Results for 'Bayesian brain'

979 found
Order:
  1. Folk Psychology and the Bayesian Brain.Joe Dewhurst - 2017 - In Metzinger Thomas & Wiese Wanja (eds.), Philosophy and Predictive Processing. MIND Group.
    Whilst much has been said about the implications of predictive processing for our scientific understanding of cognition, there has been comparatively little discussion of how this new paradigm fits with our everyday understanding of the mind, i.e. folk psychology. This paper aims to assess the relationship between folk psychology and predictive processing, which will first require making a distinction between two ways of understanding folk psychology: as propositional attitude psychology and as a broader folk psychological discourse. It will be argued (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  2.  75
    Symptom perception, placebo effects, and the Bayesian brain.Giulio Ongaro & Ted Kaptchuk - 2019 - PAIN 160 (1):1-4.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  3. Psychoanalysis Representation and Neuroscience: the Freudian unconscious and the Bayesian brain.Jim Hopkins - 2012 - In A. Fotopoulu, D. Pfaff & M. Conway (eds.), From the Couch to the Lab: Psychoanalysis, Neuroscience and Cognitive Psychology in Dialoge. Oxford University Press.
    This paper argues that recent work in the 'free energy' program in neuroscience enables us better to understand both consciousness and the Freudian unconscious, including the role of the superego and the id. This work also accords with research in developmental psychology (particularly attachment theory) and with evolutionary considerations bearing on emotional conflict. This argument is carried forward in various ways in the work that follows, including 'Understanding and Healing', 'The Significance of Consilience', 'Psychoanalysis, Philosophical Issues', and 'Kantian Neuroscience and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Bayesian Cognitive Science. Routledge Encyclopaedia of Philosophy.Matteo Colombo - 2023 - Routledge Encyclopaedia of Philosophy.
    Bayesian cognitive science is a research programme that relies on modelling resources from Bayesian statistics for studying and understanding mind, brain, and behaviour. Conceiving of mental capacities as computing solutions to inductive problems, Bayesian cognitive scientists develop probabilistic models of mental capacities and evaluate their adequacy based on behavioural and neural data generated by humans (or other cognitive agents) performing a pertinent task. The overarching goal is to identify the mathematical principles, algorithmic procedures, and causal mechanisms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Universal bayesian inference?David Dowe & Graham Oppy - 2001 - Behavioral and Brain Sciences 24 (4):662-663.
    We criticise Shepard's notions of “invariance” and “universality,” and the incorporation of Shepard's work on inference into the general framework of his paper. We then criticise Tenenbaum and Griffiths' account of Shepard (1987b), including the attributed likelihood function, and the assumption of “weak sampling.” Finally, we endorse Barlow's suggestion that minimum message length (MML) theory has useful things to say about the Bayesian inference problems discussed by Shepard and Tenenbaum and Griffiths. [Barlow; Shepard; Tenenbaum & Griffiths].
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Bayesian models and simulations in cognitive science.Giuseppe Boccignone & Roberto Cordeschi - 2007 - Workshop Models and Simulations 2, Tillburg, NL.
    Bayesian models can be related to cognitive processes in a variety of ways that can be usefully understood in terms of Marr's distinction among three levels of explanation: computational, algorithmic and implementation. In this note, we discuss how an integrated probabilistic account of the different levels of explanation in cognitive science is resulting, at least for the current research practice, in a sort of unpredicted epistemological shift with respect to Marr's original proposal.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Bayesian realism and structural representation.Alex Kiefer & Jakob Hohwy - 2022 - Behavioral and Brain Sciences 45:e199.
    We challenge Bruineberg et al's view that Markov blankets are illicitly reified when used to describe organismic boundaries. We do this both on general methodological grounds, where we appeal to a form of structural realism derived from Bayesian cognitive science to dissolve the problem, and by rebutting specific arguments in the target article.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Why I Am Not a Boltzmann Brain.Sinan Dogramaci & Miriam Schoenfield - forthcoming - Philosophical Review.
    We give a Bayesian argument showing that, even if your total empirical evidence confirms that you have zillions of duplicate Boltzmann Brains, that evidence does not confirm that you are a Boltzmann Brain. We also try to explain what goes wrong with several of the sources of the temptation for thinking that such evidence does have skeptical implications.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Navigating Skepticism: Cognitive Insights and Bayesian Rationality in Pinillos’ Why We Doubt.Chad Gonnerman & John Philip Waterman - 2024 - International Journal for the Study of Skepticism:1-20.
    Pinillos’ Why We Doubt presents a powerful critique of such global skeptical assertions as “I don’t know I am not a brain-in-a-vat (biv)” by introducing a cognitive mechanism that is sensitive to error possibilities and a Bayesian rule of rationality that this mechanism is designed to approximate. This multifaceted argument offers a novel counter to global skepticism, contending that our basis for believing such premises is underminable. In this work, we engage with Pinillos’ adoption of Bayesianism, questioning whether (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Serious theories and skeptical theories: Why you are probably not a brain in a vat.Michael Huemer - 2016 - Philosophical Studies 173 (4):1031-1052.
    Skeptical hypotheses such as the brain-in-a-vat hypothesis provide extremely poor explanations for our sensory experiences. Because these scenarios accommodate virtually any possible set of evidence, the probability of any given set of evidence on the skeptical scenario is near zero; hence, on Bayesian grounds, the scenario is not well supported by the evidence. By contrast, serious theories make reasonably specific predictions about the evidence and are then well supported when these predictions are satisfied.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  11. The hypothesis testing brain: Some philosophical applications.Jakob Hohwy - 2010 - Proceedings of the Australian Society for Cognitive Science Conference.
    According to one theory, the brain is a sophisticated hypothesis tester: perception is Bayesian unconscious inference where the brain actively uses predictions to test, and then refine, models about what the causes of its sensory input might be. The brain’s task is simply continually to minimise prediction error. This theory, which is getting increasingly popular, holds great explanatory promise for a number of central areas of research at the intersection of philosophy and cognitive neuroscience. I show (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  12. Word frequency effects found in free recall are rather due to Bayesian surprise.Serban C. Musca & Anthony Chemero - 2022 - Frontiers in Psychology 13.
    The inconsistent relation between word frequency and free recall performance and the non-monotonic relation found between the two cannot all be explained by current theories. We propose a theoretical framework that can explain all extant results. Based on an ecological psychology analysis of the free recall situation in terms of environmental and informational resources available to the participants, we propose that because participants’ cognitive system has been shaped by their native language, free recall performance is best understood as the end (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Can resources save rationality? ‘Anti-Bayesian’ updating in cognition and perception.Eric Mandelbaum, Isabel Won, Steven Gross & Chaz Firestone - 2020 - Behavioral and Brain Sciences 143:e16.
    Resource rationality may explain suboptimal patterns of reasoning; but what of “anti-Bayesian” effects where the mind updates in a direction opposite the one it should? We present two phenomena — belief polarization and the size-weight illusion — that are not obviously explained by performance- or resource-based constraints, nor by the authors’ brief discussion of reference repulsion. Can resource rationality accommodate them?
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  14. Children with Reading Disability Show Brain Differences in Effective Connectivity for Visual, but Not Auditory Word Comprehension.Li Liu, Vira Amit, Emma Friedman & James Booth - 2010 - PLoS ONE 10.
    Background -/- Previous literature suggests that those with reading disability (RD) have more pronounced deficits during semantic processing in reading as compared to listening comprehension. This discrepancy has been supported by recent neuroimaging studies showing abnormal activity in RD during semantic processing in the visual but not in the auditory modality. Whether effective connectivity between brain regions in RD could also show this pattern of discrepancy has not been investigated. Methodology/Principal Findings -/- Children (8- to 14-year-olds) were given a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  15. Sleep and dreaming in the predictive processing framework.Alessio Bucci & Matteo Grasso - 2017 - Philosophy and Predictive Processing.
    Sleep and dreaming are important daily phenomena that are receiving growing attention from both the scientific and the philosophical communities. The increasingly popular predictive brain framework within cognitive science aims to give a full account of all aspects of cognition. The aim of this paper is to critically assess the theoretical advantages of Predictive Processing (PP, as proposed by Clark 2013, Clark 2016; and Hohwy 2013) in defining sleep and dreaming. After a brief introduction, we overview the state of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. The world, the brain, and the speed of sight.Ronald A. Rensink - 1996 - In David C. Knill & Whitman Richards (eds.), Perception as Bayesian Inference. Cambridge University Press. pp. 495-498.
    Adelson & Pentland (Chapter 11) use an engaging metaphor to illustrate their position on scene analysis: interpretations are produced by a workshop that employs a set of specialists, each concerned with a single aspect of the scene. The authors argue that it is too expensive to have a supervisor co-ordinate the specialists and that it is too expensive to let them operate independently. They then show that a careful sequencing of the specialists leads to solutions of minimum cost, at least (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Perception and Disjunctive Belief: A New Problem for Ambitious Predictive Processing.Assaf Weksler - forthcoming - Australasian Journal of Philosophy.
    Perception can’t have disjunctive content. Whereas you can think that a box is blue or red, you can’t see a box as being blue or red. Based on this fact, I develop a new problem for the ambitious predictive processing theory, on which the brain is a machine for minimizing prediction error, which approximately implements Bayesian inference. I describe a simple case of updating a disjunctive belief given perceptual experience of one of the disjuncts, in which Bayesian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Mechanizmy predykcyjne i ich normatywność [Predictive mechanisms and their normativity].Michał Piekarski - 2020 - Warszawa, Polska: Liberi Libri.
    The aim of this study is to justify the belief that there are biological normative mechanisms that fulfill non-trivial causal roles in the explanations (as formulated by researchers) of actions and behaviors present in specific systems. One example of such mechanisms is the predictive mechanisms described and explained by predictive processing (hereinafter PP), which (1) guide actions and (2) shape causal transitions between states that have specific content and fulfillment conditions (e.g. mental states). Therefore, I am guided by a specific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Predictive Processing and the Phenomenology of Time Consciousness: A Hierarchical Extension of Rick Grush’s Trajectory Estimation Model.Wanja Wiese - 2017 - Philosophy and Predictive Processing.
    This chapter explores to what extent some core ideas of predictive processing can be applied to the phenomenology of time consciousness. The focus is on the experienced continuity of consciously perceived, temporally extended phenomena (such as enduring processes and successions of events). The main claim is that the hierarchy of representations posited by hierarchical predictive processing models can contribute to a deepened understanding of the continuity of consciousness. Computationally, such models show that sequences of events can be represented as states (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  20. Low attention impairs optimal incorporation of prior knowledge in perceptual decisions.Jorge Morales, Guillermo Solovey, Brian Maniscalco, Dobromir Rahnev, Floris P. de Lange & Hakwan Lau - 2015 - Attention, Perception, and Psychophysics 77 (6):2021-2036.
    When visual attention is directed away from a stimulus, neural processing is weak and strength and precision of sensory data decreases. From a computational perspective, in such situations observers should give more weight to prior expectations in order to behave optimally during a discrimination task. Here we test a signal detection theoretic model that counter-intuitively predicts subjects will do just the opposite in a discrimination task with two stimuli, one attended and one unattended: when subjects are probed to discriminate the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Experiential fantasies, prediction, and enactive minds.Michael David Kirchhoff - 2015 - Journal of Consciousness Studies 22 (3-4):68-92.
    A recent surge of work on prediction-driven processing models--based on Bayesian inference and representation-heavy models--suggests that the material basis of conscious experience is inferentially secluded and neurocentrically brain bound. This paper develops an alternative account based on the free energy principle. It is argued that the free energy principle provides the right basic tools for understanding the anticipatory dynamics of the brain within a larger brain-body-environment dynamic, viewing the material basis of some conscious experiences as extensive--relational (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  22. Psychophysical identity and free energy.Alex Kiefer - 2020 - Journal of the Royal Society Interface 17.
    An approach to implementing variational Bayesian inference in biological systems is considered, under which the thermodynamic free energy of a system directly encodes its variational free energy. In the case of the brain, this assumption places constraints on the neuronal encoding of generative and recognition densities, in particular requiring a stochastic population code. The resulting relationship between thermodynamic and variational free energies is prefigured in mind–brain identity theses in philosophy and in the Gestalt hypothesis of psychophysical isomorphism.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. Considering the Purposes of Moral Education with Evidence in Neuroscience: Emphasis on Habituation of Virtues and Cultivation of Phronesis.Han Hyemin - 2024 - Ethical Theory and Moral Practice 27 (1):111-128.
    In this paper, findings from research in neuroscience of morality will be reviewed to consider the purposes of moral education. Particularly, I will focus on two main themes in neuroscience, novel neuroimaging and experimental investigations, and Bayesian learning mechanism. First, I will examine how neuroimaging and experimental studies contributed to our understanding of psychological mechanisms associated with moral functioning while addressing methodological concerns. Second, Bayesian learning mechanism will be introduced to acquire insights about how moral learning occurs in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. Abductive inference and delusional belief.Max Coltheart, Peter Menzies & John Sutton - 2010 - Cognitive Neuropsychiatry 15 (1):261-287.
    Delusional beliefs have sometimes been considered as rational inferences from abnormal experiences. We explore this idea in more detail, making the following points. Firstly, the abnormalities of cognition which initially prompt the entertaining of a delusional belief are not always conscious and since we prefer to restrict the term “experience” to consciousness we refer to “abnormal data” rather than “abnormal experience”. Secondly, we argue that in relation to many delusions (we consider eight) one can clearly identify what the abnormal cognitive (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  25. Predictive Processing and Object Recognition.Berit Brogaard & Thomas Alrik Sørensen - 2023 - In Tony Cheng, Ryoji Sato & Jakob Hohwy (eds.), Expected Experiences: The Predictive Mind in an Uncertain World. Routledge. pp. 112–139.
    Predictive processing models of perception take issue with standard models of perception as hierarchical bottom-up processing modulated by memory and attention. The predictive framework posits that the brain generates predictions about stimuli, which are matched to the incoming signal. Mismatches between predictions and the incoming signal – so-called prediction errors – are then used to generate new and better predictions until the prediction errors have been minimized, at which point a perception arises. Predictive models hold that all bottom-up processes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Schema-Centred Unity and Process-Centred Pluralism of the Predictive Mind.Nina Poth - 2022 - Minds and Machines 32 (3):433-459.
    Proponents of the predictive processing (PP) framework often claim that one of the framework’s significant virtues is its unificatory power. What is supposedly unified are predictive processes in the mind, and these are explained in virtue of a common prediction error-minimisation (PEM) schema. In this paper, I argue against the claim that PP currently converges towards a unified explanation of cognitive processes. Although the notion of PEM systematically relates a set of posits such as ‘efficiency’ and ‘hierarchical coding’ into a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Cerebellum and Emotion in Morality.Hyemin Han - forthcoming - In Michael Adamaszek, Mario Manto & Denis Schutter (eds.), Cerebellum and Emotion.
    In the current chapter, I examined the relationship between the cerebellum, emotion, and morality with evidence from large-scale neuroimaging data analysis. Although the aforementioned relationship has not been well studied in neuroscience, recent studies have shown that the cerebellum is closely associated with emotional and social processes at the neural level. Also, debates in the field of moral philosophy, psychology, and neuroscience have supported the importance of emotion in moral functioning. Thus, I explored the potentially important but less-studies topic with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. The best game in town: The reemergence of the language-of-thought hypothesis across the cognitive sciences.Jake Quilty-Dunn, Nicolas Porot & Eric Mandelbaum - 2023 - Behavioral and Brain Sciences 46:e261.
    Mental representations remain the central posits of psychology after many decades of scrutiny. However, there is no consensus about the representational format(s) of biological cognition. This paper provides a survey of evidence from computational cognitive psychology, perceptual psychology, developmental psychology, comparative psychology, and social psychology, and concludes that one type of format that routinely crops up is the language-of-thought (LoT). We outline six core properties of LoTs: (i) discrete constituents; (ii) role-filler independence; (iii) predicate–argument structure; (iv) logical operators; (v) inferential (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  29. How did that individual make that perceptual decision?David A. Booth - 2018 - Behavioral and Brain Sciences 41:E226.
    Suboptimality of decision making needs no explanation. High level accounts of suboptimality in diverse tasks cannot add up to a mechanistic theory of perceptual decision making. Mental processes operate on the contents of information brought by the experimenter and the participant to the task, not on the amount of information in the stimuli without regard to physical and social context.
    Download  
     
    Export citation  
     
    Bookmark  
  30. Controlled and uncontrolled English for ontology editing.Brian Donohue, Douglas Kutach, Robert Ganger, Ron Rudnicki, Tien Pham, Geeth de Mel, Dave Braines & Barry Smith - 2015 - Semantic Technology for Intelligence, Defense and Security 1523:74-81.
    Ontologies formally represent reality in a way that limits ambiguity and facilitates automated reasoning and data fusion, but is often daunting to the non-technical user. Thus, many researchers have endeavored to hide the formal syntax and semantics of ontologies behind the constructs of Controlled Natural Languages (CNLs), which retain the formal properties of ontologies while simultaneously presenting that information in a comprehensible natural language format. In this paper, we build upon previous work in this field by evaluating prospects of implementing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. The Bayesian and the Abductivist.Mattias Skipper & Olav Benjamin Vassend - forthcoming - Noûs.
    A major open question in the borderlands between epistemology and philosophy of science concerns whether Bayesian updating and abductive inference are compatible. Some philosophers—most influentially Bas van Fraassen—have argued that they are not. Others have disagreed, arguing that abduction, properly understood, is indeed compatible with Bayesianism. Here we present two formal results that allow us to tackle this question from a new angle. We start by formulating what we take to be a minimal version of the claim that abduction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Bayesian group belief.Franz Dietrich - 2010 - Social Choice and Welfare 35 (4):595-626.
    If a group is modelled as a single Bayesian agent, what should its beliefs be? I propose an axiomatic model that connects group beliefs to beliefs of group members, who are themselves modelled as Bayesian agents, possibly with different priors and different information. Group beliefs are proven to take a simple multiplicative form if people’s information is independent, and a more complex form if information overlaps arbitrarily. This shows that group beliefs can incorporate all information spread over the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  33. The Bayesian and the Dogmatist.Brian Weatherson - 2007 - Proceedings of the Aristotelian Society 107 (1pt2):169-185.
    It has been argued recently that dogmatism in epistemology is incompatible with Bayesianism. That is, it has been argued that dogmatism cannot be modelled using traditional techniques for Bayesian modelling. I argue that our response to this should not be to throw out dogmatism, but to develop better modelling techniques. I sketch a model for formal learning in which an agent can discover a posteriori fundamental epistemic connections. In this model, there is no formal objection to dogmatism.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  34. Improving Bayesian statistics understanding in the age of Big Data with the bayesvl R package.Quan-Hoang Vuong, Viet-Phuong La, Minh-Hoang Nguyen, Manh-Toan Ho, Manh-Tung Ho & Peter Mantello - 2020 - Software Impacts 4 (1):100016.
    The exponential growth of social data both in volume and complexity has increasingly exposed many of the shortcomings of the conventional frequentist approach to statistics. The scientific community has called for careful usage of the approach and its inference. Meanwhile, the alternative method, Bayesian statistics, still faces considerable barriers toward a more widespread application. The bayesvl R package is an open program, designed for implementing Bayesian modeling and analysis using the Stan language’s no-U-turn (NUTS) sampler. The package combines (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  35. A Bayesian explanation of the irrationality of sexist and racist beliefs involving generic content.Paul Silva - 2020 - Synthese 197 (6):2465-2487.
    Various sexist and racist beliefs ascribe certain negative qualities to people of a given sex or race. Epistemic allies are people who think that in normal circumstances rationality requires the rejection of such sexist and racist beliefs upon learning of many counter-instances, i.e. members of these groups who lack the target negative quality. Accordingly, epistemic allies think that those who give up their sexist or racist beliefs in such circumstances are rationally responding to their evidence, while those who do not (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  36. Bayesian Evidence Test for Precise Hypotheses.Julio Michael Stern - 2003 - Journal of Statistical Planning and Inference 117 (2):185-198.
    The full Bayesian signi/cance test (FBST) for precise hypotheses is presented, with some illustrative applications. In the FBST we compute the evidence against the precise hypothesis. We discuss some of the theoretical properties of the FBST, and provide an invariant formulation for coordinate transformations, provided a reference density has been established. This evidence is the probability of the highest relative surprise set, “tangential” to the sub-manifold (of the parameter space) that defines the null hypothesis.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  37. Bayesian Perspectives on Mathematical Practice.James Franklin - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2711-2726.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Bayesian conditioning, the reflection principle, and quantum decoherence.Christopher A. Fuchs & Rüdiger Schack - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 233--247.
    The probabilities a Bayesian agent assigns to a set of events typically change with time, for instance when the agent updates them in the light of new data. In this paper we address the question of how an agent's probabilities at different times are constrained by Dutch-book coherence. We review and attempt to clarify the argument that, although an agent is not forced by coherence to use the usual Bayesian conditioning rule to update his probabilities, coherence does require (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39. Bayesian Cognitive Science, Unification, and Explanation.Stephan Hartmann & Matteo Colombo - 2017 - British Journal for the Philosophy of Science 68 (2).
    It is often claimed that the greatest value of the Bayesian framework in cognitive science consists in its unifying power. Several Bayesian cognitive scientists assume that unification is obviously linked to explanatory power. But this link is not obvious, as unification in science is a heterogeneous notion, which may have little to do with explanation. While a crucial feature of most adequate explanations in cognitive science is that they reveal aspects of the causal mechanism that produces the phenomenon (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  40. Bayesian Models, Delusional Beliefs, and Epistemic Possibilities.Matthew Parrott - 2016 - British Journal for the Philosophy of Science 67 (1):271-296.
    The Capgras delusion is a condition in which a person believes that an imposter has replaced some close friend or relative. Recent theorists have appealed to Bayesianism to help explain both why a subject with the Capgras delusion adopts this delusional belief and why it persists despite counter-evidence. The Bayesian approach is useful for addressing these questions; however, the main proposal of this essay is that Capgras subjects also have a delusional conception of epistemic possibility, more specifically, they think (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  41. Bayesian Learning Models of Pain: A Call to Action.Abby Tabor & Christopher Burr - 2019 - Current Opinion in Behavioral Sciences 26:54-61.
    Learning is fundamentally about action, enabling the successful navigation of a changing and uncertain environment. The experience of pain is central to this process, indicating the need for a change in action so as to mitigate potential threat to bodily integrity. This review considers the application of Bayesian models of learning in pain that inherently accommodate uncertainty and action, which, we shall propose are essential in understanding learning in both acute and persistent cases of pain.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Brain Data in Context: Are New Rights the Way to Mental and Brain Privacy?Daniel Susser & Laura Y. Cabrera - 2023 - American Journal of Bioethics Neuroscience 15 (2):122-133.
    The potential to collect brain data more directly, with higher resolution, and in greater amounts has heightened worries about mental and brain privacy. In order to manage the risks to individuals posed by these privacy challenges, some have suggested codifying new privacy rights, including a right to “mental privacy.” In this paper, we consider these arguments and conclude that while neurotechnologies do raise significant privacy concerns, such concerns are—at least for now—no different from those raised by other well-understood (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  43. Bayesian Epistemology.Alan Hájek & Stephan Hartmann - 1992 - In Jonathan Dancy & Ernest Sosa (eds.), A Companion to Epistemology. Malden, MA: Wiley-Blackwell.
    Bayesianism is our leading theory of uncertainty. Epistemology is defined as the theory of knowledge. So “Bayesian Epistemology” may sound like an oxymoron. Bayesianism, after all, studies the properties and dynamics of degrees of belief, understood to be probabilities. Traditional epistemology, on the other hand, places the singularly non-probabilistic notion of knowledge at centre stage, and to the extent that it traffics in belief, that notion does not come in degrees. So how can there be a Bayesian epistemology?
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  44. The Bayesian explanation of transmission failure.Geoff Pynn - 2013 - Synthese 190 (9):1519-1531.
    Even if our justified beliefs are closed under known entailment, there may still be instances of transmission failure. Transmission failure occurs when P entails Q, but a subject cannot acquire a justified belief that Q by deducing it from P. Paradigm cases of transmission failure involve inferences from mundane beliefs (e.g., that the wall in front of you is red) to the denials of skeptical hypotheses relative to those beliefs (e.g., that the wall in front of you is not white (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  45. Deep Brain Stimulation, Authenticity and Value.Pugh Jonathan, Maslen Hannah & Savulescu Julian - 2017 - Cambridge Quarterly of Healthcare Ethics 26 (4):640-657.
    Deep brain stimulation has been of considerable interest to bioethicists, in large part because of the effects that the intervention can occasionally have on central features of the recipient’s personality. These effects raise questions regarding the philosophical concept of authenticity. In this article, we expand on our earlier work on the concept of authenticity in the context of deep brain stimulation by developing a diachronic, value-based account of authenticity. Our account draws on both existentialist and essentialist approaches to (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  46. Bayesians Commit the Gambler's Fallacy.Kevin Dorst - manuscript
    The gambler’s fallacy is the tendency to expect random processes to switch more often than they actually do—for example, to think that after a string of tails, a heads is more likely. It’s often taken to be evidence for irrationality. It isn’t. Rather, it’s to be expected from a group of Bayesians who begin with causal uncertainty, and then observe unbiased data from an (in fact) statistically independent process. Although they converge toward the truth, they do so in an asymmetric (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Indexicality, Bayesian Background and Self-Location in Fine-Tuning Arguments for the Multiverse.Quentin Ruyant - forthcoming - Noûs.
    Our universe seems to be miraculously fine-tuned for life. Multiverse theories have been proposed as an explanation for this on the basis of probabilistic arguments, but various authors have objected that we should consider our total evidence that this universe in particular has life in our inference, which would block the argument. The debate thus crucially hinges on how Bayesian background and evidence are distinguished and on how indexical or demonstrative terms are analysed. The aim of this article is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Full Bayesian Significance Test Applied to Multivariate Normal Structure Models.Marcelo de Souza Lauretto, Carlos Alberto de Braganca Pereira, Julio Michael Stern & Shelemiahu Zacks - 2003 - Brazilian Journal of Probability and Statistics 17:147-168.
    Abstract: The Pull Bayesian Significance Test (FBST) for precise hy- potheses is applied to a Multivariate Normal Structure (MNS) model. In the FBST we compute the evidence against the precise hypothesis. This evi- dence is the probability of the Highest Relative Surprise Set (HRSS) tangent to the sub-manifold (of the parameter space) that defines the null hypothesis. The MNS model we present appears when testing equivalence conditions for genetic expression measurements, using micro-array technology.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Scientific Theories as Bayesian Nets: Structure and Evidence Sensitivity.Patrick Grim, Frank Seidl, Calum McNamara, Hinton E. Rago, Isabell N. Astor, Caroline Diaso & Peter Ryner - 2022 - Philosophy of Science 89 (1):42-69.
    We model scientific theories as Bayesian networks. Nodes carry credences and function as abstract representations of propositions within the structure. Directed links carry conditional probabilities and represent connections between those propositions. Updating is Bayesian across the network as a whole. The impact of evidence at one point within a scientific theory can have a very different impact on the network than does evidence of the same strength at a different point. A Bayesian model allows us to envisage (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  50. Bayesian Beauty.Silvia Milano - 2020 - Erkenntnis 87 (2):657-676.
    The Sleeping Beauty problem has attracted considerable attention in the literature as a paradigmatic example of how self-locating uncertainty creates problems for the Bayesian principles of Conditionalization and Reflection. Furthermore, it is also thought to raise serious issues for diachronic Dutch Book arguments. I show that, contrary to what is commonly accepted, it is possible to represent the Sleeping Beauty problem within a standard Bayesian framework. Once the problem is correctly represented, the ‘thirder’ solution satisfies standard rationality principles, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 979