Results for 'Gravitation gravity'

482 found
Order:
  1. Gravity and gravitational tests.Nicolae Sfetcu - manuscript
    Theories in science in general, and in physics in particular, are confirmed (temporarily) by experiments that verify the assertions and predictions of theories, thus laying the groundwork for scientific knowledge. Francis Bacon was the first to support the concept of a crucial experiment, which can decide the validity of a hypothesis or theory. Later, Newton argued that scientific theories are directly induced by experimental results and observations, excluding untested hypotheses. DOI: 10.13140/RG.2.2.33549.08167.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Mathematical Nature of Reality, Plus Gravitation-Electromagnetism Unification, Derived from Revised Gravitational Tidal Forces and Mass-from-Gravity Concept.Rodney Bartlett - manuscript
    This article had its beginning with Einstein's 1919 paper "Do gravitational fields play an essential role in the structure of elementary particles?" Together with General Relativity's statement that gravity is not a pull but is a push caused by the curvature of space-time, a hypothesis for Earth's ocean tides was developed that does not solely depend on the Sun and Moon as Kepler and Newton believed. It also borrows from Galileo. The breakup of planets and asteroids by white dwarfs, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Gravitational decoherence: A thematic overview.C. Anastopoulos & B. L. Hu - 2022 - AVS Quantum Science 4:015602.
    Gravitational decoherence (GD) refers to the effects of gravity in actuating the classical appearance of a quantum system. Because the underlying processes involve issues in general relativity (GR), quantum field theory (QFT), and quantum information, GD has fundamental theoretical significance. There is a great variety of GD models, many of them involving physics that diverge from GR and/or QFT. This overview has two specific goals along with one central theme:(i) present theories of GD based on GR and QFT and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Quantum Gravity in a Laboratory?Nick Huggett, Niels S. Linnemann & Mike D. Schneider - manuscript
    It has long been thought that observing distinctive traces of quantum gravity in a laboratory setting is effectively impossible, since gravity is so much weaker than all the other familiar forces in particle physics. But the quantum gravity phenomenology community today seeks to do the (effectively) impossible, using a challenging novel class of `tabletop' Gravitationally Induced Entanglement (GIE) experiments, surveyed here. The hypothesized outcomes of the GIE experiments are claimed by some (but disputed by others) to provide (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Gravity as Archimedes? Thrust and a Bifurcation in that Theory.Mayeul Arminjon - 2004 - Foundations of Physics 34 (11):1703-1724.
    Euler’s interpretation of Newton’s gravity (NG) as Archimedes’ thrust in a fluid ether is presented in some detail. Then a semi-heuristic mechanism for gravity, close to Euler’s, is recalled and compared with the latter. None of these two ‘‘gravitational ethers’’ can obey classical mechanics. This is logical since the ether defines the very reference frame, in which mechanics is defined. This concept is used to build a scalar theory of gravity: NG corresponds to an incompressible ether, a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Classic gravitational tests of post-Einsteinian theories.Nicolae Sfetcu - manuscript
    Albert Einstein proposed three tests of general relativity, later named the classic tests of general relativity, in 1916: the precession of the perihelion of Mercury's orbit, sun light deflection, and the gravitational redshift of the light. For gravitational testing, the indirect effects of gravity are always used, usually particles that are influenced by gravity. In the presence of gravity, the particles move along curved geodesic lines. The sources of gravity that cause the curvature of spacetime are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  34
    Nature of Gravitation. The Structural Intuition of Gravitation in the Framework of Early Modern Mechanical Philosophy.Babu Thaliath - 2012 - Philosophy Study 2 (9):595-618.
    As is generally known, Newton’s notion of universal gravitation surpassed various theories of particular gravities in the early modern age, as represented mainly by Kepler and Hooke. In his seminal work “Hooke and the Law of Universal Gravitation: A Reappraisal of a Reappraisal” Richard S. Westfall argues that Hooke could not reach beyond the concept of spatially bounded particular gravities, as he deployed the method of analogy between the material principle of congruity and incongruity and the extension of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Is gravity, the curvature of spacetime or a quantum phenomenon.Alfonso Leon Guillen Gomez - 2014 - Journal of Advances in Physics 4 (1):194-203.
    Gravity is the curvature of spacetime, the structural property of static gravitational field, a geometric field, in curved coordinates, according the functions guv, that express geometric relations between material events. Course, general relativity is a relational theory, however, gravity, a thinking category, has symetric physical effects with matter. We use, analitic and critic method of reread the general relativity, since the perspective of the history of the science and the philosophy of the science. Our goal is driver the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Gravity is a quantum force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, from general to particular, breaks the law of inertia of Galilei since recovers apparently the rectilinear uniform movement but not the repose state, unless the bodies have undergone their collapse, although, the curved (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Gravity is a force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, of the particular to the general, breaks the law of inertia of Galilei since recovers the rectilinear uniform movement but not the repose state, unless the bodies have undergone their union, although, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Epistemology of Canonical Quantum Gravity - Loop Quantum Gravity.Nicolae Sfetcu - manuscript
    In the interpretation of canonical quantum gravity (CQG), gravity appears as a geometric pseudoforce, is reduced to spacetime geometry and becomes a simple effect of spacetime curvature. The scale at which quantum gravitational effects occur is determined by the different physical constants of fundamental physics: h, c and G, which characterize quantum, relativistic and gravitational phenomena. By combining these constants, we obtain the Planck constants at which the effects of quantum gravity must manifest. Loop quantum gravity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Mathematical Nature of Gravity, Which General Relativity Says is Space-Time : Topology Unites With the Matrix, E=mc2, Advanced Waves, Wick Rotation, Dark Matter & Higher Dimensions.Rodney Bartlett - manuscript
    General Relativity says gravity is a push caused by space-time's curvature. Combining General Relativity with E=mc2 results in distances being totally deleted from space-time/gravity by future technology, and in expansion or contraction of the universe as a whole being eliminated. The road to these conclusions has branches shining light on supersymmetry and superconductivity. This push of gravitational waves may be directed from intergalactic space towards galaxy centres, helping to hold galaxies together and also creating supermassive black holes. Together (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. 3. Planck unit quantum gravity (gravitons) for Simulation Hypothesis modeling.Malcolm J. Macleod - manuscript
    Defined are gravitational formulas in terms of Planck units and units of $\hbar c$. Mass is not assigned as a constant property but is instead treated as a discrete event defined by units of Planck mass with gravity as an interaction between these units, the gravitational orbit as the sum of these mass-mass interactions and the gravitational coupling constant as a measure of the frequency of these interactions and not the magnitude of the gravitational force itself. Each particle that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The relativistic theory of gravitation beyond general relativity.Guillen Gomez Alfonso Leon - manuscript
    It presents the basics of the “Relativistic theory of gravitation”, with the inclusion of original texts, from various papers, published between 1987 and 2009, by theirs authors: S. S Gershtein, A. A. Logunov, Yu. M. Loskutov and M. A. Mestvirishvili, additionally, together with the introductions, summaries and conclusions of the author of this paper. The “Relativistic theory of gravitation” is a gauge theory, compatible with the theories of quantum physics of the electromagnetic, weak and strong forces, which defines (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Evaluation of post-Einsteinian gravitational theories through parameterized post-Newtonian formalism.Nicolae Sfetcu - manuscript
    Right after the elaboration and success of general relativity (GR), alternative theories for gravity began to appear. In order to verify and classify all these theories, specific tests have been developed, based on self-consistency and on completeness. In the field of experimental gravity, one of the important applications is formalism. For the evaluation of gravity models, several sets of tests have been proposed. Parameterized post-Newtonian formalism considers approximations of Einstein's gravity equations by the lowest order deviations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Epistemology of Experimental Gravity - Scientific Rationality.Nicolae Sfetcu - manuscript
    The evolution of gravitational tests from an epistemological perspective framed in the concept of rational reconstruction of Imre Lakatos, based on his methodology of research programmes. Unlike other works on the same subject, the evaluated period is very extensive, starting with Newton's natural philosophy and up to the quantum gravity theories of today. In order to explain in a more rational way the complex evolution of the gravity concept of the last century, I propose a natural extension of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. The relativistic theory of gravitation beyond general relativity.Alfonso Guillen Gomez - manuscript
    It presents the basics of the “Relativistic theory of gravitation”, with the inclusion of original texts, from various papers, published between 1987 and 2009, by theirs authors: S. S Gershtein, A. A. Logunov, Yu. M. Loskutov and M. A. Mestvirishvili, additionally, together with the introductions, summaries and conclusions of the author of this paper. The “Relativistic theory of gravitation” is a gauge theory, compatible with the theories of quantum physics of the electromagnetic, weak and strong forces, which defines (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Théorie des cordes, gravité quantique à boucles et éternalisme.Baptiste Le Bihan - 2021 - In Alexandre Declos & Claudine Tiercelin (eds.), La Métaphysique du Temps: Perspectives Contemporaines. Collège de France.
    L'éternalisme, la thèse selon laquelle les entités que nous catégorisons comme étant passées, présentes et futures existent tout autant, est la meilleure approche ontologique de l'existence temporelle qui soit en accord avec les théories de la relativité restreinte et de la relativité générale. Cependant, les théories de la relativité restreinte et générale ne sont pas fondamentales si bien que plusieurs programmes de recherche tentent de trouver une théorie plus fondamentale de la gravité quantique rassemblant tous les enseignements de la physique (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. In General Relativity, gravity is effect of coordinates with change of geometry of spacetime.Alfonso Leon Guillen Gomez - manuscript
    Einstein structured the theoretical frame of his work on gravity under the Special Relativity and Minkowski´s spacetime using three guide principles: The strong principle of equivalence establishes that acceleration and gravity are equivalents. Mach´s principle explains the inertia of the bodies and particles as completely determined by the total mass existent in the universe. And, general covariance searches to extend the principle of relativity from inertial motion to accelerated motion. Mach´s principle was abandoned quickly, general covariance resulted mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Newton's Law of Universal Gravitation and Hume's Conception of Causality.Matias Slavov - 2013 - Philosophia Naturalis 50 (2):277-305.
    This article investigates the relationship between Hume’s causal philosophy and Newton ’s philosophy of nature. I claim that Newton ’s experimentalist methodology in gravity research is an important background for understanding Hume’s conception of causality: Hume sees the relation of cause and effect as not being founded on a priori reasoning, similar to the way that Newton criticized non - empirical hypotheses about the properties of gravity. However, according to Hume’s criteria of causal inference, the law of universal (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. On the fundamental role of massless form of matter in physics. Quantum gravity.Alexander Klimets - 2017 - FIZIKA B (Zagreb) 9:23-42.
    In the article, with the help of various models, the thesis on the fundamental nature of the field form of matter in physics is considered. In the first chapter a model of special relativity is constructed, on the basis of which the priority of the massless form of matter is revealed. In the second chapter, a field model of inert and heavy mass is constructed and on this basis the mechanism of inertia and gravity of weighty bodies is revealed. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Heuristics of Newtonian Gravity.Nicolae Sfetcu - manuscript
    The classic example of a successful research program is Newton's gravitational theory, probably the most successful Lakatosian research program. Initially, Newton's gravitational theory faced a lot of "anomalies" ("counterexamples") and contradicted the observational theories that supported these anomalies. But supporters of the Newtonian gravity research program have turned every anomaly into corroborating cases. Moreover, they themselves pointed to counterexamples which they then explained through Newtonian theory . DOI: 10.13140/RG.2.2.32489.85601.
    Download  
     
    Export citation  
     
    Bookmark  
  23. What is gravity?Alfonso Leon Guillen Gomez - manuscript
    We present a proposal, alternative to the curved spacetime of Einstein, which we replaced by the curved quantum vacuum, caused by its gravitational interaction with the masses of the stars, as the source of Newtonian anomalies of celestial mechanics, restoring gravity as one of the fundamental forces of nature.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Einstein and gravitational waves.Alfonso Leon Guillen Gomez - manuscript
    The author presents the history of gravitational waves according to Einstein, linking it to his biography and his time in order to understand it in his connection with the history of the Semites, the personality of Einstein in the handling of his conflict-generating circumstances in his relationships competition with his colleagues and in the formulation of the so-called general theory of relativity. We will fall back on the vicissitudes that Einstein experienced in the transition from his scientific work to normal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Incommensurability Tenet and Modern Theory of Gravity.Rinat M. Nugayev - 1989 - In Lev Bazhenov Azaria Polikarov (ed.), Cosmos,Physics,Philosophy. Russian Academy of Science. pp. 37-39.
    An apparent incommensurability of two leading gravitational paradigms (metric and nonmetric) is considered. It is conjectured that the application of neutral language of A.P. Lightman, D.L. Lee and Kip S. Thorne (“The Foundation of Theory of Gravitational Theories”. Phys. Rev. D 1973, vol.7, pp.3563-3572) can help to solve the theory –choice problem in principle. Key words: neutral language, theory choice, gravity.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Testing the relativistic theories of gravity.Nicolae Sfetcu - manuscript
    In developing general relativity, Einstein was led by theoretical criteria of elegance and simplicity. His theory initially encountered "three classic tests": perihelion precession of Mercury's orbit, deflection of light by the Sun, and gravitational redshift of light. There are large differences in predictions between general relativity and classical physics, such as gravitational time dilation, gravitational lensing, gravitational redshift of light, and so on. And there are many relativistic theories of gravity, bifurcated or independent, but Einstein's general theory of relativity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Einstein's gravitation is Einstein-Grossmann's equations.Alfonso Leon Guillen Gomez - 2015 - Journal of Advances in Physics 11 (3):3099-3110.
    While the philosophers of science discuss the General Relativity, the mathematical physicists do not question it. Therefore, there is a conflict. From the theoretical point view “the question of precisely what Einstein discovered remains unanswered, for we have no consensus over the exact nature of the theory 's foundations. Is this the theory that extends the relativity of motion from inertial motion to accelerated motion, as Einstein contended? Or is it just a theory that treats gravitation geometrically in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Heuristics and Tests of Quantum Gravity.Nicolae Sfetcu - manuscript
    For the attempt to create a gravitational quantum theory, there are several research programs, some of which became obsolete over time due to the higher heuristic power of other programs. The primordial test of any quantum theory of gravity is the reproduction of the successes of general relativity. This involves reconstructing the local geometry from the non-local observables. In addition, quantum gravity should probabilistically predict the large-scale topology of the Universe, which may soon be measurable, and phenomena at (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Origin and Resolution of Theory-Choice Situations in Modern Theory of gravity.Rinat M. Nugayev - 1987 - Methodology and Science 20 (4):177-197.
    A methodological model of origin and settlement of theory-choice situations (previously tried on the theories of Einstein and Lorentz in electrodynamics) is applied to modern Theory of Gravity. The process of origin and growth of empirically-equivalent relativistic theories of gravitation is theoretically reproduced. It is argued that all of them are proposed within the two rival research programmes – (1) metric (A. Einstein et al.) and (2) nonmetric (H. Poincare et al.). Each programme aims at elimination of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Space-Time Intervals Underlie Human Conscious Experience, Gravity, and a Theory of Everything.Richard Sieb - 2018 - Neuroquantology 16 (7):49-64.
    Space-time intervals are the fundamental components of conscious experience, gravity, and a Theory of Everything. Space-time intervals are relationships that arise naturally between events. They have a general covariance (independence of coordinate systems, scale invariance), a physical constancy, that encompasses all frames of reference. There are three basic types of space-time intervals (light-like, time-like, space-like) which interact to create space-time and its properties. Human conscious experience is a four-dimensional space-time continuum created through the processing of space-time intervals by the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Programming relativity and gravity via a discrete pixel space in Planck level Simulation Hypothesis models.Malcolm J. Macleod - manuscript
    Outlined here is a simulation hypothesis approach that uses an expanding (the simulation clock-rate measured in units of Planck time) 4-axis hyper-sphere and mathematical particles that oscillate between an electric wave-state and a mass (unit of Planck mass per unit of Planck time) point-state. Particles are assigned a spin axis which determines the direction in which they are pulled by this (hyper-sphere pilot wave) expansion, thus all particles travel at, and only at, the velocity of expansion (the origin of $c$), (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Isaac Newton on the action at a distance in gravity: With or without God?Nicolae Sfetcu - 2019 - Bucharest, Romania: MultiMedia Publishing.
    The interpretation of Isaac Newton's texts has sparked controversy to this day. One of the most heated debates relates to the action between two bodies distant from each other (the gravitational attraction), and to what extent Newton involved God in this case. Practically, most of the papers discuss four types of gravitational attractions in the case of remote bodies: direct distance action as intrinsic property of bodies in epicurean sense; direct remote action divinely mediated by God; remote action mediated by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Isaac Newton vs. Robert Hooke on the law of universal gravitation.Nicolae Sfetcu - manuscript
    One of the most disputed controversy over the priority of scientific discoveries is that of the law of universal gravitation, between Isaac Newton and Robert Hooke. Hooke accused Newton of plagiarism, of taking over his ideas expressed in previous works. In this paper I try to show, on the basis of previous analysis, that both scientists were wrong: Robert Hooke because his theory was basically only ideas that would never have materialized without Isaac Newton's mathematical support; and the latter (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Wave detected by LIGO is not gravitational wave.Alfonso Leon Guillen Gomez - manuscript
    General Relativity defines gravity like the metric of a Lorentzian manifold. Einstein formulated spacetime as quality structural of gravity, i.e, circular definition between gravity and spacetime, also Einstein denoted "Space and time are modes by which we think, not conditions under which we live" and “We denote everything but the gravitational field as matter”, therefore, spacetime is nothing and gravity in first approximation an effect of coordinates, and definitely a geometric effect. The mathematical model generates quantitative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Novel explanation of the Active Galactic Nuclei. The Power Source of Quasars as a result of vacuum polarization by the gravitational singularities on the distributional BHs horizon.Jaykov Foukzon - 2021 - Journal of Physics: Conference Series 1730 (1):2-25.
    In this paper we argue that the current paradigm for AGN and quasars is essentially incomplete and a rivision is needed. Remind that the current paradigm for AGN and quasars is that their radio emission is explained by synchrotron radiation from relativistic electrons that are Doppler boosted through bulk motion. In this model, the intrinsic brightness temperatures cannot exceed 1011 to 1012 K. Typical Doppler boosting is expected to be able to raise this temperature by a factor of 10. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Unification of Science - Einstein's Missing Steps in E=mc2 and His Missing Link to Quantum Gravity.Rodney Bartlett - 2018 - Beau Bassin, Mauritius: Lambert Academic Publishing.
    A Monograph Dealing With Unification In Relation To Dark Energy, Dark Matter, Cosmic Expansion, E=mc2, Quantum Gravity, "Imaginary" Computers, Creation Of The Infinite And Eternal Universe Using Electronic BITS + PI + "Imaginary" Time, Earthly Education, Science-Religion Union, The Human Condition, Superconductivity, Planetary Fields, How Gravitation Can Boost Health, Space-Time Propulsion From The Emdrive To The Brouwer Fixed-Point Theorem, "Light Matter", Etc. These Effects Were Originally Discussed In Several Short Internet Articles. Table Of Contents Introduction Superconductivity And Planetary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  97
    An alternative to the Empirical Physics of Motion and Gravity in Explaining the Big Bang.Mohamed Magueramane - manuscript
    This paper is based on a proposition concerning the origins of the universe that would not hold without the following principles: (1) the big bang did not emerge from nothing, without a primordial cause; (2) the unempirical nature of Isaac Newton’s laws of inertia are unempirical lead to the conclusion that motion is inherent in the universe (3) gravity is a function of celestial objects falling and rotating around other objects as their natural motion gets obstructed; (4) Albert Einstein’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. A Semi-Classical Model of the Elementary Process Theory Corresponding to Non-Relativistic Classical Mechanics.Marcoen J. T. F. Cabbolet - 2022 - In And now for something completely different: the Elementary Process Theory. Revised, updated and extended 2nd edition of the dissertation with almost the same title. Utrecht: Eburon Academic Publishers. pp. 255-287.
    Currently there are at least four sizeable projects going on to establish the gravitational acceleration of massive antiparticles on earth. While general relativity and modern quantum theories strictly forbid any repulsive gravity, it has not yet been established experimentally that gravity is attraction only. With that in mind, the Elementary Process Theory (EPT) is a rather abstract theory that has been developed from the hypothesis that massive antiparticles are repulsed by the gravitational field of a body of ordinary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Newton on active and passive quantities of matter.Adwait A. Parker - 2020 - Studies in History and Philosophy of Science Part A 84:1-11.
    Newton published his deduction of universal gravity in Principia (first ed., 1687). To establish the universality (the particle-to-particle nature) of gravity, Newton must establish the additivity of mass. I call ‘additivity’ the property a body's quantity of matter has just in case, if gravitational force is proportional to that quantity, the force can be taken to be the sum of forces proportional to each particle's quantity of matter. Newton's argument for additivity is obscure. I analyze and assess manuscript (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  41. Philosophie der Teilchenphysik.Gregor Schiemann - 2017 - BUW Output 17:12-17.
    Die Deutsche Forschungsgemeinschaft (DFG) hat ab 2016 eine neue Forschergruppe unter Leitung der Bergischen Universität Wuppertal eingerichtet. Sie untersucht die Forschungen an der „größten Forschungsmaschine der Welt“, dem Large Hadron Collider (LHC) am Europäischen Zentrum für Teilchenphysik CERN in Genf, aus philosophischer, historischer und soziologischer Sicht. Wissenschaftsphilosophisch sind diese Forschungen vor allem aus drei Gründen relevant: Die Philosophie interessiert sich für den Ursprung und die grundlegenden Strukturen der Welt, für die Bedingungen des Erkenntniserfolges der Elementarteilchenphysik und nicht zuletzt für die (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. SUPER SCIENCE: Insightful Intuitions of the Future's Super-science, as Different from Today's Science as That is From Superstition and Myth.Rodney Bartlett - manuscript
    Look! Up in the bookshelf! Is it science? Is it science-fiction? No, it's Super Science: strange visitor from the future who can be everywhere in the universe and everywhen in time, can change the world in a single bound and who - disguised as a mild mannered author - fights for truth, justice and the super-scientific way. -/- Though I put a lot of hard work into this book, I can't take all the credit. I believe that the whole universe (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. An Alternative to the Schwarzschild solution of GTR.Andrew Thomas Holster - manuscript
    The Schwarzschild solution (Schwarzschild, 1915/16) to Einstein’s General Theory of Relativity (GTR) is accepted in theoretical physics as the unique solution to GTR for a central-mass system. In this paper I propose an alternative solution to GTR, and argue it is both logically consistent and empirically realistic as a theory of gravity. This solution is here called K-gravity. The introduction explains the basic concept. The central sections go through the technical detail, defining the basic solution for the geometric (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly established quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. 4, 2, 1 forces - 1 unity.Rodney Bartlett - 2011 - Particle Spin, F=Ma and Black Holes Revise Gravity, Unify Gravitation with Electromagnetism and Matter, and Eliminate the Two Nuclear Forces.
    The complete title of this article is - -/- "Particle spin, F=ma and black holes revise gravity, unify gravitation with electromagnetism and matter, and eliminate the two nuclear forces (with support for the existence of God, ESP, and time travel; deletion of disasters, disease, death and parallel universes; as well as new explanations of why planetary orbits are ellipses, and why tides follow the moon/why the moon’s slowly moving away from Earth)". -/- I think the phrase "end of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. A review of Nugayev's book "Reconstruction of Scientific Theory Change". [REVIEW]Yuri V. Balashov - 1993 - Erkenntnis 38 (3):429-432.
    The author’s studies in the philosophy of science, culminating in this book, were inspired by his previous research in the domains of classical and quantum gravity. In fact it was the need to bring some order in the family of modern classical theories of gravitation and to build up the appropriate conceptual foundations of quantum gravity , that forced the author to create his own methodological model of theory change, which he applies rather successfully to the most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. The Mechanical Philosophy and Newton’s Mechanical Force.Hylarie Kochiras - 2013 - Philosophy of Science 80 (4):557-578.
    How does Newton approach the challenge of mechanizing gravity and, more broadly, natural philosophy? By adopting the simple machine tradition’s mathematical approach to a system’s co-varying parameters of change, he retains natural philosophy’s traditional goal while specifying it in a novel way as the search for impressed forces. He accordingly understands the physical world as a divinely created machine possessing intrinsically mathematical features, and mathematical methods as capable of identifying its real features. The gravitational force’s physical cause remains an (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Are the waves detected by LIGO the waves according to Einstein, Pirani, Bondi, Trautmann, Kopeikin or what are they?Alfonso Guillen Gomez - manuscript
    From the geometric formulation of gravity, according to the Einstein-Grosmann-Hilbert equations, of November 1915, as the geodesic movement in the semirimennian manifold of positive curvature, spacetime, where due to absence of symmetries, the conservation of energy-impulse is not possible taking together the material processes and that of the gravitational geometric field, however, given those symmetries in the flat Minkowski spacetime, using the De Sitter model, Einstein linearizing gravitation, of course, really in the absence of gravity, in 1916, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. The ontology of General Relativity.Gustavo E. Romero - forthcoming - In M. Novello & S. E. Perez Bergliaffa (eds.), General Relativity and Gravitation. Cambridge University Press.
    I discuss the ontological assumptions and implications of General Relativity. I maintain that General Relativity is a theory about gravitational fields, not about space-time. The latter is a more basic ontological category, that emerges from physical relations among all existents. I also argue that there are no physical singularities in space-time. Singular space-time models do not belong to the ontology of the world: they are not things but concepts, i.e. defective solutions of Einstein’s field equations. I briefly discuss the actual (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  50. A BRIEF OUTLINE OF THE POSSIBLE BASICS OF COSMOLOGY IN THE 22nd CENTURY, AND WHAT IT MEANS FOR RELIGION.Rodney Bartlett - manuscript
    This article’s conclusion is that the theories of Einstein are generally correct and will still be relevant in the next century (there will be modifications necessary for development of quantum gravity). Those Einsteinian theories are Special Relativity, General Relativity, and the title of a paper he published in 1919 which asked if gravitation plays a role in the composition of elementary particles of matter. This paper was the bridge between General Relativity and the Unified Field Theory he sought (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 482