Results for 'Bias in AI'

971 found
Order:
  1. Apropos of "Speciesist bias in AI: how AI applications perpetuate discrimination and unfair outcomes against animals".Ognjen Arandjelović - 2023 - AI and Ethics.
    The present comment concerns a recent AI & Ethics article which purports to report evidence of speciesist bias in various popular computer vision (CV) and natural language processing (NLP) machine learning models described in the literature. I examine the authors' analysis and show it, ironically, to be prejudicial, often being founded on poorly conceived assumptions and suffering from fallacious and insufficiently rigorous reasoning, its superficial appeal in large part relying on the sequacity of the article's target readership.
    Download  
     
    Export citation  
     
    Bookmark  
  2. The Struggle for AI’s Recognition: Understanding the Normative Implications of Gender Bias in AI with Honneth’s Theory of Recognition.Rosalie Waelen & Michał Wieczorek - 2022 - Philosophy and Technology 35 (2).
    AI systems have often been found to contain gender biases. As a result of these gender biases, AI routinely fails to adequately recognize the needs, rights, and accomplishments of women. In this article, we use Axel Honneth’s theory of recognition to argue that AI’s gender biases are not only an ethical problem because they can lead to discrimination, but also because they resemble forms of misrecognition that can hurt women’s self-development and self-worth. Furthermore, we argue that Honneth’s theory of recognition (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  3. Cultural Bias in Explainable AI Research.Uwe Peters & Mary Carman - forthcoming - Journal of Artificial Intelligence Research.
    For synergistic interactions between humans and artificial intelligence (AI) systems, AI outputs often need to be explainable to people. Explainable AI (XAI) systems are commonly tested in human user studies. However, whether XAI researchers consider potential cultural differences in human explanatory needs remains unexplored. We highlight psychological research that found significant differences in human explanations between many people from Western, commonly individualist countries and people from non-Western, often collectivist countries. We argue that XAI research currently overlooks these variations and that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Ethics in AI: Balancing Innovation and Responsibility.Mosa M. M. Megdad, Mohammed H. S. Abueleiwa, Mohammed Al Qatrawi, Jehad El-Tantaw, Fadi E. S. Harara, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Pedagogical Research (IJAPR) 8 (9):20-25.
    Abstract: As artificial intelligence (AI) technologies become more integrated across various sectors, ethical considerations in their development and application have gained critical importance. This paper delves into the complex ethical landscape of AI, addressing significant challenges such as bias, transparency, privacy, and accountability. It explores how these issues manifest in AI systems and their societal impact, while also evaluating current strategies aimed at mitigating these ethical concerns, including regulatory frameworks, ethical guidelines, and best practices in AI design. Through a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Algorithmic Political Bias in Artificial Intelligence Systems.Uwe Peters - 2022 - Philosophy and Technology 35 (2):1-23.
    Some artificial intelligence systems can display algorithmic bias, i.e. they may produce outputs that unfairly discriminate against people based on their social identity. Much research on this topic focuses on algorithmic bias that disadvantages people based on their gender or racial identity. The related ethical problems are significant and well known. Algorithmic bias against other aspects of people’s social identity, for instance, their political orientation, remains largely unexplored. This paper argues that algorithmic bias against people’s political (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  6. Ethical assessments and mitigation strategies for biases in AI-systems used during the COVID-19 pandemic.Alicia De Manuel, Janet Delgado, Parra Jonou Iris, Txetxu Ausín, David Casacuberta, Maite Cruz Piqueras, Ariel Guersenzvaig, Cristian Moyano, David Rodríguez-Arias, Jon Rueda & Angel Puyol - 2023 - Big Data and Society 10 (1).
    The main aim of this article is to reflect on the impact of biases related to artificial intelligence (AI) systems developed to tackle issues arising from the COVID-19 pandemic, with special focus on those developed for triage and risk prediction. A secondary aim is to review assessment tools that have been developed to prevent biases in AI systems. In addition, we provide a conceptual clarification for some terms related to biases in this particular context. We focus mainly on nonracial biases (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. “Just” accuracy? Procedural fairness demands explainability in AI‑based medical resource allocation.Jon Rueda, Janet Delgado Rodríguez, Iris Parra Jounou, Joaquín Hortal-Carmona, Txetxu Ausín & David Rodríguez-Arias - 2022 - AI and Society:1-12.
    The increasing application of artificial intelligence (AI) to healthcare raises both hope and ethical concerns. Some advanced machine learning methods provide accurate clinical predictions at the expense of a significant lack of explainability. Alex John London has defended that accuracy is a more important value than explainability in AI medicine. In this article, we locate the trade-off between accurate performance and explainable algorithms in the context of distributive justice. We acknowledge that accuracy is cardinal from outcome-oriented justice because it helps (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. Ameliorating Algorithmic Bias, or Why Explainable AI Needs Feminist Philosophy.Linus Ta-Lun Huang, Hsiang-Yun Chen, Ying-Tung Lin, Tsung-Ren Huang & Tzu-Wei Hung - 2022 - Feminist Philosophy Quarterly 8 (3).
    Artificial intelligence (AI) systems are increasingly adopted to make decisions in domains such as business, education, health care, and criminal justice. However, such algorithmic decision systems can have prevalent biases against marginalized social groups and undermine social justice. Explainable artificial intelligence (XAI) is a recent development aiming to make an AI system’s decision processes less opaque and to expose its problematic biases. This paper argues against technical XAI, according to which the detection and interpretation of algorithmic bias can be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. The Ethical Gravity Thesis: Marrian Levels and the Persistence of Bias in Automated Decision-making Systems.Atoosa Kasirzadeh & Colin Klein - 2021 - Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES '21).
    Computers are used to make decisions in an increasing number of domains. There is widespread agreement that some of these uses are ethically problematic. Far less clear is where ethical problems arise, and what might be done about them. This paper expands and defends the Ethical Gravity Thesis: ethical problems that arise at higher levels of analysis of an automated decision-making system are inherited by lower levels of analysis. Particular instantiations of systems can add new problems, but not ameliorate more (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Disambiguating Algorithmic Bias: From Neutrality to Justice.Elizabeth Edenberg & Alexandra Wood - 2023 - In Francesca Rossi, Sanmay Das, Jenny Davis, Kay Firth-Butterfield & Alex John (eds.), AIES '23: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. Association for Computing Machinery. pp. 691-704.
    As algorithms have become ubiquitous in consequential domains, societal concerns about the potential for discriminatory outcomes have prompted urgent calls to address algorithmic bias. In response, a rich literature across computer science, law, and ethics is rapidly proliferating to advance approaches to designing fair algorithms. Yet computer scientists, legal scholars, and ethicists are often not speaking the same language when using the term ‘bias.’ Debates concerning whether society can or should tackle the problem of algorithmic bias are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. AI and Structural Injustice: Foundations for Equity, Values, and Responsibility.Johannes Himmelreich & Désirée Lim - 2023 - In Justin B. Bullock, Yu-Che Chen, Johannes Himmelreich, Valerie M. Hudson, Anton Korinek, Matthew M. Young & Baobao Zhang (eds.), The Oxford Handbook of AI Governance. Oxford University Press.
    This chapter argues for a structural injustice approach to the governance of AI. Structural injustice has an analytical and an evaluative component. The analytical component consists of structural explanations that are well-known in the social sciences. The evaluative component is a theory of justice. Structural injustice is a powerful conceptual tool that allows researchers and practitioners to identify, articulate, and perhaps even anticipate, AI biases. The chapter begins with an example of racial bias in AI that arises from structural (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Turning queries into questions: For a plurality of perspectives in the age of AI and other frameworks with limited (mind)sets.Claudia Westermann & Tanu Gupta - 2023 - Technoetic Arts 21 (1):3-13.
    The editorial introduces issue 21.1 of Technoetic Arts via a critical reflection on the artificial intelligence hype (AI hype) that emerged in 2022. Tracing the history of the critique of Large Language Models, the editorial underscores that there are substantial ethical challenges related to bias in the training data, copyright issues, as well as ecological challenges which the technology industry has consistently downplayed over the years. -/- The editorial highlights the distinction between the current AI technology’s reliance on extensive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Medical AI and human dignity: Contrasting perceptions of human and artificially intelligent (AI) decision making in diagnostic and medical resource allocation contexts.Paul Formosa, Wendy Rogers, Yannick Griep, Sarah Bankins & Deborah Richards - 2022 - Computers in Human Behaviour 133.
    Forms of Artificial Intelligence (AI) are already being deployed into clinical settings and research into its future healthcare uses is accelerating. Despite this trajectory, more research is needed regarding the impacts on patients of increasing AI decision making. In particular, the impersonal nature of AI means that its deployment in highly sensitive contexts-of-use, such as in healthcare, raises issues associated with patients’ perceptions of (un) dignified treatment. We explore this issue through an experimental vignette study comparing individuals’ perceptions of being (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The promise and perils of AI in medicine.Robert Sparrow & Joshua James Hatherley - 2019 - International Journal of Chinese and Comparative Philosophy of Medicine 17 (2):79-109.
    What does Artificial Intelligence (AI) have to contribute to health care? And what should we be looking out for if we are worried about its risks? In this paper we offer a survey, and initial evaluation, of hopes and fears about the applications of artificial intelligence in medicine. AI clearly has enormous potential as a research tool, in genomics and public health especially, as well as a diagnostic aid. It’s also highly likely to impact on the organisational and business practices (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  15. AI and Ethics in Surveillance: Balancing Security and Privacy in a Digital World.Msbah J. Mosa, Alaa M. Barhoom, Mohammed I. Alhabbash, Fadi E. S. Harara, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (10):8-15.
    Abstract: In an era of rapid technological advancements, artificial intelligence (AI) has transformed surveillance systems, enhancing security capabilities across the globe. However, the deployment of AI-driven surveillance raises significant ethical concerns, particularly in balancing the need for security with the protection of individual privacy. This paper explores the ethical challenges posed by AI surveillance, focusing on issues such as data privacy, consent, algorithmic bias, and the potential for mass surveillance. Through a critical analysis of the tension between security and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Can AI Achieve Common Good and Well-being? Implementing the NSTC's R&D Guidelines with a Human-Centered Ethical Approach.Jr-Jiun Lian - 2024 - 2024 Annual Conference on Science, Technology, and Society (Sts) Academic Paper, National Taitung University. Translated by Jr-Jiun Lian.
    This paper delves into the significance and challenges of Artificial Intelligence (AI) ethics and justice in terms of Common Good and Well-being, fairness and non-discrimination, rational public deliberation, and autonomy and control. Initially, the paper establishes the groundwork for subsequent discussions using the Academia Sinica LLM incident and the AI Technology R&D Guidelines of the National Science and Technology Council(NSTC) as a starting point. In terms of justice and ethics in AI, this research investigates whether AI can fulfill human common (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17.  77
    Thomas Kelly, "Bias: A Philosophical Study". [REVIEW]Jyoti Kishore - 2024 - Philosophy in Review 44 (3):19-21.
    Thomas Kelly's book 'Bias: A philosophical study', is a philosophical exploration of the phenomena of bias and our practice of attributing it. He delves into the multifaceted nature of bias and offers a norm theoretic account for conceptualizing the phenomenon as typically involving "systematic departures from the norms". As a topic of inquiry, bias has attracted comparatively less attention in philosophy than in other disciplines like psychology and statistics. Hence, this book is an interesting and relevant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Why Moral Agreement is Not Enough to Address Algorithmic Structural Bias.P. Benton - 2022 - Communications in Computer and Information Science 1551:323-334.
    One of the predominant debates in AI Ethics is the worry and necessity to create fair, transparent and accountable algorithms that do not perpetuate current social inequities. I offer a critical analysis of Reuben Binns’s argument in which he suggests using public reason to address the potential bias of the outcomes of machine learning algorithms. In contrast to him, I argue that ultimately what is needed is not public reason per se, but an audit of the implicit moral assumptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. The Whiteness of AI.Stephen Cave & Kanta Dihal - 2020 - Philosophy and Technology 33 (4):685-703.
    This paper focuses on the fact that AI is predominantly portrayed as white—in colour, ethnicity, or both. We first illustrate the prevalent Whiteness of real and imagined intelligent machines in four categories: humanoid robots, chatbots and virtual assistants, stock images of AI, and portrayals of AI in film and television. We then offer three interpretations of the Whiteness of AI, drawing on critical race theory, particularly the idea of the White racial frame. First, we examine the extent to which this (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  20. More than Skin Deep: a Response to “The Whiteness of AI”.Shelley Park - 2021 - Philosophy and Technology 34 (4):1961-1966.
    This commentary responds to Stephen Cave and Kanta Dihal’s call for further investigations of the whiteness of AI. My response focuses on three overlapping projects needed to more fully understand racial bias in the construction of AI and its representations in pop culture: unpacking the intersections of gender and other variables with whiteness in AI’s construction, marketing, and intended functions; observing the many different ways in which whiteness is scripted, and noting how white racial framing exceeds white casting and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. How AI can AID bioethics.Walter Sinnott Armstrong & Joshua August Skorburg - forthcoming - Journal of Practical Ethics.
    This paper explores some ways in which artificial intelligence (AI) could be used to improve human moral judgments in bioethics by avoiding some of the most common sources of error in moral judgment, including ignorance, confusion, and bias. It surveys three existing proposals for building human morality into AI: Top-down, bottom-up, and hybrid approaches. Then it proposes a multi-step, hybrid method, using the example of kidney allocations for transplants as a test case. The paper concludes with brief remarks about (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Enabling the Nonhypothesis-Driven Approach: On Data Minimalization, Bias, and the Integration of Data Science in Medical Research and Practice.C. W. Safarlou, M. van Smeden, R. Vermeulen & K. R. Jongsma - 2023 - American Journal of Bioethics 23 (9):72-76.
    Cho and Martinez-Martin provide a wide-ranging analysis of what they label “digital simulacra”—which are in essence data-driven AI-based simulation models such as digital twins or models used for i...
    Download  
     
    Export citation  
     
    Bookmark  
  23.  61
    AI and Human Rights.Hani Bakeer, Jawad Y. I. Alzamily, Husam Almadhoun, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering' Research (Ijaer) 8 (10):16-24.
    Abstract; As artificial intelligence (AI) technologies become increasingly integrated into various facets of society, their impact on human rights has garnered significant attention. This paper examines the intersection of AI and human rights, focusing on key issues such as privacy, bias, surveillance, access, and accountability. AI systems, while offering remarkable advancements in efficiency and capability, also pose risks to individual privacy and can perpetuate existing biases, leading to potential discrimination. The use of AI in surveillance raises ethical concerns about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24.  10
    Examining the Epistemological Status of AI-Aided Research in the Information Age: Research Integrity of Margaret Lawrence University in Delta State (11th edition).Etaoghene Paul Polo - 2024 - International Journal of Social Sciences and Humanities 11 (1):197-207.
    This study examines the epistemological implications of the adoption of Artiϔicial Intelligence (AI) in researches within the information age. Focusing on the particular case of Margaret Lawrence University, a leading research institution situated in Galilee, Ika North-East Local Government Area of Delta State, Nigeria, this study assesses the implications of AI-aided research and questions the integrity of AI-generated knowledge. Precisely, this study discusses the epistemological status of AI-generated knowledge by weighing the prospects and shortcomings of using AI in research. Also, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Shared decision-making and maternity care in the deep learning age: Acknowledging and overcoming inherited defeaters.Keith Begley, Cecily Begley & Valerie Smith - 2021 - Journal of Evaluation in Clinical Practice 27 (3):497–503.
    In recent years there has been an explosion of interest in Artificial Intelligence (AI) both in health care and academic philosophy. This has been due mainly to the rise of effective machine learning and deep learning algorithms, together with increases in data collection and processing power, which have made rapid progress in many areas. However, use of this technology has brought with it philosophical issues and practical problems, in particular, epistemic and ethical. In this paper the authors, with backgrounds in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Revolutionizing Education with ChatGPT: Enhancing Learning Through Conversational AI.Prapasiri Klayklung, Piyawatjana Chocksathaporn, Pongsakorn Limna, Tanpat Kraiwanit & Kris Jangjarat - 2023 - Universal Journal of Educational Research 2 (3):217-225.
    The development of conversational artificial intelligence (AI) has brought about new opportunities for improving the learning experience in education. ChatGPT, a large language model trained on a vast corpus of text, has the potential to revolutionize education by enhancing learning through personalized and interactive conversations. This paper explores the benefits of integrating ChatGPT in education in Thailand. The research strategy employed in this study was qualitative, utilizing in-depth interviews with eight key informants who were selected using purposive sampling. The collected (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Investigating some ethical issues of artificial intelligence in art (طرح و بررسی برخی از مسائلِ اخلاقیِ هوش مصنوعی در هنر).Ashouri Kisomi Mohammad Ali - 2024 - Metaphysics 16 (1):93-110.
    هدف از پژوهش حاضر، بررسی مسائل اخلاق هوش مصنوعی در حوزۀ هنر است. به‌این‌منظور، با تکیه بر فلسفه و اخلاق هوش مصنوعی، موضوعات اخلاقی که می‌تواند در حوزۀ هنر تأثیرگذار باشد، بررسی شده است. باتوجه‌به رشد و توسعۀ استفاده از هوش مصنوعی و ورود آن به حوزۀ هنر، نیاز است تا مباحث اخلاقی دقیق‌تر مورد توجه پژوهشگران هنر و فلسفه قرار گیرد. برای دست‌یابی به هدف پژوهش، با استفاده از روش تحلیلی‌ـ‌توصیفی، مفاهیمی همچون هوش مصنوعی، برخی تکنیک‌های آن و موضوعات (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. The Unfounded Bias Against Autonomous Weapons Systems.Áron Dombrovszki - 2021 - Információs Társadalom 21 (2):13–28.
    Autonomous Weapons Systems (AWS) have not gained a good reputation in the past. This attitude is odd if we look at the discussion of other-usually highly anticipated-AI-technologies, like autonomous vehicles (AVs); whereby even though these machines evoke very similar ethical issues, philosophers' attitudes towards them are constructive. In this article, I try to prove that there is an unjust bias against AWS because almost every argument against them is effective against AVs too. I start with the definition of "AWS." (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29.  14
    Über Möglichkeiten und Grenzen der Ethik der Künstlichen Intelligenz. Eine Bestandsaufnahme am Beispiel von Sprachverarbeitungssystemen.Elisa Orrù - 2021 - Positionen 35:50-64.
    On the possibilities and limits of the ethics of artificial intelligence. An overview of current developments and debates with a focus on language processing systems. -/- Driven by the success of artificial intelligence (AI), the ethics of AI is currently enjoying a boom. Advice from ethics experts is increasingly being sought by policymakers and industry to proactively identify the risks associated with new AI technologies and to propose solutions. But how realistic are the expectations placed on AI ethics to make (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Embodied intelligence: epistemological remarks on an emerging paradigm in the artificial intelligence debate.Nicola Di Stefano & Giampaolo Ghilardi - 2013 - Epistemologia 36 (1):100-111.
    In this paper we want to analyze some philosophical and epistemological connections between a new kind of technology recently developed within robotics, and the previous mechanical approach. A new paradigm about machine-design in robotics, currently defined as ‘Embodied Intelligence’, has recently been developed. Here we consider the debate on the relationship between the hand and the intellect, from the perspective of the history of philosophy, aiming at providing a more suitable understanding of this paradigm. The new bottom-up approach to design (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Artificial Intelligence in Higher Education in South Africa: Some Ethical Considerations.Tanya de Villiers-Botha - 2024 - Kagisano 15:165-188.
    There are calls from various sectors, including the popular press, industry, and academia, to incorporate artificial intelligence (AI)-based technologies in general, and large language models (LLMs) (such as ChatGPT and Gemini) in particular, into various spheres of the South African higher education sector. Nonetheless, the implementation of such technologies is not without ethical risks, notably those related to bias, unfairness, privacy violations, misinformation, lack of transparency, and threats to autonomy. This paper gives an overview of the more pertinent ethical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. The Ideals Program in Algorithmic Fairness.Rush T. Stewart - forthcoming - AI and Society:1-11.
    I consider statistical criteria of algorithmic fairness from the perspective of the _ideals_ of fairness to which these criteria are committed. I distinguish and describe three theoretical roles such ideals might play. The usefulness of this program is illustrated by taking Base Rate Tracking and its ratio variant as a case study. I identify and compare the ideals of these two criteria, then consider them in each of the aforementioned three roles for ideals. This ideals program may present a way (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Artificial Intelligence in Healthcare: Transforming Patient Care and Medical Practices.Jawad Y. I. Alzamily, Hani Bakeer, Husam Almadhoun, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (8):1-9.
    Abstract: Artificial Intelligence (AI) is rapidly becoming a cornerstone of modern healthcare, offering unprecedented capabilities in diagnostics, treatment planning, patient care, and healthcare management. This paper explores the transformative impact of AI on the healthcare sector, examining how it enhances patient outcomes, improves the efficiency of medical practices, and introduces new ethical and operational challenges. By analyzing current applications such as AI-driven diagnostic tools, personalized medicine, and hospital management systems, this paper highlights the significant advancements AI has brought to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Strategies for Healthcare Disaster Management in the Context of Technology Innovation: the Case of Bulgaria.Radostin Vazov, R. Kanazireva, T. Grynko & Oleksandr P. Krupskyi - 2024 - Medicni Perspektivi 29 (2):215-228.
    In Bulgaria, integrating technology and innovation is crucial for advancing sustainable healthcare disaster management, enhancing disaster response and recovery, and minimizing long-term environmental and social impacts. The purpose of the study is to assess the impact of modern technological innovations on the effectiveness of disaster management in health care in Bulgaria with a focus on Health Information Systems (HIS), Telemedicine, Telehealth, e-Health, Electronic Health Records, Artificial Intelligence (AI), Public Communication Platforms, and Data Security and Privacy. These innovations, when integrated effectively, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. How to Save Face & the Fourth Amendment: Developing an Algorithmic Auditing and Accountability Industry for Facial Recognition Technology in Law Enforcement.Lin Patrick - 2023 - Albany Law Journal of Science and Technology 33 (2):189-235.
    For more than two decades, police in the United States have used facial recognition to surveil civilians. Local police departments deploy facial recognition technology to identify protestors’ faces while federal law enforcement agencies quietly amass driver’s license and social media photos to build databases containing billions of faces. Yet, despite the widespread use of facial recognition in law enforcement, there are neither federal laws governing the deployment of this technology nor regulations settings standards with respect to its development. To make (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Artificial Intelligence in Digital Media: Opportunities, Challenges, and Future Directions.Basma S. Abu Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic and Applied Research (IJAAR) 8 (6):1-10.
    Abstract: This research paper explores the transformative impact of artificial intelligence (AI) on digital media, examining both the opportunities it presents and the challenges it poses. The integration of AI into digital media has revolutionized content creation, distribution, and analytics, offering unprecedented levels of personalization, efficiency, and insight. Automated journalism, AI- driven recommendation systems, and advanced audience analytics are among the key areas where AI is making significant contributions. However, the adoption of AI also brings ethical considerations, including concerns about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Learning to Discriminate: The Perfect Proxy Problem in Artificially Intelligent Criminal Sentencing.Benjamin Davies & Thomas Douglas - 2022 - In Jesper Ryberg & Julian V. Roberts (eds.), Sentencing and Artificial Intelligence. Oxford: OUP.
    It is often thought that traditional recidivism prediction tools used in criminal sentencing, though biased in many ways, can straightforwardly avoid one particularly pernicious type of bias: direct racial discrimination. They can avoid this by excluding race from the list of variables employed to predict recidivism. A similar approach could be taken to the design of newer, machine learning-based (ML) tools for predicting recidivism: information about race could be withheld from the ML tool during its training phase, ensuring that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. The Role of Artificial Intelligence in Revolutionizing Health: Challenges, Applications, and Future Prospects.Nesreen Samer El_Jerjawi, Walid F. Murad, Dalia Harazin, Alaa N. N. Qaoud, Mohammed N. Jamala, Bassem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):7-15.
    rtificial Intelligence (AI) is swiftly becoming a fundamental element in modern healthcare, bringing unparalleled capabilities in diagnostics, treatment planning, patient care, and healthcare management. This paper delves into AI's transformative impact on the healthcare sector, highlighting how it enhances patient outcomes, boosts the efficiency of medical practices, and introduces new ethical and operational challenges. Through an analysis of current applications such as AI-driven diagnostic tools, personalized medicine, and hospital management systems, the paper underscores the significant advancements AI has introduced to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39.  71
    Classifying Genetic Essentialist Biases using Large Language Models.Ritsaart Reimann, Kate Lynch, Stefan Gawronski, Jack Chan & Paul Edmund Griffiths - manuscript
    The rapid rise of generative AI, including LLMs, has prompted a great deal of concern, both within and beyond academia. One of these concerns is that generative models embed, reproduce, and therein potentially perpetuate all manner of bias. The present study offers an alternative perspective: exploring the potential of LLMs to detect bias in human generated text. Our target is genetic essentialism in obesity discourse in Australian print media. We develop and deploy an LLM-based classification model to evaluate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. On algorithmic fairness in medical practice.Thomas Grote & Geoff Keeling - 2022 - Cambridge Quarterly of Healthcare Ethics 31 (1):83-94.
    The application of machine-learning technologies to medical practice promises to enhance the capabilities of healthcare professionals in the assessment, diagnosis, and treatment, of medical conditions. However, there is growing concern that algorithmic bias may perpetuate or exacerbate existing health inequalities. Hence, it matters that we make precise the different respects in which algorithmic bias can arise in medicine, and also make clear the normative relevance of these different kinds of algorithmic bias for broader questions about justice and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Ethics of Artificial Intelligence.Vincent C. Müller - 2021 - In Anthony Elliott (ed.), The Routledge Social Science Handbook of Ai. Routledge. pp. 122-137.
    Artificial intelligence (AI) is a digital technology that will be of major importance for the development of humanity in the near future. AI has raised fundamental questions about what we should do with such systems, what the systems themselves should do, what risks they involve and how we can control these. - After the background to the field (1), this article introduces the main debates (2), first on ethical issues that arise with AI systems as objects, i.e. tools made and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Future bias in action: does the past matter more when you can affect it?Andrew J. Latham, Kristie Miller, James Norton & Christian Tarsney - 2020 - Synthese 198 (12):11327-11349.
    Philosophers have long noted, and empirical psychology has lately confirmed, that most people are “biased toward the future”: we prefer to have positive experiences in the future, and negative experiences in the past. At least two explanations have been offered for this bias: belief in temporal passage and the practical irrelevance of the past resulting from our inability to influence past events. We set out to test the latter explanation. In a large survey, we find that participants exhibit significantly (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  43. Bias in Science: Natural and Social.Joshua May - 2021 - Synthese 199 (1-2):3345–3366.
    Moral, social, political, and other “nonepistemic” values can lead to bias in science, from prioritizing certain topics over others to the rationalization of questionable research practices. Such values might seem particularly common or powerful in the social sciences, given their subject matter. However, I argue first that the well-documented phenomenon of motivated reasoning provides a useful framework for understanding when values guide scientific inquiry (in pernicious or productive ways). Second, this analysis reveals a parity thesis: values influence the social (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  44. Shortcuts to Artificial Intelligence.Nello Cristianini - 2021 - In Marcello Pelillo & Teresa Scantamburlo (eds.), Machines We Trust: Perspectives on Dependable Ai. MIT Press.
    The current paradigm of Artificial Intelligence emerged as the result of a series of cultural innovations, some technical and some social. Among them are apparently small design decisions, that led to a subtle reframing of the field’s original goals, and are by now accepted as standard. They correspond to technical shortcuts, aimed at bypassing problems that were otherwise too complicated or too expensive to solve, while still delivering a viable version of AI. Far from being a series of separate problems, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Ethics of Artificial Intelligence and Robotics.Vincent C. Müller - 2020 - In Edward N. Zalta (ed.), Stanford Encylopedia of Philosophy. pp. 1-70.
    Artificial intelligence (AI) and robotics are digital technologies that will have significant impact on the development of humanity in the near future. They have raised fundamental questions about what we should do with these systems, what the systems themselves should do, what risks they involve, and how we can control these. - After the Introduction to the field (§1), the main themes (§2) of this article are: Ethical issues that arise with AI systems as objects, i.e., tools made and used (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  46. A Framework for Assurance Audits of Algorithmic Systems.Benjamin Lange, Khoa Lam, Borhane Hamelin, Davidovic Jovana, Shea Brown & Ali Hasan - forthcoming - Proceedings of the 2024 Acm Conference on Fairness, Accountability, and Transparency.
    An increasing number of regulations propose the notion of ‘AI audits’ as an enforcement mechanism for achieving transparency and accountability for artificial intelligence (AI) systems. Despite some converging norms around various forms of AI auditing, auditing for the purpose of compliance and assurance currently have little to no agreed upon practices, procedures, taxonomies, and standards. We propose the ‘criterion audit’ as an operationalizable compliance and assurance external audit framework. We model elements of this approach after financial auditing practices, and argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Navigating the Ethical Landscape of Artificial Intelligence: Challenges and Solutions.Alaa N. Akkila, Mohammed A. Alkahlout, Suheir H. ALmurshid, Alaa Soliman Abu Mettleq, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Engineering and Information Systems (IJEAIS) 8 (8):68-73.
    Abstract: As artificial intelligence (AI) technologies become increasingly integrated into various sectors, ethical considerations surrounding their development and deployment have become paramount. This paper explores the multifaceted ethical landscape of AI, focusing on key challenges such as bias, transparency, privacy, and accountability. It examines how these issues manifest in AI systems and their impact on society. The paper also evaluates current approaches and solutions aimed at mitigating these ethical concerns, including regulatory frameworks, ethical guidelines, and best practices for AI (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Generalization Bias in Science.Uwe Peters, Alexander Krauss & Oliver Braganza - 2022 - Cognitive Science 46 (9):e13188.
    Many scientists routinely generalize from study samples to larger populations. It is commonly assumed that this cognitive process of scientific induction is a voluntary inference in which researchers assess the generalizability of their data and then draw conclusions accordingly. We challenge this view and argue for a novel account. The account describes scientific induction as involving by default a generalization bias that operates automatically and frequently leads researchers to unintentionally generalize their findings without sufficient evidence. The result is unwarranted, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Saliva Ontology: An ontology-based framework for a Salivaomics Knowledge Base.Jiye Ai, Barry Smith & David Wong - 2010 - BMC Bioinformatics 11 (1):302.
    The Salivaomics Knowledge Base (SKB) is designed to serve as a computational infrastructure that can permit global exploration and utilization of data and information relevant to salivaomics. SKB is created by aligning (1) the saliva biomarker discovery and validation resources at UCLA with (2) the ontology resources developed by the OBO (Open Biomedical Ontologies) Foundry, including a new Saliva Ontology (SALO). We define the Saliva Ontology (SALO; http://www.skb.ucla.edu/SALO/) as a consensus-based controlled vocabulary of terms and relations dedicated to the salivaomics (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  50. Bioinformatics advances in saliva diagnostics.Ji-Ye Ai, Barry Smith & David T. W. Wong - 2012 - International Journal of Oral Science 4 (2):85--87.
    There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval, integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 971