Results for 'Bayesian models'

969 found
Order:
  1. Bayesian models and simulations in cognitive science.Giuseppe Boccignone & Roberto Cordeschi - 2007 - Workshop Models and Simulations 2, Tillburg, NL.
    Bayesian models can be related to cognitive processes in a variety of ways that can be usefully understood in terms of Marr's distinction among three levels of explanation: computational, algorithmic and implementation. In this note, we discuss how an integrated probabilistic account of the different levels of explanation in cognitive science is resulting, at least for the current research practice, in a sort of unpredicted epistemological shift with respect to Marr's original proposal.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Do Bayesian Models of Cognition Show That We Are (Bayes) Rational?Arnon Levy - forthcoming - Philosophy of Science:1-13.
    According to [Bayesian] models” in cognitive neuroscience, says a recent textbook, “the human mind behaves like a capable data scientist”. Do they? That is to say, do such model show we are rational? I argue that Bayesian models of cognition, perhaps surprisingly, do not and indeed cannot, show that we are Bayesian-rational. The key reason is that such models appeal to approximations, a fact that carries significant implications. After outlining the argument, I critique two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Bayesian Models, Delusional Beliefs, and Epistemic Possibilities.Matthew Parrott - 2016 - British Journal for the Philosophy of Science 67 (1):271-296.
    The Capgras delusion is a condition in which a person believes that an imposter has replaced some close friend or relative. Recent theorists have appealed to Bayesianism to help explain both why a subject with the Capgras delusion adopts this delusional belief and why it persists despite counter-evidence. The Bayesian approach is useful for addressing these questions; however, the main proposal of this essay is that Capgras subjects also have a delusional conception of epistemic possibility, more specifically, they think (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  4. Modelling competing legal arguments using Bayesian model comparison and averaging.Martin Neil, Norman Fenton, David Lagnado & Richard David Gill - 2019 - Artificial Intelligence and Law 27 (4):403-430.
    Bayesian models of legal arguments generally aim to produce a single integrated model, combining each of the legal arguments under consideration. This combined approach implicitly assumes that variables and their relationships can be represented without any contradiction or misalignment, and in a way that makes sense with respect to the competing argument narratives. This paper describes a novel approach to compare and ‘average’ Bayesian models of legal arguments that have been built independently and with no attempt (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  5. Improved model exploration for the relationship between moral foundations and moral judgment development using Bayesian Model Averaging.Hyemin Han & Kelsie J. Dawson - 2022 - Journal of Moral Education 51 (2):204-218.
    Although some previous studies have investigated the relationship between moral foundations and moral judgment development, the methods used have not been able to fully explore the relationship. In the present study, we used Bayesian Model Averaging (BMA) in order to address the limitations in traditional regression methods that have been used previously. Results showed consistency with previous findings that binding foundations are negatively correlated with post-conventional moral reasoning and positively correlated with maintaining norms and personal interest schemas. In addition (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  6. The Myside Bias in Argument Evaluation: A Bayesian Model.Edoardo Baccini & Stephan Hartmann - 2022 - Proceedings of the Annual Meeting of the Cognitive Science Society 44:1512-1518.
    The "myside bias'' in evaluating arguments is an empirically well-confirmed phenomenon that consists of overweighting arguments that endorse one's beliefs or attack alternative beliefs while underweighting arguments that attack one's beliefs or defend alternative beliefs. This paper makes two contributions: First, it proposes a probabilistic model that adequately captures three salient features of myside bias in argument evaluation. Second, it provides a Bayesian justification of this model, thus showing that myside bias has a rational Bayesian explanation under certain (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Bayesian Learning Models of Pain: A Call to Action.Abby Tabor & Christopher Burr - 2019 - Current Opinion in Behavioral Sciences 26:54-61.
    Learning is fundamentally about action, enabling the successful navigation of a changing and uncertain environment. The experience of pain is central to this process, indicating the need for a change in action so as to mitigate potential threat to bodily integrity. This review considers the application of Bayesian models of learning in pain that inherently accommodate uncertainty and action, which, we shall propose are essential in understanding learning in both acute and persistent cases of pain.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. Bayesian Test of Significance for Conditional Independence: The Multinomial Model.Julio Michael Stern, Pablo de Morais Andrade & Carlos Alberto de Braganca Pereira - 2014 - Entropy 16:1376-1395.
    Conditional independence tests have received special attention lately in machine learning and computational intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of probabilistic graphical models, which includes Bayesian network models, conditional independence tests are especially important for the task of learning the probabilistic graphical model structure from data. In this paper, we propose the full Bayesian significance test for tests of conditional independence for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Full Bayesian Significance Test Applied to Multivariate Normal Structure Models.Marcelo de Souza Lauretto, Carlos Alberto de Braganca Pereira, Julio Michael Stern & Shelemiahu Zacks - 2003 - Brazilian Journal of Probability and Statistics 17:147-168.
    Abstract: The Pull Bayesian Significance Test (FBST) for precise hy- potheses is applied to a Multivariate Normal Structure (MNS) model. In the FBST we compute the evidence against the precise hypothesis. This evi- dence is the probability of the Highest Relative Surprise Set (HRSS) tangent to the sub-manifold (of the parameter space) that defines the null hypothesis. The MNS model we present appears when testing equivalence conditions for genetic expression measurements, using micro-array technology.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. From unreliable sources: Bayesian critique and normative modelling of HUMINT inferences.Aviezer Tucker - 2023 - Journal of Policing, Intelligence and Counter Terrorism 18:1-17.
    This paper applies Bayesian theories to critically analyse and offer reforms of intelligence analysis, collection, analysis, and decision making on the basis of Human Intelligence, Signals Intelligence, and Communication Intelligence. The article criticises the reliabilities of existing intelligence methodologies to demonstrate the need for Bayesian reforms. The proposed epistemic reform program for intelligence analysis should generate more reliable inferences. It distinguishes the transmission of knowledge from its generation, and consists of Bayesian three stages modular model for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The Full Bayesian Significance Test for Mixture Models: Results in Gene Expression Clustering.Julio Michael Stern, Marcelo de Souza Lauretto & Carlos Alberto de Braganca Pereira - 2008 - Genetics and Molecular Research 7 (3):883-897.
    Gene clustering is a useful exploratory technique to group together genes with similar expression levels under distinct cell cycle phases or distinct conditions. It helps the biologist to identify potentially meaningful relationships between genes. In this study, we propose a clustering method based on multivariate normal mixture models, where the number of clusters is predicted via sequential hypothesis tests: at each step, the method considers a mixture model of m components (m = 2 in the first step) and tests (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. A Subjective Bayesian Response to Winsberg’s use of the 'Adequacy for Purpose ' model criterion.John Lepp - manuscript
    ABSTRACT: It will be argued that Eric Winsberg has created a problem where nobody is in the position to rationally support the Anthropogenic Climate Change hypothesis, since he demands the normal lay public defer to experts but, from Winsberg’s philosophical commitments, experts are precluded from having the ability to rationally conclude that a hypothesis is superior to an alternative. Winsberg’s difficulties can be resolved with a little help from Bayesian Confirmation Theory. A Bayesian analysis will be provided which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Bayesvl: an R package for user-friendly Bayesian regression modelling.Quan-Hoang Vuong, Minh-Hoang Nguyen & Manh-Toan Ho - 2022 - VMOST Journal of Social Sciences and Humanities 64 (1):85-96.
    Compared with traditional statistics, only a few social scientists employ Bayesian analyses. The existing software programs for implementing Bayesian analyses such as OpenBUGS, WinBUGS, JAGS, and rstanarm can be daunting given that their complex computer codes involve a steep learning curve. In contrast, this paper introduces a new open software for implementing Bayesian network modelling and analysis: the bayesvl R package. The package aims at providing an intuitive gateway for beginners of Bayesian statistics to construct and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. The Bayesian and the Dogmatist.Brian Weatherson - 2007 - Proceedings of the Aristotelian Society 107 (1pt2):169-185.
    It has been argued recently that dogmatism in epistemology is incompatible with Bayesianism. That is, it has been argued that dogmatism cannot be modelled using traditional techniques for Bayesian modelling. I argue that our response to this should not be to throw out dogmatism, but to develop better modelling techniques. I sketch a model for formal learning in which an agent can discover a posteriori fundamental epistemic connections. In this model, there is no formal objection to dogmatism.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  15. Bayesian learning models with revision of evidence.William Harper - 1978 - Philosophia 7 (2):357-367.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Improving Bayesian statistics understanding in the age of Big Data with the bayesvl R package.Quan-Hoang Vuong, Viet-Phuong La, Minh-Hoang Nguyen, Manh-Toan Ho, Manh-Tung Ho & Peter Mantello - 2020 - Software Impacts 4 (1):100016.
    The exponential growth of social data both in volume and complexity has increasingly exposed many of the shortcomings of the conventional frequentist approach to statistics. The scientific community has called for careful usage of the approach and its inference. Meanwhile, the alternative method, Bayesian statistics, still faces considerable barriers toward a more widespread application. The bayesvl R package is an open program, designed for implementing Bayesian modeling and analysis using the Stan language’s no-U-turn (NUTS) sampler. The package combines (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  17. Bayesian group belief.Franz Dietrich - 2010 - Social Choice and Welfare 35 (4):595-626.
    If a group is modelled as a single Bayesian agent, what should its beliefs be? I propose an axiomatic model that connects group beliefs to beliefs of group members, who are themselves modelled as Bayesian agents, possibly with different priors and different information. Group beliefs are proven to take a simple multiplicative form if people’s information is independent, and a more complex form if information overlaps arbitrarily. This shows that group beliefs can incorporate all information spread over the (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  18. When the (Bayesian) ideal is not ideal.Danilo Fraga Dantas - 2023 - Logos and Episteme 15 (3):271-298.
    Bayesian epistemologists support the norms of probabilism and conditionalization using Dutch book and accuracy arguments. These arguments assume that rationality requires agents to maximize practical or epistemic value in every doxastic state, which is evaluated from a subjective point of view (e.g., the agent’s expectancy of value). The accuracy arguments also presuppose that agents are opinionated. The goal of this paper is to discuss the assumptions of these arguments, including the measure of epistemic value. I have designed AI agents (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Enviromental genotoxicity evaluation: Bayesian approach for a mixture statistical model.Julio Michael Stern, Angela Maria de Souza Bueno, Carlos Alberto de Braganca Pereira & Maria Nazareth Rabello-Gay - 2002 - Stochastic Environmental Research and Risk Assessment 16:267–278.
    The data analyzed in this paper are part of the results described in Bueno et al. (2000). Three cytogenetics endpoints were analyzed in three populations of a species of wild rodent – Akodon montensis – living in an industrial, an agricultural, and a preservation area at the Itajaí Valley, State of Santa Catarina, Brazil. The polychromatic/normochromatic ratio, the mitotic index, and the frequency of micronucleated polychromatic erythrocites were used in an attempt to establish a genotoxic profile of each area. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Bayesians Commit the Gambler's Fallacy.Kevin Dorst - manuscript
    The gambler’s fallacy is the tendency to expect random processes to switch more often than they actually do—for example, to think that after a string of tails, a heads is more likely. It’s often taken to be evidence for irrationality. It isn’t. Rather, it’s to be expected from a group of Bayesians who begin with causal uncertainty, and then observe unbiased data from an (in fact) statistically independent process. Although they converge toward the truth, they do so in an asymmetric (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Scientific Theories as Bayesian Nets: Structure and Evidence Sensitivity.Patrick Grim, Frank Seidl, Calum McNamara, Hinton E. Rago, Isabell N. Astor, Caroline Diaso & Peter Ryner - 2022 - Philosophy of Science 89 (1):42-69.
    We model scientific theories as Bayesian networks. Nodes carry credences and function as abstract representations of propositions within the structure. Directed links carry conditional probabilities and represent connections between those propositions. Updating is Bayesian across the network as a whole. The impact of evidence at one point within a scientific theory can have a very different impact on the network than does evidence of the same strength at a different point. A Bayesian model allows us to envisage (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. (1 other version)Refining the Bayesian Approach to Unifying Generalisation.Nina Poth - 2022 - Review of Philosophy and Psychology (3):1-31.
    Tenenbaum and Griffiths (2001) have proposed that their Bayesian model of generalisation unifies Shepard’s (1987) and Tversky’s (1977) similarity-based explanations of two distinct patterns of generalisation behaviours by reconciling them under a single coherent task analysis. I argue that this proposal needs refinement: instead of unifying the heterogeneous notion of psychological similarity, the Bayesian approach unifies generalisation by rendering the distinct patterns of behaviours informationally relevant. I suggest that generalisation as a Bayesian inference should be seen as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Bayesian Cognitive Science. Routledge Encyclopaedia of Philosophy.Matteo Colombo - 2023 - Routledge Encyclopaedia of Philosophy.
    Bayesian cognitive science is a research programme that relies on modelling resources from Bayesian statistics for studying and understanding mind, brain, and behaviour. Conceiving of mental capacities as computing solutions to inductive problems, Bayesian cognitive scientists develop probabilistic models of mental capacities and evaluate their adequacy based on behavioural and neural data generated by humans (or other cognitive agents) performing a pertinent task. The overarching goal is to identify the mathematical principles, algorithmic procedures, and causal mechanisms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Testing Significance in Bayesian Classifiers.Julio Michael Stern & Marcelo de Souza Lauretto - 2005 - Frontiers in Artificial Intelligence and Applications 132:34-41.
    The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test for sharp hypotheses. This paper explores the FBST as a model selection tool for general mixture models, and gives some computational experiments for Multinomial-Dirichlet-Normal-Wishart models.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  68
    Understanding the Republic of Malawi’s trade dynamics: A Bayesian gravity model approach.B. B. Sambiri, N. C. Mutai & S. Kumari - 2024 - Review of Business and Economics Studies 12 (3):28-39.
    International trade enables countries to expand their markets, access more products, improve resource allocation, and boost economic growth by leveraging comparative advantage and specialization. The aim of this article is to analyze the primary factors that influence Malawi’s international trade flows. The study is relevant because it examines Malawi’s trade patterns with its main partners, which include surrounding nations and traditional trade allies. The novelty is that, through the analysis, the research offers valuable insights into the primary factors that influence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Realism and instrumentalism in Bayesian cognitive science.Danielle Williams & Zoe Drayson - 2023 - In Tony Cheng, Ryoji Sato & Jakob Hohwy (eds.), Expected Experiences: The Predictive Mind in an Uncertain World. Routledge.
    There are two distinct approaches to Bayesian modelling in cognitive science. Black-box approaches use Bayesian theory to model the relationship between the inputs and outputs of a cognitive system without reference to the mediating causal processes; while mechanistic approaches make claims about the neural mechanisms which generate the outputs from the inputs. This paper concerns the relationship between these two approaches. We argue that the dominant trend in the philosophical literature, which characterizes the relationship between black-box and mechanistic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Bayesian Perspectives on Mathematical Practice.James Franklin - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2711-2726.
    Mathematicians often speak of conjectures as being confirmed by evidence that falls short of proof. For their own conjectures, evidence justifies further work in looking for a proof. Those conjectures of mathematics that have long resisted proof, such as the Riemann hypothesis, have had to be considered in terms of the evidence for and against them. In recent decades, massive increases in computer power have permitted the gathering of huge amounts of numerical evidence, both for conjectures in pure mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Bayesian Variations: Essays on the Structure, Object, and Dynamics of Credence.Aron Vallinder - 2018 - Dissertation, London School of Economics
    According to the traditional Bayesian view of credence, its structure is that of precise probability, its objects are descriptive propositions about the empirical world, and its dynamics are given by conditionalization. Each of the three essays that make up this thesis deals with a different variation on this traditional picture. The first variation replaces precise probability with sets of probabilities. The resulting imprecise Bayesianism is sometimes motivated on the grounds that our beliefs should not be more precise than the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. Cointegration: Bayesian Significance Test Communications in Statistics.Julio Michael Stern, Marcio Alves Diniz & Carlos Alberto de Braganca Pereira - 2012 - Communications in Statistics 41 (19):3562-3574.
    To estimate causal relationships, time series econometricians must be aware of spurious correlation, a problem first mentioned by Yule (1926). To deal with this problem, one can work either with differenced series or multivariate models: VAR (VEC or VECM) models. These models usually include at least one cointegration relation. Although the Bayesian literature on VAR/VEC is quite advanced, Bauwens et al. (1999) highlighted that “the topic of selecting the cointegrating rank has not yet given very useful (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. A Bayesian Solution to Hallsson's Puzzle.Thomas Mulligan - 2023 - Inquiry: An Interdisciplinary Journal of Philosophy 66 (10):1914-1927.
    Politics is rife with motivated cognition. People do not dispassionately engage with the evidence when they form political beliefs; they interpret it selectively, generating justifications for their desired conclusions and reasons why contrary evidence should be ignored. Moreover, research shows that epistemic ability (e.g. intelligence and familiarity with evidence) is correlated with motivated cognition. Bjørn Hallsson has pointed out that this raises a puzzle for the epistemology of disagreement. On the one hand, we typically think that epistemic ability in an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Bayesian representation of a prolonged archaeological debate.Efraim Wallach - 2018 - Synthese 195 (1):401-431.
    This article examines the effect of material evidence upon historiographic hypotheses. Through a series of successive Bayesian conditionalizations, I analyze the extended competition among several hypotheses that offered different accounts of the transition between the Bronze Age and the Iron Age in Palestine and in particular to the “emergence of Israel”. The model reconstructs, with low sensitivity to initial assumptions, the actual outcomes including a complete alteration of the scientific consensus. Several known issues of Bayesian confirmation, including the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  32. Metaphysics of the Bayesian mind.Justin Tiehen - 2022 - Mind and Language 38 (2):336-354.
    Recent years have seen a Bayesian revolution in cognitive science. This should be of interest to metaphysicians of science, whose naturalist project involves working out the metaphysical implications of our leading scientific accounts, and in advancing our understanding of those accounts by drawing on the metaphysical frameworks developed by philosophers. Toward these ends, in this paper I develop a metaphysics of the Bayesian mind. My central claim is that the Bayesian approach supports a novel empirical argument for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. How to Be a Bayesian Dogmatist.Brian T. Miller - 2016 - Australasian Journal of Philosophy 94 (4):766-780.
    ABSTRACTRational agents have consistent beliefs. Bayesianism is a theory of consistency for partial belief states. Rational agents also respond appropriately to experience. Dogmatism is a theory of how to respond appropriately to experience. Hence, Dogmatism and Bayesianism are theories of two very different aspects of rationality. It's surprising, then, that in recent years it has become common to claim that Dogmatism and Bayesianism are jointly inconsistent: how can two independently consistent theories with distinct subject matter be jointly inconsistent? In this (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  34. FBST for Mixture Model Selection.Julio Michael Stern & Marcelo de Souza Lauretto - 2005 - AIP Conference Proceedings 803:121-128.
    The Fully Bayesian Significance Test (FBST) is a coherent Bayesian significance test for sharp hypotheses. This paper proposes the FBST as a model selection tool for general mixture models, and compares its performance with Mclust, a model-based clustering software. The FBST robust performance strongly encourages further developments and investigations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Climate Models, Calibration, and Confirmation.Katie Steele & Charlotte Werndl - 2013 - British Journal for the Philosophy of Science 64 (3):609-635.
    We argue that concerns about double-counting—using the same evidence both to calibrate or tune climate models and also to confirm or verify that the models are adequate—deserve more careful scrutiny in climate modelling circles. It is widely held that double-counting is bad and that separate data must be used for calibration and confirmation. We show that this is far from obviously true, and that climate scientists may be confusing their targets. Our analysis turns on a Bayesian/relative-likelihood approach (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  36. (1 other version)Examining the influence of generalized trust on life satisfaction across different education levels and socioeconomic conditions using the Bayesian Mindsponge Framework.Tam-Tri Le, Minh-Hoang Nguyen, Ruining Jin, Viet-Phuong La, Hong-Son Nguyen & Quan-Hoang Vuong - manuscript
    Extant literature suggests a positive correlation between social trust (also called generalized trust) and life satisfaction. However, the psychological pathways underlying this relationship can be complex. Using the Bayesian Mindsponge Framework (BMF), we examined the influence of social trust in a high-violence environment. Employing Bayesian analysis on a sample of 1237 adults in Cali, Colombia, we found that in a linear relationship, generalized trust is positively associated with life satisfaction. However, in a model including the interactions between trust (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. FBST Regularization and Model Selection.Julio Michael Stern & Carlos Alberto de Braganca Pereira - 2001 - In Julio Michael Stern & Carlos Alberto de Braganca Pereira (eds.), Annals of the 7th International Conference on Information Systems Analysis and Synthesis. Orlando FL: pp. 7: 60-65..
    We show how the Full Bayesian Significance Test (FBST) can be used as a model selection criterion. The FBST was presented by Pereira and Stern as a coherent Bayesian significance test. Key Words: Bayesian test; Evidence; Global optimization; Information; Model selection; Numerical integration; Posterior density; Precise hypothesis; Regularization. AMS: 62A15; 62F15; 62H15.
    Download  
     
    Export citation  
     
    Bookmark  
  38. Confirmational holism and bayesian epistemology.David Christensen - 1992 - Philosophy of Science 59 (4):540-557.
    Much contemporary epistemology is informed by a kind of confirmational holism, and a consequent rejection of the assumption that all confirmation rests on experiential certainties. Another prominent theme is that belief comes in degrees, and that rationality requires apportioning one's degrees of belief reasonably. Bayesian confirmation models based on Jeffrey Conditionalization attempt to bring together these two appealing strands. I argue, however, that these models cannot account for a certain aspect of confirmation that would be accounted for (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  39. Conditional Degree of Belief and Bayesian Inference.Jan Sprenger - 2020 - Philosophy of Science 87 (2):319-335.
    Why are conditional degrees of belief in an observation E, given a statistical hypothesis H, aligned with the objective probabilities expressed by H? After showing that standard replies are not satisfactory, I develop a suppositional analysis of conditional degree of belief, transferring Ramsey’s classical proposal to statistical inference. The analysis saves the alignment, explains the role of chance-credence coordination, and rebuts the charge of arbitrary assessment of evidence in Bayesian inference. Finally, I explore the implications of this analysis for (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  40. Which Models of Scientific Explanation Are (In)Compatible with Inference to the Best Explanation?Yunus Prasetya - 2024 - British Journal for the Philosophy of Science 75 (1):209-232.
    In this article, I explore the compatibility of inference to the best explanation (IBE) with several influential models and accounts of scientific explanation. First, I explore the different conceptions of IBE and limit my discussion to two: the heuristic conception and the objective Bayesian conception. Next, I discuss five models of scientific explanation with regard to each model’s compatibility with IBE. I argue that Kitcher’s unificationist account supports IBE; Railton’s deductive–nomological–probabilistic model, Salmon’s statistical-relevance model, and van Fraassen’s (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41. Going in, moral, circles: A data-driven exploration of moral circle predictors and prediction models.Hyemin Han & Marja Graham - manuscript
    Moral circles help define the boundaries of one’s moral consideration. One’s moral circle may provide insight into how one perceives or treats other entities. A data-driven model exploration was conducted to explore predictors and prediction models. Candidate predictors were built upon past research using moral foundations and political orientation. Moreover, we also employed additional moral psychological indicators, i.e., moral reasoning, moral identity, and empathy, based on prior research in moral development and education. We used model exploration methods, i.e., (...) model exploration, Bayesian model averaging, and elastic-net regression. The study successfully replicated past research supporting the relationship between moral foundations, political orientation, and the moral circle. Additional moral psychological constructs, such as post-conventional moral reasoning and moral identity, significantly predicted the moral circle width. The identified components of the moral circle were conceptually related to phronesis, i.e., practical wisdom. We discussed the educational implications of the findings, particularly those related to moral education focusing on phronesis cultivation, multiculturalism and global citizenship, and climate justice. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  42. A model of jury decisions where all jurors have the same evidence.Franz Dietrich & Christian List - 2004 - Synthese 142 (2):175 - 202.
    Under the independence and competence assumptions of Condorcet’s classical jury model, the probability of a correct majority decision converges to certainty as the jury size increases, a seemingly unrealistic result. Using Bayesian networks, we argue that the model’s independence assumption requires that the state of the world (guilty or not guilty) is the latest common cause of all jurors’ votes. But often – arguably in all courtroom cases and in many expert panels – the latest such common cause is (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  43. Estimation and Model Selection in Dirichlet Regression.Julio Michael Stern - 2012 - AIP Conference Proceedings 1443:206-213.
    We study Compositional Models based on Dirichlet Regression where, given a (vector) covariate x, one considers the response variable, y, to be a positive vector with a conditional Dirichlet distribution, y | X We introduce a new method for estimating the parameters of the Dirichlet Covariate Model given a linear model on X, and also propose a Bayesian model selection approach. We present some numerical results which suggest that our proposals are more stable and robust than traditional approaches.
    Download  
     
    Export citation  
     
    Bookmark  
  44. A model of non-informational preference change.Franz Dietrich & Christian List - 2011 - Journal of Theoretical Politics 23 (2):145-164.
    According to standard rational choice theory, as commonly used in political science and economics, an agent's fundamental preferences are exogenously fixed, and any preference change over decision options is due to Bayesian information learning. Although elegant and parsimonious, such a model fails to account for preference change driven by experiences or psychological changes distinct from information learning. We develop a model of non-informational preference change. Alternatives are modelled as points in some multidimensional space, only some of whose dimensions play (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  45. Cultural evolution in Vietnam’s early 20th century: a Bayesian networks analysis of Hanoi Franco-Chinese house designs.Quan-Hoang Vuong, Quang-Khiem Bui, Viet-Phuong La, Thu-Trang Vuong, Manh-Toan Ho, Hong-Kong T. Nguyen, Hong-Ngoc Nguyen, Kien-Cuong P. Nghiem & Manh-Tung Ho - 2019 - Social Sciences and Humanities Open 1 (1):100001.
    The study of cultural evolution has taken on an increasingly interdisciplinary and diverse approach in explicating phenomena of cultural transmission and adoptions. Inspired by this computational movement, this study uses Bayesian networks analysis, combining both the frequentist and the Hamiltonian Markov chain Monte Carlo (MCMC) approach, to investigate the highly representative elements in the cultural evolution of a Vietnamese city’s architecture in the early 20th century. With a focus on the façade design of 68 old houses in Hanoi’s Old (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  46. Decoupling, Sparsity, Randomization, and Objective Bayesian Inference.Julio Michael Stern - 2008 - Cybernetics and Human Knowing 15 (2):49-68..
    Decoupling is a general principle that allows us to separate simple components in a complex system. In statistics, decoupling is often expressed as independence, no association, or zero covariance relations. These relations are sharp statistical hypotheses, that can be tested using the FBST - Full Bayesian Significance Test. Decoupling relations can also be introduced by some techniques of Design of Statistical Experiments, DSEs, like randomization. This article discusses the concepts of decoupling, randomization and sparsely connected statistical models in (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  47. Exploring the association between character strengths and moral functioning.Hyemin Han, Kelsie J. Dawson, David I. Walker, Nghi Nguyen & Youn-Jeng Choi - 2023 - Ethics and Behavior 33 (4):286-303.
    We explored the relationship between 24 character strengths measured by the Global Assessment of Character Strengths (GACS), which was revised from the original VIA instrument, and moral functioning comprising postconventional moral reasoning, empathic traits and moral identity. Bayesian Model Averaging (BMA) was employed to explore the best models, which were more parsimonious than full regression models estimated through frequentist regression, predicting moral functioning indicators with the 24 candidate character strength predictors. Our exploration was conducted with a dataset (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Model tuning in engineering: uncovering the logic.Katie Steele & Charlotte Werndl - 2015 - Journal of Strain Analysis for Engineering Design 51 (1):63-71.
    In engineering, as in other scientific fields, researchers seek to confirm their models with real-world data. It is common practice to assess models in terms of the distance between the model outputs and the corresponding experimental observations. An important question that arises is whether the model should then be ‘tuned’, in the sense of estimating the values of free parameters to get a better fit with the data, and furthermore whether the tuned model can be confirmed with the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Non-Arbitrage In Financial Markets: A Bayesian Approach for Verification.Julio Michael Stern & Fernando Valvano Cerezetti - 2012 - AIP Conference Proceedings 1490:87-96.
    The concept of non-arbitrage plays an essential role in finance theory. Under certain regularity conditions, the Fundamental Theorem of Asset Pricing states that, in non-arbitrage markets, prices of financial instruments are martingale processes. In this theoretical framework, the analysis of the statistical distributions of financial assets can assist in understanding how participants behave in the markets, and may or may not engender arbitrage conditions. Assuming an underlying Variance Gamma statistical model, this study aims to test, using the FBST - Full (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. The new Tweety puzzle: arguments against monistic Bayesian approaches in epistemology and cognitive science.Matthias Unterhuber & Gerhard Schurz - 2013 - Synthese 190 (8):1407-1435.
    In this paper we discuss the new Tweety puzzle. The original Tweety puzzle was addressed by approaches in non-monotonic logic, which aim to adequately represent the Tweety case, namely that Tweety is a penguin and, thus, an exceptional bird, which cannot fly, although in general birds can fly. The new Tweety puzzle is intended as a challenge for probabilistic theories of epistemic states. In the first part of the paper we argue against monistic Bayesians, who assume that epistemic states can (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
1 — 50 / 969