n=0 & q=0) ∨ (n≠0 & q≠0 & m⋅q=n⋅p). The development of the real numbers is an adaption of the Dedekind program involving “cuts” of rational numbers. Let P be a property (of (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Countable additivity and subjective probability.Jon Williamson - 1999 - British Journal for the Philosophy of Science 50 (3):401-416.
    While there are several arguments on either side, it is far from clear as to whether or not countable additivity is an acceptable axiom of subjective probability. I focus here on de Finetti's central argument against countable additivity and provide a new Dutch book proof of the principle, To argue that if we accept the Dutch book foundations of subjective probability, countable additivity is an unavoidable constraint.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Probabilistic proofs and transferability.Kenny Easwaran - 2009 - Philosophia Mathematica 17 (3):341-362.
    In a series of papers, Don Fallis points out that although mathematicians are generally unwilling to accept merely probabilistic proofs, they do accept proofs that are incomplete, long and complicated, or partly carried out by computers. He argues that there are no epistemic grounds on which probabilistic proofs can be rejected while these other proofs are accepted. I defend the practice by presenting a property I call ‘transferability’, which probabilistic proofs lack and acceptable proofs have. I also consider what this (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Ontological reduction and the world of numbers.W. V. Quine - 1964 - Journal of Philosophy 61 (7):209-216.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Frege: The Last Logicist.Paul Benacerraf - 1981 - Midwest Studies in Philosophy 6 (1):17-36.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Mathematical Knowledge.Mark Steiner - 1977 - Mind 86 (343):467-469.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • (1 other version)Reals by Abstraction.Bob Hale - 2000 - The Proceedings of the Twentieth World Congress of Philosophy 6:197-207.
    While Frege’s own attempt to provide a purely logical foundation for arithmetic failed, Hume’s principle suffices as a foundation for elementary arithmetic. It is known that the resulting system is consistent—or at least if second-order arithmetic is. Some philosophers deny that HP can be regarded as either a truth of logic or as analytic in any reasonable sense. Others—like Crispin Wright and I—take the opposed view. Rather than defend our claim that HP is a conceptual truth about numbers, I explain (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Aspects of Incompleteness.Per Lindström - 1999 - Studia Logica 63 (3):438-439.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Neo-Fregean Foundations for Real Analysis: Some Reflections on Frege's Constraint.Crispin Wright - 2000 - Notre Dame Journal of Formal Logic 41 (4):317--334.
    We now know of a number of ways of developing real analysis on a basis of abstraction principles and second-order logic. One, outlined by Shapiro in his contribution to this volume, mimics Dedekind in identifying the reals with cuts in the series of rationals under their natural order. The result is an essentially structuralist conception of the reals. An earlier approach, developed by Hale in his "Reals byion" program differs by placing additional emphasis upon what I here term Frege's Constraint, (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (1 other version)Where do the natural numbers come from?Harold T. Hodes - 1990 - Synthese 84 (3):347-407.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Quasi finitely axiomatizable totally categorical theories.Gisela Ahlbrandt & Martin Ziegler - 1986 - Annals of Pure and Applied Logic 30 (1):63-82.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • On the harmless impredicativity of N=('Hume's Principle').Crispin Wright - 1998 - In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press. pp. 339--68.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Reasoning with limited resources and assigning probabilities to arithmetical statements.Haim Gaifman - 2004 - Synthese 140 (1-2):97 - 119.
    There are three sections in this paper. The first is a philosophical discussion of the general problem of reasoning under limited deductive capacity. The second sketches a rigorous way of assigning probabilities to statements in pure arithmetic; motivated by the preceding discussion, it can nonetheless be read separately. The third is a philosophical discussion that highlights the shifting contextual character of subjective probabilities and beliefs.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • [Omnibus Review].William Demopoulos - 1998 - Journal of Symbolic Logic 63 (4):1598-1602.
    Richard G. Heck, On the Philosophical Significance of Frege's Theorem. Language, Thought, and Logic, Essays in Honour of Michael Dummett.George Boolos, Is Hume's Principle Analytic?.Charles Parsons, Wright onion and Set Theory.Richard G. Heck, The Julius Caesar Objection.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Mathematical Introduction to Logic.Herbert Enderton - 2001 - Bulletin of Symbolic Logic 9 (3):406-407.
    Download  
     
    Export citation  
     
    Bookmark   190 citations  
  • Mathematics in Philosophy, Selected Essays.Stewart Shapiro - 1983 - Journal of Symbolic Logic 53 (1):320.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Logicism of Frege, Dedekind, and Russell.William Demopoulos & Peter Clark - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 129--165.
    The common thread running through the logicism of Frege, Dedekind, and Russell is their opposition to the Kantian thesis that our knowledge of arithmetic rests on spatio-temporal intuition. Our critical exposition of the view proceeds by tracing its answers to three fundamental questions: What is the basis for our knowledge of the infinity of the numbers? How is arithmetic applicable to reality? Why is reasoning by induction justified?
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Frege and the rigorization of analysis.William Demopoulos - 1994 - Journal of Philosophical Logic 23 (3):225 - 245.
    This paper has three goals: (i) to show that the foundational program begun in the Begriffsschroft, and carried forward in the Grundlagen, represented Frege's attempt to establish the autonomy of arithmetic from geometry and kinematics; the cogency and coherence of 'intuitive' reasoning were not in question. (ii) To place Frege's logicism in the context of the nineteenth century tradition in mathematical analysis, and, in particular, to show how the modern concept of a function made it possible for Frege to pursue (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Metamathematics of First-Order Arithmetic.Petr Hajék & Pavel Pudlák - 1994 - Studia Logica 53 (3):465-466.
    Download  
     
    Export citation  
     
    Bookmark   146 citations