What is the aim of philosophy? There may be too many philosophical branches, traditions, practices, and programs to admit of a single overarching aim. Here I focus on a fairly traditional philosophical project that has recently received increasingly sophisticated articulation, especially by Frank Jackson (1998) and David Chalmers (2012). In §1, I present the project and suggest that it is usefully thought of as ‘total axiomatics’: the project of attempting to axiomatize the total theory of the world. In §2, (...) I raise a problem for the project that I call the ‘problem of multiple axiomatizations.’ I consider some initially alluring but ultimately unpromising approaches to this problem in §3. In §4, I defend a surprising approach to the problem, according to which competing axiomatizations of the total theory of the world are effectively evaluated for their aesthetic virtues. (shrink)
This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the study (...) of groups of operations. In place of the established view I offer a revised view, according to which Poincaré held that axioms in geometry are in fact assertions about invariants of groups. Groups, as forms of the understanding, are prior in conception to the objects of geometry and afford the proper definition of those objects, according to Poincaré. Poincaré’s view therefore contrasts sharply with Kant’s foundation of geometry in a unique form of sensibility. According to my interpretation, axioms are not definitions in disguise because they themselves implicitly define their terms, but rather because they disguise the definitions which imply them. (shrink)
The two manuscripts of the Korte Verhanedling that were discovered in the mid-nineteenth century contain two appendices. These appendices are even more enigmatic than the KV itself, and it is the first appendix that is the subject of this study. Unfortunately, there are very few studies of this text, and its precise nature seems to be still in question after more than a century and a half of scholarship. It is commonly assumed that the appendices were written after the body (...) of the KV and I am not going to challenge this assumption. The first appendix is written in a geometric manner, and it contains seven axioms and four propositions. Strikingly, it does not include any definitions. This is in sharp contrast with Spinoza's Ethics and his 1663 book on Descartes' Principles of Philosophy, which are similarly written in a geometric manner but include both definitions and axioms. One could perhaps suspect that the text we currently have is merely a fragment from a more extensive work which included definitions. In my paper, I will show that this is not the case, and that the first appendix belongs to a genuine work of Spinoza that never contained definitions. I would further argue that the first appendix is most probably the earliest draft we currently have of Spinoza's magnum opus, the Ethics, but we have a long way to go before we reach that conclusion. (shrink)
We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
Einer weit verbreiteten Auffassung zufolge ist es eine zentrale Aufgabe der Philosophie der Mathematik, eine ontologische Grundlegung der Mathematik zu formulieren: eine philosophische Theorie darüber, ob mathematische Sätze wirklich wahr sind und ob mathematischen Gegenstände wirklich existieren. Der vorliegende Text entwickelt eine Sichtweise, der zufolge diese Auffassung auf einem Missverständnis beruht. Hierzu wird zunächst der Grundgedanke der Hilbert'schen axiomatischen Methode orgestellt, die Axiome als implizite Definitionen der in ihnen enthaltenen Begriffe zu behandeln. Anschließend wird in Anlehnung an einen Wittgenstein'schen Gedanken (...) zur normativen Rolle mathematischer Sprache argumentiert, dass im Kontext der Hilbert'schen Axiomatik mathematische Sätze als Standards für die Verwendung der in ihnen enthaltenen Begriffe dienen und dass dies die Idee einer ontologischen Grundlegung für die Mathematik untergräbt. (shrink)
Distributive justice deals with allocations of goods and bads within a group. Different principles and results of distributions are seen as possible ideals. Often those normative approaches are solely framed verbally, which complicates the application to different concrete distribution situations that are supposed to be evaluated in regard to justice. One possibility in order to frame this precisely and to allow for a fine-grained evaluation of justice lies in formal modelling of these ideals by metrics. Choosing a metric that is (...) supposed to map a certain ideal has to be justified. Such justification might be given by demanding specific substantiated axioms, which have to be met by a metric. This paper introduces such axioms for metrics of distributive justice shown by the example of needs-based justice. Furthermore, some exemplary metrics of needs-based justice and a three dimensional method for visualisation of non-comparative justice axioms or evaluations are presented. Therewith, a base worth discussing for the evaluation and modelling of metrics of distributive justice is given. (shrink)
This paper introduces new logical systems which axiomatize a formal representation of inconsistency (here taken to be equivalent to contradictoriness) in classical logic. We start from an intuitive semantical account of inconsistent data, fixing some basic requirements, and provide two distinct sound and complete axiomatics for such semantics, LFI1 and LFI2, as well as their first-order extensions, LFI1* and LFI2*, depending on which additional requirements are considered. These formal systems are examples of what we dub Logics of Formal Inconsistency (...) (LFI) and form part of a much larger family of similar logics. We also show that there are translations from classical and paraconsistent first-order logics into LFI1* and LFI2*, and back. Hence, despite their status as subsystems of classical logic, LFI1* and LFI2* can codify any classical or paraconsistent reasoning. (shrink)
The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, (...) Löwenheim and Skolem. Itinerary V surveys the work in logic connected to the Hilbert school, and itinerary V deals specifically with consistency proofs and metamathematics, including the incompleteness theorems. Itinerary VII traces the development of intuitionistic and many-valued logics. Itinerary VIII surveys the development of semantical notions from the early work on axiomatics up to Tarski's work on truth. (shrink)
Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...) Hilbert's account of mathematical objectivity, axiomatics, idealization, and consistency. (shrink)
In spite of the many efforts made to clarify von Neumann’s methodology of science, one crucial point seems to have been disregarded in recent literature: his closeness to Hilbert’s spirit. In this paper I shall claim that the scientific methodology adopted by von Neumann in his later foundational reflections originates in the attempt to revaluate Hilbert’s axiomatics in the light of Gödel’s incompleteness theorems. Indeed, axiomatics continues to be pursued by the Hungarian mathematician in the spirit of Hilbert’s (...) school. I shall argue this point by examining four basic ideas embraced by von Neumann in his foundational considerations: a) the conservative attitude to assume in mathematics; b) the role that mathematics and the axiomatic approach have to play in all that is science; c) the notion of success as an alternative methodological criterion to follow in scientific research; d) the empirical and, at the same time, abstract nature of mathematical thought. Once these four basic ideas have been accepted, Hilbert’s spirit in von Neumann’s methodology of science will become clear. (shrink)
Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. (...) That's why it can Ье applied to itself, proving that it is an undecidaЬle statement. It seems to Ье а too strange kind of proposition: its validity implies its undecidabllity. If the validity of а statement implies its untruth, then it is either untruth (reductio ad absurdum) or an antinomy (if also its negation implies its validity). А theory that contains а contradiction implies any statement. Appearing of а proposition, whose validity implies its undecidabllity, is due to the statement that claims its unprovability. Obviously, it is а proposition of self-referential type. Ву Gбdel's words, it is correlative with Richard's or liar paradox, or even with any other semantic or mathematical one. What is the cost, if а proposition of that special kind is used in а proof? ln our opinion, the price is analogous to «applying» of а contradictory in а theory: any statement turns out to Ье undecidaЬ!e. Ifthe first incompleteness theorem is an undecidaЬ!e theorem, then it is impossiЬle to prove that the very completeness of Peano arithmetic is also an tmdecidaЬle statement (the second incompleteness theorem). Hilbert's program for ап arithmetical self-foundation of matheшatics is partly rehabllitated: only partly, because it is not decidaЬ!e and true, but undecidaЬle; that's wby both it and its negation шау Ье accepted as true, however not siшultaneously true. The first incompleteness theoreш gains the statute of axiom of а very special, semi-philosophical kind: it divides mathematics as whole into two parts: either Godel шathematics or Нilbert matheшatics. Нilbert's program of self-foundation ofmatheшatic is valid only as to the latter. (shrink)
In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to (...) bе also «relative» in Skolem 's sense. Skolem 's «relativity» argumentation of that kind сan bе applied to а vету wide range of problems and one сan spoke of the relativity of discreteness and continuity or, of finiiteness and infinity, or, of Cantor 's kinds of infinities, etc. The relativity of Skolemian type helps us for generaIizing Einstein 's principle of relativity from the invariance of the physical laws toward diffeomorphisms to their invariance toward anу morphisms (including and especiaIly the discrete ones). Such а kind of generalization from diffeomorphisms (then, the notion of velocity always makes sense) to anу kind of morphism (when 'velocity' mау оr maу not make sense) is an extension of the general Skolemian type оГ relativity between discreteness and continuity от between finiteness and infinity. Particularly, the Lorentz invariance is not valid in general because the notion of velocity is limited to diffeomorphisms. [п the case of entanglement, the physical interaction is discrete0. 'Velocity" and consequently, the 'Lorentz invariance'"do not make sense. Тhat is the simplest explanation ofthe argurnent EPR, which tums into а paradox оnJу if the universal validity of 'velocity' and 'Lогелtz invariance' is implicitly accepted. (shrink)
Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The (...) most utilized example of those generalizations is the complex Hilbert space. Any generalization of Peano arithmetic consistent to infinity, e.g. the complex Hilbert space, can serve as a foundation for mathematics to found itself and by itself. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.