This dissertation identifies and explains four major contributions of the Laws and related late dialogues to Plato's moral and political philosophy. -/- Chapter 1: I argue that Plato thinks the purpose of laws and other social institutions is the happiness of the city. A happy city is one in which the city's parts, i.e. the citizens, are unified under the rule of intelligence. Unlike the citizens of the Republic, the citizens of the Laws can all share the same true judgments (...) of value, and this unanimity explains the city's unity. Plato thinks that aiming at the city's happiness is justified, moreover, because a unified city contributes to the universe's order. -/- Chapter 2: In the Laws, Plato holds that the sick, poor, ugly, weak, but virtuous are happy, and that health, wealth, beauty, and strength benefit the virtuous but harm the vicious. Only in the Laws does Plato commit himself to all these claims simultaneously, and I explain how the moral psychology of the Laws permits Plato to maintain them coherently. -/- Chapter 3: I argue that, in the Laws, becoming virtuous is the same as becoming like God. Becoming like God does not require escape from the world of change as it does in the Theaetetus, however. Rather, becoming like God requires bringing "measure" or appropriate order to the world of change, especially to those entities over which we have the most control—our own souls. In the Laws, citizens achieve this order as they learn to be just and to understand the nature of reality. -/- Chapter 4: Unlike the Republic and Statesman, the Laws holds that obedience of the citizens to their laws should be effected, if possible, with rational persuasion. I argue that Plato wishes such persuasion to educate the citizens of the reasons for the laws. Understanding the laws' justification is the principal way in which citizens acquire the good judgment necessary for virtue. The city becomes more happy as the citizens progress in virtue, so rational persuasion is a necessary means to the lawgiver's overall aim. (shrink)
This new, inexpensive translation of Plato's Apology of Socrates is an alternative to the 19th-century Jowett translation that students find online when they're trying to save money on books. Using the 1995 Oxford Classical Text and the commentaries of John Burnet and James Helm, I aimed to produce a 21st-century English translation that is both true to Plato's Greek and understandable to college students in introductory philosophy, political theory, and humanities courses. The book also includes a new translation of (...) the death scene from Plato's Phaedo, a short introduction, a dozen explanatory notes, advice on how to cite Plato in papers, and suggestions for further reading. Search for "Plato Armstrong" in Apple Books (epub ISBN 9781957448022) and Amazon (paperback ISBN 9781957448008, Kindle ISBN 9781957448015). (shrink)
Originally published in 1927, John Dewey’s The Public and Its Problems is a landmark work in pragmatist political philosophy. Today many commentators appreciate it as the mature expression of the American pragmatist’s democratic theory (though at least two later essays are perhaps more representative). It is also considered a classic text for students of twentieth-century American political thought. The book was originally a series of lectures given at Kenyon College in 1926. Many of its central ideas grew out of (...) debate Dewey had with a fellow public intellectual, Walter Lippmann. Besides its inclusion in the collected works (1996, edited by Larry Hickman), the only other edition to be released was by Swallow Press in 1954, containing Dewey’s half-page foreword (1927) and his twelve-page afterword (1946). With the arrival of Penn State Press’ new edition, introduced and edited by Melvin L. Rogers, The Public and Its Problems receives a monumental facelift. It includes a chronology of Dewey’s life events, an editorial note, and Rogers’ introduction to the work, subtitled ‘Revisiting the Public and Its Problems’. (shrink)
Plato is associated with the idea that the body holds us back from knowing ultimate reality and so we should try to distance ourselves from its influence. This sentiment appears is several of his dialogues including Theaetetus where the flight from the physical world is compared to becoming like God. In some major dialogues of Plato's later career such as Philebus and Laws, however, the idea of becoming like God takes a different turn. God is an intelligent force that tries (...) to create order in the physical world. I argue that likeness to God in these dialogues involves imitating God's effort by trying to order our bodies, souls, and societies as intelligence directs. Becoming like Plato's God is not to abandon the world. It is to improve it. (shrink)
For students and the general reader, this is the best English translation of the entire 'Laws' available. I give several examples of important lines that are translated well in this edition, but I take issue with the translation of some other lines and with part of Schofield's introduction on grounds that these parts do not reveal Plato's political and cosmic holism as clearly as they could have.
David Armstrong (1926-2014) was much the most internationally successful philosopher to come from Sydney. His life moved from a privileged Empire childhood and student of John Anderson to acclaimed elder statesman of realist philosophy. His philosophy developed from an Andersonian realist inheritance to major contributions on materialist theory of mind and the theory of universals. His views on several other topics such as religion and ethics are surveyed briefly.
Perceptualists say that having a pain in a body part consists in perceiving the part as instantiating some property. I argue that perceptualism makes better sense of the connections between pain location and the experiences undergone by people in pain than three alternative accounts that dispense with perception. Turning to fellow perceptualists, I also reject ways in which David Armstrong and Michael Tye understand and motivate perceptualism, and I propose an alternative interpretation, one that vitiates a pair of objections—due (...) to John Hyman—concerning the meaning of ‘Amy has a pain in her foot’ and the idea of bodily sensitivity. Perceptualism, I conclude, remains our best account of the location of pains. (shrink)
A polemical account of Australian philosophy up to 2003, emphasising its unique aspects (such as commitment to realism) and the connections between philosophers' views and their lives. Topics include early idealism, the dominance of John Anderson in Sydney, the Orr case, Catholic scholasticism, Melbourne Wittgensteinianism, philosophy of science, the Sydney disturbances of the 1970s, Francofeminism, environmental philosophy, the philosophy of law and Mabo, ethics and Peter Singer. Realist theories especially praised are David Armstrong's on universals, David Stove's on (...) logical probability and the ethical realism of Rai Gaita and Catholic philosophers. In addition to strict philosophy, the book treats non-religious moral traditions to train virtue, such as Freemasonry, civics education and the Greek and Roman classics. (shrink)
TRANSPORTE DE GAMETAS, FERTILIZAÇÃO E SEGMENTAÇÃO -/- • _____OBJETIVO -/- O entendimento do desenvolvimento embrionário nos estágios iniciais, desde a deposição dos espermatozoides na fêmea, passando pela fertilização deste no ovócito e na formação do zigoto, é de suma importância para diferenciar especialistas em reprodução e manejo reprodutivo no mercado de trabalho e, também, durante a vida acadêmica. Compreender os processos que levam à formação do zigoto na fêmea é essencial para avaliar a capacidade reprodutiva dos animais e, mediante técnicas, (...) avaliar o trato reprodutivo da fêmea e o desenvolvimento do embrião até a formação do feto e, por fim, em um novo animal sadio na propriedade. Com esse trabalho, o estudante de veterinária ou zootecnia, que deseja se aprofundar na fisiologia da reprodução animal, identificará os mecanismos que são envolvidos no transporte dos gametas, bem como os processos que estes últimos devem completar para alcançar a fertilização e para desencadear as divisões iniciais do embrião. -/- • _____INTRODUÇÃO -/- A fertilização ou fecundação é o processo pelo qual os gametas masculino (espermatozoide) e feminino (ovócito) se fundem para gerar um novo indivíduo. Seu êxito depende da culminação adequada dos diferentes processos que devem sofrer os gametas durante sua maduração e percurso; do transporte oportuno destes no trato reprodutivo da fêmea, assim como de uma série de adaptações dos órgãos genitais internos da mãe. A segmentação refere-se às primeiras divisões celulares do embrião. -/- • _____TRANSPORTE DO OVÓCITO -/- O ovócito que é liberado na ovulação, e que se encontra coberto pelas células do cumulus (figura 1), é capturado pela fímbria do infundíbulo ao aderir aos cílios. Esse processo é altamente eficaz, inclusive em espécies onde os ovários possuem várias formações globosas, por exemplo nas porcas, onde os ovidutos capturam entre 95 e 100% dos ovócitos que são ovulados. As contrações das camadas musculares do oviduto e o movimento intenso dos cílios da mucosa faz com que as secreções fluam em direção ao útero, transportando assim o complexo cumulus-ovócito. Esse transporte é relativamente rápido até alcançar a junção da ampola com o istmo (que é considerado o local de fertilização do espermatozoide e ovócito) a partir do qual se torna lento. Devido a fêmea estar em estro, o processo está sob controle endócrino, isto é, controle hormonal através do estradiol. Nas fêmeas domésticas, ao contrário das mulheres, o transporte ao longo do oviduto é extremamente eficiente, pois os embriões passam para o útero sem dificuldade, de modo que gestações ectópicas (tubárias ou em cavidade) são quase inexistentes. A égua, frequentemente, retém por muito tempo os ovócitos não fertilizados no oviduto, provavelmente devido a não secreção de substâncias (como a prostaglandina E) que poderiam favorecer sua passagem, como se propõe que aconteça com os embriões. A figura 2 apresenta um ovócito com suas respectivas estruturas. Figura 1: ovócitos de uma vaca madurados in vitro. Nota-se as células do cumulus que os recobre. -/- Figura 2: estruturas do ovócito de uma ovelha que se encontra na etapa de ovócito secundário, depois da ovulação. Elaborado pelo autor. • _____TRANSPORTE ESPERMÁTICO -/- Para que os espermatozoides sejam capazes de fertilizar o ovócito, deverão sofrer uma série de mudanças bioquímicas e morfológicas ao longo de sua passagem pelo aparelho reprodutor tanto masculino como feminino. Uma vez produzidos na parede do túbulo seminífero, os espermatozoides são liberados em direção ao lúmen tubular e transportados passivamente para uma estrutura ramificada conhecida como rede testicular (rete testis). Dessa rede são conduzidos em direção ao epidídimo passando através de 10 a 20 ductos eferentes localizados no polo superior do testículo. O epidídimo é dividido em três seções denominadas cabeça, corpo e cauda; é constituído por um só ducto longo e tortuoso que continua com o canal deferente. Ao final desemboca nas ampolas seminais, no ducto ejaculatório e na uretra. As funções do epidídimo são as de maduração, transporte e armazenamento dos espermatozoides. O transporte através do epidídimo é lento, aproximadamente de 10 dias em touros, e segue sendo passivo. Os espermatozoides tomados da cabeça do epidídimo são ainda imaturos e incapazes de fertilizar, enquanto os armazenados na cauda são completamente maduros. Durante o trânsito pelo epidídimo os espermatozoides adquirem motilidade e o potencial para fertilizar, o acrossomo é remodelado e a gota citoplasmática migra para o flagelo e é liberada. Quando um macho ejacula com muita frequência, é possível observar espermatozoides com gota citoplasmática no sêmen, já que não há tempo suficiente para que completem sua maduração. Os espermatozoides são expulsados fora do organismo durante a cópula, na masturbação ou em emissões espontâneas. Na ejaculação, os espermatozoides que se encontram suspensos nos fluidos do testículo e do epidídimo, misturam-se ao chegar na uretra com as secreções das glândulas acessórias para formar o sêmen. Essas secreções denominadas plasma seminal, proporcionam substâncias para manter o metabolismo energético das células espermáticas, e integram suas membranas elementos que impedem uma capacitação prematura. Durante a cópula, o sêmen é depositado na vagina ou no útero, variando entre as espécies (tabela 1). Na monta natural, geralmente, o serviço ocorre no momento propício, já que está definido pela fase do ciclo estral em que a fêmea é receptiva ao macho. No entanto, na inseminação artificial, é o macho que deverá determinar o momento ideal, e para isso é importante considerar a vida média dos gametas, ao qual é muito curta no caso dos ovócitos (tabela 1). -/- Tabela 1: local de depósito do sêmen, volume da ejaculação e vida média dos gametas. Espécie Local de deposição Volume (ml) Velocidade de ejaculação Vida média do ovócito Vida média do espermatozoide Bovinos Intravaginal 2 1 – 3 seg 8 h 30 – 48 h Caninos Intravaginal 2 – 30 (10 média) 6 – 45 min 48 – 72 h 9 – 11 d Equinos Intrauterina 50 – 200 20 – 60 seg 6 – 8 h 72 – 120 h Humanos Intravaginal 3 - - 5 – 6 d Ovinos Intravaginal 1 1 – 2 seg 16 – 24 h 30 – 48 h Suínos Intrauterina 200 – 400 5 – 20 min 8 – 10 h 24 – 48 h Onde d = dias; h = horas. A vida fértil do ovócito é muito curta, portanto, o momento do serviço é de grande importância para obter altos índices de fertilização. -/- Independentemente do local em que os espermatozoides sejam depositados no aparelho reprodutor feminino, serão expostos às secreções genitais e sofrem uma série de mudanças em seu trajeto até o local de fertilização antes de penetrar no ovócito. Nas espécies em que o sêmen é depositado na parte cranial da vagina, uma parte do mesmo penetra através da cérvix, enquanto outra parte é eliminada do aparelho genital da fêmea, em pouco tempo, através do fluxo retrógrado. O meio vaginal não é adequado e imobiliza os espermatozoides em pouco tempo, pelo qual deverão entrar no útero onde o ambiente é mais propício. O transporte espermático na fêmea é o resultado da alta contratilidade, do movimento ciliar e o fluido do aparelho genital durante o estro, ao qual está sob controle endócrino e do sistema nervoso. Esse transporte é favorecido pelas características especiais do muco estral, cujas moléculas formam uma espécie de canais que facilitam a passagem dos espermatozoides. Pelo contrário, durante a fase lútea seu transporte é dificultado. Além do meio vaginal, a cérvix também atua como barreira natural para limitar a passagem dos espermatozoides, diminuindo assim a possibilidade de polispermia. Funciona, também, como um filtro que seleciona os espermatozoides aptos dos que não o são, uma vez que somente os primeiros possuem uma motilidade vigorosa que lhes permite passar pelo muco altamente hidratado. Na vaca a cérvix é considerada como um reservatório espermático. Quando atravessam a cérvix, os espermatozoides seguem sua deslocação tanto por movimento próprio como pelas contrações uterinas e tubárias. Nas espécies em que o local de depósito do sêmen do macho na fêmea é intrauterino, como equinos, a principal barreira que os espermatozoides enfrentam é a união ou junção útero-tubárica. A união entre o útero e o oviduto (istmo do oviduto) serve como reservatório funcional dos espermatozoides nas espécies domésticas. Poucos minutos depois da cópula, é possível encontrar alguns espermatozoides no oviduto, que é conhecido como fase de transporte rápido. No entanto, esses espermato-zoides não são os que participam do processo de fertilização e podem apresentar certas anormalidades. Existe um segundo tipo de transporte denominado fase sustentada, a qual consiste na migração prolongada dos espermatozoides em direção as partes mais craniais do aparelho genital feminino, que conduzem à colonização do reservatório funcional e na liberação gradual dos espermatozoides dos reservatórios espermáticos, incluindo este último. O reservatório do istmo fornece aos espermatozoides um ambiente propício, protegendo-os contra a fagocitose, prolongando assim a sua viabilidade. Aqui os esper-matozoides permanecem aderidos a superfície das células ciliadas do epitélio até a finalização de sua capacitação, depois da qual são liberados quando alteram seu padrão de motilidade flagelada, fenômeno conhecido como hipermotilidade, e migram em ondas em direção ao local da fertilização. Dos milhões de espermatozoides ejaculados, somente alguns milhares alcançarão o istmo do oviduto e um número sumamente pequeno será encontrado nas imediações do ovócito no momento da fertilização. -/- • _____CAPACITAÇÃO ESPERMÁTICA E REAÇÃO ACROSSÔMICA -/- A capacitação é um processo gradual e essencial para a fertilização. Os espermato-zoides devem passar por um dado tempo de “incubação” no aparelho genital da fêmea e sofrer uma série de mudanças antes de serem capazes de fecundar o ovócito. A capacita-ção dos espermatozoides começa quando eles entram em contato com as secreções do aparelho genital da fêmea e termina no istmo do oviduto. Durante esse percurso a superfície da cabeça do espermatozoide se modifica já que algumas moléculas como o colesterol são removidas da membrana plasmática, aumentando sua fluidez e alterando suas propriedades bioquímicas. Entre outras coisas, essa reorganização dos lipídios facilita a entrada de cálcio extracelular pelos canais iônicos e ocasiona a desestabilização da membrana, tornando-a mais fusogênica. Também são eliminados outros fatores (conhecidos genericamente como fatores descapacitantes) que expõem receptores membranais indispensáveis para a realização da união entre o espermatozoide e o ovócito durante a fertilização. Os espermatozoides capacitados apresentam um padrão de hipermotilidade e uma maior atividade metabólica, características que devem obter para que sejam capazes de penetrar as camadas do ovócito. A capacitação é necessária para que ocorra a reação acrossômica. A reação acrossomal ou acrossômica (RA) é um fenômeno de exocitose que é desencadeada pela ligação entre as proteínas e receptores localizados na membrana do espermatozoide e a zona pelúcida do ovócito (figura 3). Envolve a fusão da membrana plasmática do espermatozoide com a membrana externa de seu acrossomo; formando, assim, pequenas vesículas, cujo conteúdo de enzimas hidrolíticas, como a hialuronidase e a acrosina, é liberado em direção ao seu exterior, facilitando a penetração da zona pelúcida. A adesão do espermatozoide à zona pelúcida é específica da espécie e depende de glicoproteínas presentes na membrana dos ovócitos maduros; a cabeça do espermatozoide se une com essas glicoproteínas mediante receptores específicos e atravessam em direção oblíqua a zona pelúcida até chegar ao espaço perivitelino. Nos mamíferos, particularmente em roedores e nos humanos, algumas dessas glicoproteínas são conhecidas como ZP1, ZP2 e ZP3. Pensa-se que a união da membrana espermática a esta última é o que desencadeia a reação acrossomal. Posteriormente, as vilosidades do ovócito entram em contato com o espermatozoide e a membrana presente na secreção equatorial da cabeça do espermatozoide, que tem proteínas fusogênicas específicas, une-se a membrana plasmática do ovócito, fusionando-se e permitindo a entrada do núcleo espermático ao citoplasma (figura 4). A capacitação dos espermatozoides é fundamental para o êxito da fertilização, uma vez que apenas os aptos estarão perfeitos e íntegros para que a união e percepção das glicoproteínas presentes nos mesmos possam ocorrer de forma ideal para a penetração deste no ovócito, fertilizá-lo e formar um zigoto. Figura 3: estrutura do espermatozoide. Nota: a membrana é acrossomal e não acrossonal. Elaborado pelo autor. -/- Figura 4: eventos que ocorrem durante a fertilização. A – depois de passar através das células do cumulus, o espermatozoide entra em contato com a zona pelúcida, onde receptores da membrana plasmática reconhecem as proteínas da zona pelúcida; B – é desencadeada, então, a reação acrossomal; C – para que o espermatozoide penetre na zona pelúcida; D – ao atravessar a zona pelúcida e entrar no espaço perivitelino, a cabeça do espermatozoide entra em contato com a membrana vitelina; ambas membranas se fusionam graças ao reconhecimento de proteínas fusogênicas que estão no segmento equatorial. E – ocorre, então, que o núcleo do espermatozoide penetra no citoplasma do ovócito; uma das consequências da fusão da membrana com a cabeça do espermatozoide é a reação cortical, em que os grânulos corticais do ovócito liberam seu conteúdo em direção ao espaço perivitelino, o que resulta na alteração da estrutura da zona pelúcida e da membrana vitelina para bloquear a polispermia. Elaborado pelo autor. • _____CONSEQUÊNCIAS DA PENETRAÇÃO -/- Bloqueio da polispermia -/- A fusão das membranas dos gametas durante a penetração permite a entrada da fosfolipase C zeta (PLCζ) – fator solúvel que provém do espermatozoide – que desencadeia liberação e oscilações de Ca2+ no retículo endoplasmático. Isso, por sua vez, provoca a migração e fusão dos grânulos corticais, com a consequente liberação de enzimas, que mudam tanto a estrutura da zona pelúcida (por exemplo a inativação de ZP3), como a da membrana vitelina. Desse modo, impede-se que outros espermatozoides as penetrem, evitando assim a polispermia (figura 5). -/- Figura 5: os grânulos corticais que encontram-se na periferia do citoplasma, debaixo da superfície da membrana do ovócito, migram e fusionam-se sobre a mesma, liberando seu conteúdo no espaço perivitelino imediatamente depois da penetração do espermatozoide. A – como conse-quência, tanto a membrana vitelina como a zona pelúcida são modificadas, impedindo a entrada de mais espermatozoides, o que evita a polispermia. B – o ovócito retoma, então, sua segunda divisão meiótica, que ocasiona a expulsão do segundo corpúsculo polar, e na formação dos pronúcleos feminino e masculino. C – continuando, os pronúcleos migram, suas membranas se dissolvem e os cromossomos de ambos se condensam e se unem. Completa-se, assim, a singamia e forma-se, então, o zigoto. Elaborado pelo autor baseado nos livros de embriologia e fisiologia da reprodução conforme vida bibliografia. -/- Ativação do ovócito e formação de pronúcleos -/- Na maioria das fêmeas domésticas, com exceção da cadela, o ovócito encontra-se suspenso na metáfase II da segunda meiose no momento da ovulação. A entrada da PLCζ do espermatozoide no citoplasma do ovócito, e a consequente liberação de Ca2+, faz com que o ovócito se ative, terminando a segunda divisão meiótica e expulse o segundo corpo polar. Posteriormente, o material nuclear do ovócito se reorganiza para formar o pronú-cleo feminino. Entretanto, a membrana nuclear do espermatozoide se dissolve, a cromatina descondensa-se, as protaminas são substituídas por histonas, e se forma uma nova membrana nuclear, dando lugar ao pronúcleo masculino. -/- Singamia -/- Uma vez que os pronúcleos feminino e masculino são formados, migram para o centro do ovócito, aproximam-se, suas membranas se dispersam e os cromossomos paternos e maternos se associam, com o qual recupera a condição diploide e dá origem ao zigoto (figura 5). -/- • _____DESENVOLVIMENTO EMBRIONÁRIO -/- Poucas horas após a fertilização ocorre a primeira divisão do zigoto em duas, depois em 4, 8, 16 e 32 células, denominadas blastômeros. Essas divisões mitóticas são conhecidas como divisões de segmentação ou clivagem (figura 6), uma vez que são realizadas sem aumento do citoplasma, de modo que com cada divisão os blastômeros se tornam menores. A partir das 16 células o embrião se chama mórula, e é visto como uma massa celular compacta. A compactação deve-se a informação de proteínas de ligação entre os blastômeros. O embrião acumula líquido em seu interior, formando uma cavidade denominada blastocele. Esse processo é conhecido como blastulação; o embrião, assim, passa a ser chamado de blastocisto. Nessa etapa é possível diferenciar duas populações de células embrionárias: a massa celular interna, embrioblasto ou botão embrionário (que dará origem ao embrião), e a massa celular externa, células superficiais ou trofoblasto, do qual se originam a maioria das membranas fetais. Ao continuar a multiplicação das células e a acumulação de líquido, o blastocisto aumenta de tamanho, convertendo-se em blastocisto expandido. A zona pelúcida torna-se mais fina e, finalmente, o embrião eclode; isto é, o embrião é liberado da zona pelúcida. -/- • _____FERTILIZAÇÕES ATÍPICAS -/- Polispermia -/- É a penetração de dois ou mais espermatozoides no óvulo. Esta condição é letal nos mamíferos, já que o número cromossômico desse zigoto é maior que 2n, o envelheci-mento do ovócito da porca, como consequência do serviço tardio, favorece a apresentação da polispermia, por isso, é comum ver números de nascimentos de média de 10 a 12 leitões por parição nessa espécie. Nas aves, no entanto, a penetração de mais de um espermatozoide é normal, embora apenas um pronúcleo masculino se formará, fundindo-se com o feminino. -/- Figura 6: etapas do processo de segmentação/clivagem. Fonte: aula de reprodução da professora Domenica Palomaris, UFT. -/- Ginogênese -/- É o desenvolvimento de um embrião a partir de um óvulo normal fecundado por um espermatozoide, mas sem a fusão dos cromossomos masculinos com os da fêmea. A função do espermatozoide, nesse caso, é a de ativação do ovócito para que este inicie seu desenvolvimento, mas não há fusão com o núcleo do espermatozoide. Ocorre em plantas, em nematódeos e em algumas espécies de peixes, por exemplo a Poecilia formosa, espécie em que os ovócitos das fêmeas são ativados por machos de outra espécie relacio-nada. -/- Partenogênese -/- Consiste no desenvolvimento do embrião sem a participação do espermatozoide. Ocorre em alguns insetos, o zangão, por exemplo, é partenogenético. Também pode apresentar-se em perus, cujos embriões são machos e, geralmente, morrem antes da eclosão. -/- • _____GÊMEOS -/- Existem dois tipos de gêmeos: idênticos ou monozigóticos e os não idênticos ou dizigóticos. -/- Idênticos ou monozigóticos -/- Originam-se do mesmo zigoto, sendo assim, possuem o mesmo genótipo e um fenótipo similar e, portanto, são do mesmo sexo. Em laboratório é possível gerá-los ao seccionar uma mórula em duas ou mais partes, por meio de um micromanipulador. Uma vez que possuem o mesmo genótipo, os produtos resultantes são clones. -/- Não idênticos ou dizigóticos -/- Provêm da fertilização de dois óvulos distintos por espermatozoides diferentes. Possuem, portanto, genótipos e fenótipos diferentes, e podem ser de sexo diferente. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ALBERTS, Bruce et al. Biologia molecular da célula. Artmed Editora, 2010. AUSTIN, Colin Russell; SHORT, Roger Valentine. Reproduction in Mammals, Book I: Germ Cells and Fertilization. 1982. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BOSCH, P.; WRIGHT JR, R. W. The oviductal sperm reservoir in domestic mammals. Archivos de medicina veterinaria, v. 37, n. 2, p. 95-105, 2005. CAPALLEJAS, Roberto Brito; RODRÍGUEZ, Lourdes Tagle. Fisiología de la reproducción animal: con elementos de biotecnología. Editorial Félix Varela, 2010. CROXATTO, Horacio B. Physiology of gamete and embryo transport through the fallopian tube. Reproductive biomedicine online, v. 4, n. 2, p. 160-169, 2002. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DIEDRICH, Smidt et al. Endocrinología y Fisiología de la Reproducción de los Animales Zootécnicos. 1972. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HUNTER, Ronald Henry Fraser. The Fallopian tubes in domestic mammals: how vital is their physiological activity?. Reproduction Nutrition Development, v. 45, n. 3, p. 281-290, 2005. HUNTER, R. H. F.; RODRIGUEZ‐MARTINEZ, H. Capacitation of mammalian spermatozoa in vivo, with a specific focus on events in the Fallopian tubes. Molecular Reproduction and Development: Incorporating Gamete Research, v. 67, n. 2, p. 243-250, 2004. GALINA, Carlos; VALENCIA, Javier. Reproducción de los animales domésticos. 2006. HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. Elsevier Brasil, 2012. KÖLLE, Sabine; REESE, Sven; KUMMER, Wolfgang. New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging. Theriogenology, v. 73, n. 6, p. 786-795, 2010. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. OLIVERA, Martha et al. El espermatozoide, desde la eyaculación hasta la fertilización. Revista Colombiana de Ciencias Pecuarias, v. 19, n. 4, p. 426-436, 2006. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. RODRIGUEZ-MARTINEZ, Heriberto. Role of the oviduct in sperm capacitation. Theriogenology, v. 68, p. S138-S146, 2007. SAAVEDRA LEOS, María Dolores. Estudio de la composición de los gránulos corticales y del oolema de ovocitos porcinos y bovinos madurados y fecundados in vitro. Proyecto de investigación:, 2010. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc, 2004. SUAREZ, Susan S. The oviductal sperm reservoir in mammals: mechanisms of formation. Biology of Reproduction, v. 58, n. 5, p. 1105-1107, 1998. VALENCIA MÉNDEZ, Javier de J. Fisiología de la reproducción porcina. 1986. -/- FIXAÇÃO DO ASSUNTO -/- 1. Defina e diferencie fertilização e segmentação. -/- 2. Disserte sobre o transporte do ovócito. Por que no istmo o transporte do ovócito se torna lento? -/- 3. Fale sobre a eficiência do transporte do gameta no trato genital da fêmea e sobre a retenção de ovócitos pela égua. -/- 4. Defina as células do cumulus e explique seu papel sobre o ovócito. -/- 5. Quais as estruturas que compõem o ovócito? Qual a função de cada uma? -/- 6. Todos os ovócitos das fêmeas domésticas são iguais? Justifique. -/- 7. Disserte sobre o papel dos hormônios e das secreções sobre o transporte do ovócito no trato genital da fêmea. -/- 8. Disserte sobre o transporte do espermatozoide. Por que há transporte rápido e lento dos espermatozoides? -/- 9. Fale sobre o local de deposição do sêmen nas espécies domésticas e como esse influen-cia na eficiência da reprodução. -/- 10. Por que a vida média do espermatozoide canino é maior que as outras espécies? -/- 11. Quais as mudanças que os espermatozoides precisam sofrer para conseguir êxito na fertilização e por quê? -/- 12. Defina fase de transporte rápido, fase sustentada e hipermotilidade. Qual a importân-cia de cada um? -/- 13. Como ocorre a reação acrossômica? -/- 14. O que é polispermia e como ocorre seu bloqueio? 15. Como ocorre a ativação do ovócito e como se formam os pronúcleos? -/- 16. O que é e qual a importância da singamia? -/- 17. Disserte sobre as divisões de segmentação e qual a importância destas para o êxito da reprodução. -/- 18. Defina e diferencia mórula e blastocisto. -/- 19. Defina e diferencie ginogênese e partenogênese. -/- 20. Qual o papel endócrino e quais hormônios e enzimas atuam sobre o transporte de gametas, sobre a fertilização e sobre a segmentação? (shrink)
This Thesis engages with contemporary philosophical controversies about the nature of dispositional properties or powers and the relationship they have to their non-dispositional counterparts. The focus concerns fundamentality. In particular, I seek to answer the question, ‘What fundamental properties suffice to account for the manifest world?’ The answer I defend is that fundamental categorical properties need not be invoked in order to derive a viable explanation for the manifest world. My stance is a field-theoretic view which describes the world as (...) a single system comprised of pure power, and involves the further contention that ‘pure power’ should not be interpreted as ‘purely dispositional’, if dispositionality means potentiality, possibility or otherwise unmanifested power or ability bestowed upon some bearer. The theoretical positions examined include David Armstrong’s Categoricalism, Sydney Shoemaker’s Causal Theory of Properties, Brian Ellis’s New Essentialism, Ullin Place’s Conceptualism, Charles Martin’s and John Heil’s Identity Theory of Properties and Rom Harré’s Theory of Causal Powers. The central concern of this Thesis is to examine reasons for holding a pure-power theory, and to defend such a stance. This involves two tasks. The first requires explaining what plays the substance role in a pure-power world. This Thesis argues that fundamental power, although not categorical, can be considered ontologically-robust and thus able to fulfil the substance role. A second task—answering the challenge put forward by Richard Swinburne and thereafter replicated in various neo-Swinburne arguments—concerns how the manifestly qualitative world can be explained starting from a pure-power base. The Light-like Network Account is put forward in an attempt to show how the manifest world can be derived from fundamental pure power. (shrink)
FISIOLOGIA DO CICLO ESTRAL DOS ANIMAIS -/- Departamento de Zootecnia – UFRPE Embrapa Semiárido e IPA -/- • _____OBJETIVO -/- O cio ou estro é a fase reprodutiva dos animais, onde as fêmeas apresentam receptividade sexual seguida de ovulação. Para tanto, é necessário entender a fisiologia do estro para a realização do manejo reprodutivo dos animais. Em geral, as fêmeas manifestam comportamentos fora do comum quando estão ciclando, tais comportamentos devem ser observados para que não percam o pico de ovulação (...) e, consequentemente, para que não perca o momento de monta ou inseminação para emprenhar o animal. Neste trabalho, o estudante compreenderá o ciclo estral identificando as diferenças entre as espécies domésticas, para considerá-las na manipulação do mesmo. -/- • _____INTRODUÇÃO -/- As fêmeas dos mamíferos domésticos apresentam, em sua vida reprodutiva, even-tos recorrentes conhecidos como ciclos estrais que se caracterizam por uma série de alte-rações ovarianas, genitais, endócrinas e comportamentais. Esses ciclos são o fundamento da reprodução e possuem a finalidade de que ocorra a ovulação de forma sincronizada com o acasalamento para conduzir a uma gestação. A compreensão deste é de suma im-portância para alcançar uma boa eficiência produtiva nas propriedades pecuárias; consi-derando que a oportunidade de gestar os animais se limita a períodos, em geral, muito curtos, que ocorrem em cada ciclo. Assim que as fêmeas atingem a puberdade, em bovinos entre 11 e 19 meses, inicia-se a apresentação dos ciclos estrais, o que geralmente indica o início da receptividade sexual, também chamada de "estro" ou "cio", por ser a fase mais fácil de reconhecer devido ao qual a fêmea busca, atrai e aceita a montaria do macho. Todavia, para uma melhor eficiência reprodutiva, as fêmeas que apresentarem o primeiro cio não devem ser colocadas à disposição do macho ou da IA, uma vez que ela ainda não possui o aporte e a condição corporal ideal para conseguir gestar; logo para serem colocadas à reprodução devem estar ao terceiro estro ou possuir entre 60 a 70% do seu peso vivo adulto. Depois da receptividade ocorre um período em que a fêmea não atrai nem aceita o macho. Assim, um ciclo estral é definido como o período entre um estro e o seguinte. Quando durante o ciclo estral ocorre uma cópula fértil, as fêmeas passam a uma fase de anestro fisiológico, causado pela gestação, em que cessa o ciclo estral e passam a não apresentarem atividade sexual. Nas espécies sazonais (cabras, éguas e ovelhas), a manifestação dos ciclos estrais também é limitada pela época do ano em que as fêmeas apresentam um anestro sazonal. Essas espécies sazonais ou estacionais apresentam cio durante a época em que os dias apresentam a presença de luz por mais tempo; isto é, dias mais longos. Deve-se considerar que a ciclicidade feminina pode ser alterada por eventos patológicos como processos infecciosos, persistência do corpo lúteo, desnutrição e estresse, entre outros. -/- • _____CONTROLE ENDÓCRINO DO CICLO ESTRAL -/- As mudanças ovarianas, genitais e comportamentais que ocorrem ao longo dos ciclos estrais são controladas pelo sistema endócrino e são o resultado de uma complexa interação entre hipotálamo, hipófise, ovário e útero. Vários hormônios participam desse processo, dos quais serão descritos a importância e a participação dos mais relevantes (figura 1). -/- Figura 1: Interação hormonal do eixo hipotálamo-hipófise-gonodal. No lado esquerdo, com linhas contínuas, os principais hormônios são exemplificados quando há um folículo pré-ovulatório. No lado direito, com linhas pontilhadas, os hormônios envolvidos são mostrados quando a estrutura ovariana predominante é o corpo lúteo. Fonte: RANGEL, 2018. A Kisspeptina é um peptídeo hipotalâmico que tem sido denominado regulador central, pois os neurônios que a produzem recebem informações do meio ambiente e do próprio corpo, o que indica o momento ideal para a reprodução. Além de modular a secreção de GnRH durante o ciclo estral, esse hormônio controla tanto o início da puberdade quanto da estacionalidade reprodutiva. Além disso, é inibido durante a lactação, bloqueando a atividade reprodutiva das fêmeas nessa fase. Os neurônios produtores de Kisspeptina possuem receptores de estradiol, que os regulam para modular a liberação tônica e cíclica de GnRH, controlando assim a secreção de gonadotrofina; além disso, foi sugerida a participação de outros hormônios neurotransmissores e neuropeptídios na modulação da secreção de GnRH. Entre eles estão os estimuladores: norepinefrina, serotonina, aminoácidos excitatórios (principal-mente glutamato) e neurotensina. Atuando como inibidores: GABA e opioides endógenos (principalmente o β-endorfina). O GnRH é um neuropeptídio hipotalâmico que estimula a produção e liberação de LH, de forma que um pulso de LH é sempre precedido por um pulso de GnRH. Os estrogênios foliculares têm, por outro lado, um efeito de feedback positivo com o LH, aumentando a produção de GnRH pelo centro cíclico e a formação de seus receptores nos gonadotrópicos da hipófise. Como resultado, a maturação dos folículos ovarianos é alcançada e os picos pré-ovulatórios de estradiol e LH são alcançados. No centro tônico da secreção de GnRH, os estrogênios inibem a liberação desse hormônio quando os animais estão na vida pré-púbere ou nos estágios de anestro, e a sensibilidade a esse feedback negativo diminui durante os estágios reprodutivos. No sentido estrito, a liberação de FSH pelos gonadotrópicos hipofisários não requer a presença do GnRH, que participa antecipadamente do estímulo de sua síntese; o FSH é considerado, então, um hormônio secretado constitutivamente, ou seja, constantemente, a menos que haja um estímulo inibitório. Este estímulo inibitório existe graças aos estrogênios e à inibina, que são produzidos pelos folículos em desenvolvi-mento, especialmente pelo folículo dominante. A progesterona é um hormônio esteroide produzido pelo corpo lúteo (CL) que inibe a secreção de LH. Isso é realizado tanto indiretamente por meio da inibição da secreção de GnRH no nível hipotalâmico, quanto por ação direta no nível da hipófise, uma vez que bloqueia a formação de receptores de GnRH nos gonadotropos. Assim, diminui a frequência dos pulsos de LH, que é mantida em níveis basais capazes de participar da formação e manutenção do corpo lúteo, mas incapaz de causar ovulação. Na vaca, o papel do LH na manutenção do corpo lúteo é controverso, uma vez que alguns autores propõem que apenas o hormônio do crescimento participe para esse fim, pois a administração de inibidores de GnRH quando há corpo lúteo funcional não afeta a secreção de progesterona. Se a fertilização não for alcançada com sucesso, eventualmente o corpo lúteo deve ser destruído por apoptose (processo conhecido como luteólise), para permitir a ocorrência de um novo ciclo estral. Nesse caso, os hormônios participantes são a ocitocina, produzida inicialmente no nível central e posteriormente pelo CL; e a prostaglandina F2alfa (PGF2α), secretada pelo endométrio uterino ao final do diestro; entre ambos os hormônios estabelecerão um mecanismo de feedback positivo até que se complete a luteólise. -/- • _____FREQUÊNCIA DE APRESENTAÇÃO DOS CICLOS ESTRAIS -/- As espécies são classificadas de acordo com a frequência com que apresentam seus ciclos estrais em um dos três grupos existentes (figura 2). -/- Figura 2: classificação das espécies domésticas de acordo com a frequência de apresentação de seus ciclos estrais ao longo do ano. Fonte: RANGEL, 2018. -/- Tabela 1: tipo e duração do ciclo estral de diferentes espécies Monoéstricas -/- São as espécies que apresentam um único ciclo estral, uma ou duas vezes ao ano, que culmina com um período de anestro, que faz parte do mesmo ciclo. Em geral, a fase de receptividade sexual dessas espécies é muito longa para garantir a fecundação. Dentro desta classificação está a família Canidae, que inclui cães domésticos, lobos e raposas. Os cães domésticos são capazes de se reproduzir em qualquer época do ano, portanto, não são considerados sazonais; apesar disso, observou-se que o estro tende a ocorrer com mais frequência no final do inverno ou início da primavera. Como exceção, a raça de cães Basenji é considerada sazonal, pois eles sempre têm seus ciclos férteis no outono. -/- Poliéstricas estacionais ou sazonais -/- São espécies que para garantir que seus filhotes nasçam na época do ano mais favorável à sua sobrevivência, apresentam uma série de ciclos estrais durante uma estação limitada do ano (figura 3). No final desta estação, os animais entram em anestro sazonal, que termina com o início da próxima estação reprodutiva. Dentro deste grupo estão as espécies que se reproduzem nas épocas do ano em que está aumentando a quantidade de horas-luz por dia ou fotoperíodo crescente (primavera-verão), como equinos e gatos; o último mostra a atividade ovariana entre janeiro e setembro (ou até outubro) nas zonas temperadas. Há outro grupo de espécies que se reproduzem em períodos de fotoperíodo decrescente (outono-inverno), entre as quais estão ovinos e caprinos. -/- Figura 3: classificação das espécies domésticas, de acordo com a estacionalidade de sua reprodutiva. Fonte: RANGEL, 2018. Poliéstricas contínuas -/- As espécies deste grupo são caracterizadas por ciclos estrais durante todo o ano. Dentro desta classificação estão bovinos e suínos. -/- • _____ETAPAS DO CICLO ESTRAL -/- Do ponto de vista das estruturas ovarianas predominantes, o ciclo estral se divide em duas fases: a fase folicular, na qual os folículos ovarianos se desenvolvem e amadurecem, além da ovulação; nas espécies poliéstricas, esta fase começa com a regressão do corpo lúteo do ciclo anterior. A outra é conhecida como fase lútea e refere-se às etapas do ciclo em que o corpo lúteo se forma e tem sua maior funcionalidade. Cada uma dessas fases pode ser dividida em etapas de proestro e estro (fase folicular); e metaestro e diestro (fase lútea) (figura 4). Algumas espécies, adicionalmente, podem apresentar períodos de anestro e interestro, como parte de seus ciclos estrais (figura 4). -/- Figura 4: etapas dos ciclos estrais dos animais domésticos. Fonte: RANGEL, 2018. -/- Fase folicular -/- É identificada porque os hormônios ovarianos predominantes são os estrogênios (produzidos pelos folículos em crescimento), que desencadeiam o comportamento sexual e fazem com que o aparelho reprodutor passe por algumas adaptações para atrair o macho, preparar-se para a cópula e facilitar o transporte dos gametas. O proestro começa quando as concentrações de progesterona do ciclo anterior baixem para níveis basais devido à regressão do CL; e termina quando o comportamento de receptividade sexual começa. É caracterizado pelo crescimento do folículo dominante da última onda folicular do ciclo anterior; portanto, sua duração depende do grau de desenvolvimento em que o folículo se encontra no momento da luteólise. Nesse estágio, aumenta-se a produção de estradiol e inibina secretada pelo folículo ou folículos que iniciaram seu desenvolvimento durante o final do período de diestro. As concentrações de FSH diminuem no início do proestro; entretanto, eles começam a aumentar à medida que o estro se aproxima. O LH, devido ao efeito do estradiol, passa a aumentar sua frequência de secreção e diminuir a amplitude de seus pulsos, o que acentua a produção de andrógenos pelas células da teca e a capacidade de aromatização das células da granulosa, com o consequente aumento na produção de estradiol. O aumento do estradiol desencadeia a apresentação comportamental do estro que também é conhecido como estágio de cio, calor ou receptividade sexual, uma vez que representa o único período em que a fêmea procura ativamente o macho e aceita a montagem e a cópula. O comportamento sexual pode variar em intensidade entre diferentes espécies. Durante a fase de estro, o(s) folículo(s) em desenvolvimento no ovário adquirem sua maturidade e tamanho pré-ovulatório (figura 5), atingindo as concentrações máximas de estradiol. Um feedback positivo é então exercido entre o estradiol, GnRH e LH, para que ocorra o pico de LH pré-ovulatório que será responsável pela ovulação. -/- Figura 5: folículos ovarianos de porcas. Esquerda: pequenos folículos, estágio de proestro. À direita: folículos pré-ovulatórios, estágio de estro. Fonte: RANGEL, 2018. -/- O estro é a fase do ciclo em que ocorre a ovulação em espécies domésticas, com exceção dos bovinos que ovulam durante o metaestro inicial. A ovulação, por outro lado, manifesta-se espontaneamente na maioria das espécies domésticas, com exceção dos felinos, leporídeos e camelídeos, nos quais a cópula deve ocorrer para induzi-la, por isso são conhecidos como espécies de ovulação induzida (figura 6). Nessas espécies, a cópula provoca um reflexo nervoso que atua no nível hipotalâmico para induzir a liberação de GnRH e, portanto, o pico pré-ovulatório de LH. Existem outras espécies em que a cópula não estimula a ovulação, mas é necessária para induzir a formação do CL (figura 6). Dentro dessas espécies estão ratos e camundongos. -/- Figura 6: classificação das espécies domésticas, segundo a espontaneidade da ovulação e a formação do corpo lúteo. Fonte: RANGEL, 2018. -/- Em caninos, deve-se considerar que, embora tradicionalmente se diga que a ovulação ocorre dois dias após o início do estro, ela pode ocorrer mais tarde, em alguns casos ocorrendo próximo ao final do estro. Em geral, durante a fase folicular, o útero tem maior suprimento e as glândulas endometriais entram em fase proliferativa, aumentando seu tamanho. Isso faz com que o útero fique mais tônico, ou seja, mais firme, exceto no caso de éguas e carnívoros nos quais os estrogênios fazem com que o útero se encontre com edema e sem tonalidade, enquanto a cérvix aparece relaxada durante o estro. Além disso, o aumento do suprimento de sangue causa hiperemia e congestão do epitélio vaginal e vulvar (figura 7). Para permitir a passagem do esperma, a cérvix se abre e a produção de um muco cervical muito fluido, cristalino e abundante é aumentada; o útero e o oviduto aumentam suas contrações. Nessa última ação participam as prostaglandinas contidas no plasma seminal (PGF₂α e PGE). Na vagina, o número de camadas de células do epitélio começa a aumentar e as células da superfície tornam-se cornificadas. No caso da cadela, a situação hormonal durante a fase folicular é completamente diferente do resto das espécies domésticas (figura 8), uma vez que há altas concentrações de estrógenos durante o proestro, que atingem seu nível máximo 24 a 48 h antes de seu término; ao mesmo tempo, os folículos iniciam sua luteinização, antes de serem ovulados. Essa situação provoca a liberação de progesterona, que começa a aumentar suas concen-trações; à medida que aumenta, as concentrações de estradiol começam a cair. Assim, o estro começa quando os níveis de progesterona atingem uma concentração de cerca de 1 ng/ml. O pico de LH ocorre durante a transição do proestro para o estro e a ovulação ocorre 48 a 60 horas depois; processo que pode se estender de 24 a 96 h. Os níveis de progesterona aumentam após o início do estro, de modo que antes da ovulação estão entre 2 e 4 ng/ml, enquanto as concentrações entre 5 e 10 ng/ml estão relacionadas ao tempo de ovulação. Uma vez que as concentrações de estradiol caem abaixo de 15 pg/ml, o estro é encerrado (figura 8). -/- Figura 7: comparação da aparência vulvar em porcas. O círculo azul indica a vulva de uma porca que não está em estro, enquanto um círculo vermelho mostra uma vulva apresentando hiperemia e edema característicos da fase de estro. Fonte: Acervo pessoal do autor. -/- As altas concentrações de estradiol no proestro são responsáveis pela atração da fêmea pelo macho a partir desta fase, porém, não apresentará comportamento receptivo até o início da fase de estro. Deve-se levar em consideração que algumas cadelas podem não aceitar o macho, apesar de estarem endócrinamente na fase de estro, o que pode ser atribuído às condições de manejo, aos comportamentos adquiridos ou às características hierárquicas, ou ainda a distúrbios relacionados a endocrinologia da reprodução (anorma-lidades hormonais e/ou baixas concentrações de hormônios). No caso das éguas, não há menção à fase de proestro e os eventos que ocorreriam nessa fase estão englobados no estro, que tradicionalmente será denominado fase folicular ou simplesmente estro (figura 9). -/- Figura 8: Endocrinologia do ciclo estral da cadela. Fonte: RANGEL, 2018. -/- Figura 9: duração das etapas do ciclo estral das éguas. A ovulação ocorre nos últimos 2 dias da fase de estro. Fonte: RANGEL, 2018. -/- Fase lútea -/- Durante essa fase, o esteroide ovariano predominante é a progesterona, cujo objetivo é manter a gravidez se a fertilização for bem-sucedida. Para isso, os estrogênios pré-ovulatórios favorecem a formação de receptores de progesterona uterina, então a presença da progesterona faz com que as glândulas endometriais entrem em sua fase secretora e iniciem a produção de histiotrofo ou leite uterino, para nutrir o produto que poderia estar potencialmente presente. Já na fase lútea, ocorre redução das concentrações de estrogênio, o que causa diminuição do tônus uterino, hiperemia e edema vulvar. Por fim, a cérvix se fecha e o muco cervical torna-se espesso, pegajoso, opaco e menos abundante, de modo a isolar o útero por fora, evitando a entrada de microrganismos que poderiam comprometer a possível gravidez. O metaestro começa quando a fêmea deixa de aceitar a montaria do macho e termina quando há um CL funcional bem estabelecido. Este estágio corresponde ao período de transição entre a dominância estrogênica e o aumento das concentrações de progesterona. Nesse estágio, as concentrações de FSH são aumentadas pela queda repentina de estradiol e inibina após a ovulação, o que permite o recrutamento da primeira onda folicular. Nesta fase, o ovário contém o corpo hemorrágico, a partir do qual se desenvolverá o CL (figura 10). O corpo hemorrágico tem meia-vida muito curta, pois as células que compõem suas paredes iniciam sua luteinização imediatamente após ou mesmo antes da ovulação. -/- Figura 10: ovários bovinos. Corpo hemorrágico (CH); folículos (F) e corpo lúteo (CL). -/- O diestro, por sua vez, constitui a etapa mais longa do ciclo estral e é caracterizado por um CL que se encontra em sua atividade secretora máxima. Somente no final dessa fase, e se não houver fecundação, o CL sofre luteólise; caso contrário, o CL é mantido de forma a preservar a gestação, prolongando um estado fisiológico semelhante ao do diestro. A imagem 11 esquematiza o ciclo estral da vaca, eventos ovarianos e endócrinos, bem como a duração das etapas do ciclo estral. Nessa fase, a progesterona atinge suas concentrações máximas e exerce efeito negativo na liberação de LH, pois inibe a formação de receptores de GnRH nos gonadotropos hipofisários, bem como a secreção de GnRH pelo hipotálamo. Além disso, observam-se aumentos repetidos da secreção de FSH com o consequente aumento do desenvolvimento folicular e das concentrações plasmáticas de estradiol e inibina. No entanto, os folículos que começam seu desenvolvimento, não conseguem completar sua maturação e sofrem regressão (ondas foliculares). A égua é a única fêmea doméstica que pode ovular naturalmente durante a fase lútea, com uma incidência de ovulação de 10-25% nesta fase. Figura 11: etapas, estruturas ovarianas e endocrinologia do ciclo estral da vaca. Fonte: RANGEL, 2018. -/- No final do diestro, os estrogênios sensibilizam o endométrio, de modo que as células epiteliais formam os receptores de ocitocina. Após uma primeira secreção de ocitocina da neurohipófise e secreções subsequentes originadas do corpo lúteo, um mecanismo de feedback positivo é iniciado para a secreção de PGF2α. O papel da PGF2α é destruir o CL quando não houver fertilização. Deve-se considerar que para o útero ser capaz de produzir PGF2α deve haver um período prévio de exposição à progesterona, durante o qual aumenta o conteúdo de precursores das prostaglandinas no endométrio, como o ácido araquidônico (ácido graxo C20H32O2). O anestro é considerado como um período de inatividade reprodutiva, mesmo quando continua havendo atividade hormonal e desenvolvimento folicular, uma vez que o estímulo é insuficiente para que ocorra a maturação folicular e a ovulação. Ao longo desta fase não haverá alterações comportamentais ou morfológicas nas fêmeas. Nas espécies estacionais ou sazonais, o anestro é muito importante, pois limita a estação reprodutiva de forma que os partos ocorram na época do ano que pode ser mais favorável para a sobrevivência dos filhotes. Em espécies poliéstricas contínuas, o anestro aparecerá em casos de processos fisiológicos como gestação ou amamentação, ou devido a condições patológicas que interrompem a ciclicidade. Em caninos, o anestro é considerado mais uma fase do ciclo estral (figura 12), e é o estágio de transição entre o diestro de um ciclo e o proestro do próximo; na verdade, o anestro é a fase mais longa do ciclo nessa espécie, pois pode durar de 4 a 10 meses, dependendo do indivíduo. Em algumas espécies de animais domésticos, o anestro pode ocorrer pós-parto. O interestro é uma fase de repouso entre as ondas foliculares e é característica do ciclo estral de espécies cuja ovulação é induzida, como os felinos e camelídeos, por exemplo, a lhama e a alpaca. Ao longo desta fase, não há comportamento sexual. Sua apresentação se deve ao fato de a monta não ter ocorrido ou de não ter sido capaz de induzir a ovulação, de modo que os folículos ovarianos regridem, dando origem a um novo recrutamento folicular. No caso dos felinos, foi relatado que até 50% das cópulas simples são insuficientes para causar ovulação. -/- Figura 12: etapas do ciclo estral da cadela. A ovulação ocorre dois dias após o início do cio. Fonte: RANGEL, 2018. -/- • _DURAÇÃO DOS CICLOS ESTRAIS E PARTICULARIDADES POR ESPÉCIE -/- As variações na duração do ciclo estral e as fases presentes entre as diferentes espécies domésticas são indicadas na tabela 2. Em particular, existe uma grande variação entre os indivíduos dependendo da duração das fases do ciclo estral em caninos e felinos, sendo difícil precisar sua duração, já que no caso da cadela o anestro é parte integrante do ciclo; na gata, a duração do ciclo anovulatório é diferente daquele em que ocorreu a ovulação. Assim, em um ciclo anovulatório, a gata pode manifestar períodos de estro de sete dias em média, seguidos de 2 a 19 dias sem estro (período denominado interestro), que são continuados com outro período de estro. Quando ocorre a ovulação e não é fértil, surge uma fase lútea de 35 a 37 dias e às vezes demora mais 35 dias para o animal apresentar um novo estro. Em cadelas, não há estágio de metaestro propriamente dito, pois a ovulação ocorre no início do estro, de forma que, ao término do comportamento sexual, os corpos lúteos já estão formados. Da mesma forma, as gatas não apresentam este estágio, portanto, se ocorrer ovulação, a fase de estro é imediatamente seguida pela fase diestro (figura 13). Figura 13: etapas e endocrinologia do ciclo estral da gata. Fonte: RANGEL, 2018. -/- Tabela 2: Duração do ciclo estral e suas fases nas diferentes espécies domésticas Espécie Ciclo (dias) Proestro (dias) Estro Metaestro (dias) Diestro (dias) Interestro (dias) Anestro Bovina 21 (17-24) 2 a 3 8-18 h 3 a 5 12 a 14 - Pós-parto (vacas de leite) Lactacional (vacas de corte) Ovina 17 (13-19) 2 24-36 h 2 a 3 12 - Estacional Caprina 21 2 a 3 36 h (24-48) 3 a 5 8 a 15 - Estacional Suína 21 (17-25) 2 24-72 h 2 14 - Lactacional Equina 21 (15-26) - 4-7 d - 14 a 15 - Estacional Canina - 9 (3-20) 9 d (3-20) - 63 ± 5 em gestantes 70 a 80 em vazias - 4 a 10 meses Felina - 1 a 2 7 d (2-19) - 35 a 37 8 (2-19) Estacional (30-90 d) Onde: d = dias. h = horas. -/- O ciclo estral das éguas é dividido apenas em duas fases, folicular e lútea; às vezes também conhecido como estro e diestro, respectivamente (figura 14). No caso de bovinos, a ovulação ocorre durante a fase de metaestro, entre quatro e 16 horas após o término do estro, ou de 30 a 36 horas após o início do estro (figura 15). Uma vez que a ovulação ocorre, e como consequência da queda repentina nas concentrações de estradiol, algumas vacas podem ter uma secreção vulvar sanguinolenta (figura 16). -/- Figura 14: endocrinologia do ciclo estral da égua. Fonte: RANGEL, 2018. -/- Figura 15: duração das etapas do ciclo estral das vacas. A ovulação ocorre no metaestro ou de 4 a 16 horas depois do término do cio. Fonte: RANGEL, 2018. -/- Figura 16: secreção vulvar sanguinolenta em vaca no estágio de metaestro • ___DESENVOLVIMENTO FOLICULAR -/- Embora o desenvolvimento folicular que leva à ovulação ocorra na fase folicular do ciclo estral e desempenhe um papel essencial no controle do ciclo, durante a fase lútea também ocorre o desenvolvimento folicular, mas os folículos não conseguem realizar sua maturação final e ovulação; mesmo em animais pré-púberes e em animais em anestro, há crescimento folicular. Por isso o desenvolvimento folicular é considerado um processo constante e dinâmico. As fêmeas têm certo número de folículos e ovócitos desde o nascimento, que em geral excede consideravelmente o número de oócitos que serão ovulados ao longo de suas vidas. Aproximadamente 90% dos folículos ovarianos começam a crescer, mas não ovulam e regridem, fato conhecido como atresia folicular. Estima-se que a atresia ocorra em qualquer época de desenvolvimento, mas é mais comum nos estágios dependentes de gonadotrofinas. A razão pela qual as ondas foliculares se desenvolvem durante a fase lútea, culminando na atresia, é que a progesterona produzida pelo corpo lúteo inibe a pulsação de LH. Assim, os folículos dominantes não obtêm suprimento suficiente desse hormônio para completar seu crescimento e ovular, causando sua regressão. Quando os folículos sofrem atresia, cessa a produção de estradiol e inibina, retomando a secreção de FSH, iniciando um novo recrutamento folicular. No final do período de diestro, quando as concentrações de progesterona começam a diminuir devido à luteólise, os estrogênios foliculares estimulam a secreção de LH, que fornece suporte suficiente para o crescimento e maturação dos folículos até que a ovulação seja desencadeada. -/- • ___OVULAÇÃO -/- A ovulação ocorre graças a um processo de remodelação, adelgaçamento e ruptura da parede folicular ao nível do estigma, que é uma área de tecido desprovida de vascularização, que se forma na superfície do folículo ovulatório (figura 17). Nas espécies domésticas, o folículo pode se desenvolver e ovular em qualquer parte da superfície do ovário, com exceção dos equinos, nos quais, devido à conformação anatômica característica do ovário desta espécie, a ovulação sempre ocorre ao nível da fossa de ovulação. O pico de LH que precede a ovulação estimula a síntese e a liberação local de PGE₂ e PGF₂α, bem como o início da produção de progesterona pelas células foliculares. Junto com o pico pré-ovulatório de LH, ocorre aumento da quantidade de fluido folicular, graças ao aumento da permeabilidade vascular da teca (ação estimulada em conjunto com a PGE₂) e ao aumento do suprimento sanguíneo no período pré-ovulatório; entretanto, a pressão intrafolicular não aumenta porque a parede do folículo está distendida. -/- Figura 17: ruptura do estigma folicular durante o processo de ovulação. Fonte: Internet. -/- A ovulação começa com um enfraquecimento da parede folicular, porque a PGF₂α causa a liberação de enzimas lisossomais das células da granulosa do folículo pré-ovulatório. O aumento local da progesterona faz com que as células da teca interna sintetizem colagenase, uma enzima que cliva as cadeias de colágeno do tecido conjuntivo, enfraquecendo a túnica albugínea que constitui a parede folicular. À medida que a parede enfraquece, forma o estigma - projeção avascular - na região apical, o que indica que a ovulação está se aproximando. O estigma é o local onde o folículo se rompe, permitindo a liberação do oócito, que sai envolto pelas células da coroa irradiada e acompanhado pelo fluido contido no antro folicular. -/- • ___CORPO LÚTEO -/- Após a ovulação, as células que permanecem na cavidade folicular desenvolvem um CL, que é considerado uma glândula temporária; sua função essencial é a produção hormonal e só está presente durante o diestro, na gestação e em algumas patologias como a piometra. A luteinização, ou formação do CL, é mediada principalmente pelo LH; no entanto, outros hormônios também estão envolvidos, como o hormônio do crescimento (GH). Assim, o tratamento com GH em animais hipofisectomizados foi encontrado para restaurar a função normal do CL; enquanto em espécies como roedores e caninos, a formação do CL é induzida e mantida pela prolactina, hormônio que não participa com essa finalidade no caso dos ruminantes. Durante a luteinização, os remanescentes das células da granulosa se diferenciam em grandes células lúteas, que são capazes de secretar progesterona continuamente (basal), e possuem grânulos secretores responsáveis pela produção e liberação de ocitocina e relaxina, esta última durante a gestação de algumas espécies. Enquanto as células da teca formam as pequenas células lúteas, que não secretam ocitocina e produzem progesterona em resposta ao LH (tônico). O corpo lúteo é, finalmente, constituído de células luteais grandes e pequenas, fibroblastos, células mioides, células endoteliais e células do sistema imunológico. Outro fator importante para o processo de luteinização é a formação de uma rede vascular, essencial para aumentar o fluxo sanguíneo para o CL. A referida formação vascular é mediada principalmente por dois fatores, fator de crescimento de fibroblastos (FGF), que no estágio inicial do desenvolvimento lúteo estimula a proliferação de células endoteliais pela ação de LH, e fator de crescimento endotélio-vascular (VEGF) que promove a invasão de células endoteliais para a camada de células da granulosa e a organização e manutenção da microvasculatura do CL. A luteólise é um processo essencial para retomar a ciclicidade das fêmeas. Sucede ao final do diestro quando não ocorre a fecundação e consiste na desintegração funcional e estrutural do CL. O primeiro refere-se à queda nas concentrações de progesterona, enquanto o segundo abrange a regressão anatômica da estrutura lútea e a recuperação do tamanho normal do ovário. A desintegração funcional, com a consequente queda nas concentrações de progesterona, ocorre antes que a regressão estrutural seja observada. Caso ocorra a gestação, a vida do CL é prolongada, visto que existem mecanismos que o resgatam de sua regressão. Durante o diestro, a progesterona produzida pelo CL bloqueia inicialmente a ação do estradiol e da ocitocina. Para esse último, causa uma redução no número de receptores de ocitocina endometrial, modificando sua estrutura. Desta forma, não é possível estabelecer um feedback positivo entre a ocitocina e a PGF₂α, que será responsável pela luteólise. No entanto, à medida que o diestro progride, a progesterona esgota seus próprios receptores, de modo que, no final desse estágio, ela perde a capacidade de inibir os receptores de ocitocina. O estradiol ativa, então, o centro de geração de pulso de ocitocina no hipotálamo e começa a induzir o endométrio tanto a formação de seus próprios receptores como os da ocitocina. A ocitocina e o estradiol trabalham juntos para aumentar a atividade e a concentração das enzimas envolvidas na síntese de PGF2α: a fosfolipase (enzima responsável pela liberação de ácido araquidônico de fosfolipídios da membrana celular) e a prostaglandina sintetase (enzima responsável pela transformação do ácido araquidônico em prostaglandina). Dessa forma, a ocitocina hipotalâmica, liberada de forma pulsátil pela neurohipófise, estimula inicialmente a síntese e secreção de PGF2α através do endométrio. A PGF2α possui receptores em grandes células do CL, que aumentam seu número à medida que o ciclo estral progride. Assim, quando a PGF2α endometrial atinge o ovário provoca a liberação de ocitocina lútea, desencadeando um mecanismo local de feedback positivo, que agindo no endométrio aumenta a secreção de PGF2α. Este circuito continua até que se alcance uma frequência de pulsos de PGF2α de aproximadamente cinco pulsos em 24 h, uma frequência que é capaz de desencadear a luteólise. Em equinos, o CL não produz ocitocina; no entanto, as células endometriais os produzem, então a secreção por PGF2α depende do estímulo da ocitocina que vem desta última fonte e da hipófise. Ressalte-se que o CL deve atingir certo grau de maturidade para que possa ser receptivo à ação da PGF2α. Isso é conseguido através da formação de receptores para a PGF2α e desenvolvendo a capacidade de expressar a prostaglandina sintetase, de modo que o CL requer para produzir PGF2α na forma autócrina para atingir a lise. As células endoteliais e as células imunes, típicas do CL, também intervêm no processo de luteólise estrutural. As células endoteliais secretam proteína quimiotática de monócitos (MCP-1), para recrutar macrófagos que migram através do epitélio vascular que foi sensibilizado pela PGF2α. Os macrófagos ativados secretam o fator necrose tumoral alfa (TNFα) que atua sobre as células do corpo lúteo causando apoptose celular. A PGF2α também participa da luteólise funcional, inibindo a síntese de progesterona e reduzindo a síntese e fosforilação da proteína responsável pelo transporte de colesterol para a mitocôndria (StAR). Além disso, a PGF2α induz a produção de endotelina-1 (ET1) pelas células endoteliais encontradas no corpo lúteo, as quais contribuem para uma redução na síntese de progesterona. -/- • ___FATORES QUE AFETAM O CICLO ESTRAL -/- A apresentação dos ciclos estrais é natural e impreterível; no entanto pode ser afetada por fatores ambientais como o fotoperíodo, e fatores específicos do indivíduo como a sociabilidade e amamentação, além dos fatores de manejo como a nutrição e, consequentemente, o ECC das fêmeas e a endocrinologia (hormônios). Todos esses fatores serão explicados a seguir. -/- Fotoperíodo -/- O fotoperíodo é determinado pelo número de horas de luz do dia ao longo do ano e é considerado um dos fatores ambientais mais consistentes e repetíveis. A quantidade diária de horas-luz tem maior efeito nas espécies sazonais para determinar o início da atividade reprodutiva. No entanto, em espécies poliéstricas contínuas, variações anuais na ciclicidade também podem ser observadas, um exemplo disso é a acentuada sazonalidade nos nascimentos de búfalos e zebuínos. Da mesma forma, o momento em que uma bezerra ou leitão nasce afeta a idade em que atinge a puberdade, e a explicação para isso é que o fotoperíodo a que estão expostos impacta seu desenvolvimento. Assim, observou-se que uma maior quantidade de horas de luz do dia (suplementação de quatro horas por dia por cerca de dois meses) pode adiantar o início da puberdade em novilhas. -/- Amamentação -/- Em espécies como suínos e bovinos de corte, o anestro pós-parto é mantido pelo estímulo que a prole exerce sobre a mãe no momento da amamentação. Dessa forma, sob esses estímulos a fêmea deixará de apresentar cio enquanto estiver alimentando as crias (figura 18). Na ação de amamentação, pensa-se que participa o reconhecimento filial, onde intervêm a visão, o olfato e a audição. A verdade é que a participação de estímulos táteis é questionável, visto que foram realizados estudos nos quais a denervação da glândula mamária não antecipou o reinício da ciclicidade em fêmeas que amamentavam seus filhotes. O mecanismo pelo qual a amamentação afeta a atividade reprodutiva está relacionado a um aumento da sensibilidade do hipotálamo ao efeito inibitório do estradiol. Nisso intervêm os fatores como os opioides (endorfinas, encefalinas e dinorfinas) e os glicocorticoides. -/- Figura 18: na esquerda porca amamentando seus filhotes e a direita vaca com o bezerro no pé. -/- Nutrição -/- A função reprodutiva depende da existência de um consumo de energia superior ao necessário para manter as funções fisiológicas essenciais do corpo e as funções de produção, como termorregulação, locomoção, crescimento, manutenção celular ou lactação. Considera-se que o efeito da nutrição na atividade reprodutiva é maior nas fêmeas do que nos machos, devido a uma maior demanda de energia exigida pelas fêmeas para manter uma gestação do começo ao fim (figura 19). Quando o consumo de energia é insuficiente, a função reprodutiva é bloqueada para não comprometer as funções vitais. Desta forma, os animais pré-púberes que sofreram deficiências nutricionais durante o seu crescimento apresentam um atraso no início da sua atividade reprodutiva. Assim, existem sinais metabólicos ao nível do sistema nervoso central, como o IGF-I e a leptina, que indicam ao organismo o grau de desenvolvimento somático do indivíduo. Animais adultos que já iniciaram sua atividade reprodutiva também podem ser afetados pela nutrição, de forma que sua ciclicidade pode ser interrompida por perdas de peso corporal igual ou superior a 20%. Da mesma forma, o reinício da atividade ovariana pós-parto é retardado quando as fêmeas estão submetidas a dietas deficientes em proteínas, energia, minerais etc. -/- Figura 19: comparação das condições corporais em vacas leiteiras. À esquerda: uma vaca com uma condição corporal adequada, que está ciclando normalmente. À direita: vaca em péssimo estado corporal e, portanto, em anestro. -/- As deficiências nutricionais de energia e proteína não afetam diretamente os níveis circulantes de FSH em animais intactos, mas o efeito da desnutrição pode ser mascarado por feedback negativo dos hormônios ováricos sobre a secreção de FSH, uma vez que os animais ovariectomizados com uma boa condição corporal têm maiores concentrações de FSH que os de condição corporal pobre. Em contraste, a secreção de LH é altamente sensível a deficiências nutricionais e a mudanças na condição corporal. O diâmetro do folículo dominante é reduzido quando os animais estão a perder peso, o que se correlaciona com uma diminuição na produção de estradiol, o que diminui a secreção de LH e consequentemente é evitada a maturação folicular terminal e a ovulação, o que os animais entrarem em anestro. No pós-parto, a ciclicidade se recupera quando as concentrações basal e média de LH, bem como a sua frequência de secreção aumenta para exceder o nadir do balanço energético (este último é atingido quando o fornecimento de energia está no ponto mínimo e está excedido pelas exigências de mantença do organismo). O ECC possui relação direta com as taxas reprodutivas dos animais. Em bovinos um ECC ideal é entre 3,5 e 4,5 para o período reprodutivo. Com relação do ECC sobre o estro, estima-se que num rebanho de 100 vacas com ECC 2,5 cerca de 47 entram em cio, e dessas apenas 27 conseguem conceber. Por outro lado, no mesmo rebanho de 100 vacas, mas com ECC igual a 3, cerca de 62 vacas entram em cio normalmente e dessas 40 conseguem engravidar. Já com um ECC 3,5, 68 vacas entram em estro normalmente e dessas 46 conseguem engravidar. -/- Efeitos independentes de gonadotropinas -/- A importância das gonadotropinas no crescimento e maturação folicular já foi revisada neste trabalho; também deve ser mencionado que, além das gonadotropinas, existem outros fatores que podem intervir na regulação do desenvolvimento folicular e da ciclicidade. Um exemplo do anterior é o flushing: manejo nutricional que consiste na suplementação de uma fonte energética de rápida absorção, em que o aumento do número de folículos em desenvolvimento tem inicialmente um controle independente do eixo hipotálamo-hipófise-gonodal e é mediado por fatores que participam do controle do metabolismo energético do animal, que estão intimamente relacionados às mudanças nutricionais. Esses fatores incluem insulina, fator de crescimento semelhante à insulina I (IGF-I) e hormônio do crescimento (GH). O IGF-I é secretado principalmente pelo fígado em resposta à estimulação do GH e é creditado na regulação de muitas das ações do GH, portanto, quando o GH é administrado, as concentrações de insulina e IGF-I estão aumentadas e um aumento no número de folículos ovarianos é observado em suínos, bovinos, caprinos e ovinos. O IGF-I, da mesma forma, modula a secreção de GH por um efeito de feedback negativo, de modo que no início do pós-parto, quando o animal está em balanço energético negativo, as concentrações de insulina e IGF-I diminuem, enquanto as de GH aumentam. A insulina e o IGF-I estimulam a proliferação e esteroidogênese das células da granulosa e da teca no folículo. Outro fator que interfere na manifestação da atividade reprodutiva é a quantidade de gordura corporal. -/- Fatores sociais (sociabilidade) -/- Existem diferentes interações sociais que são capazes de modificar o início da atividade reprodutiva durante o período de transição para a puberdade ou para a estação reprodutiva, ou ainda de sincronização e manifestação dos ciclos estrais. Entre os fatores sociais o efeito fêmea-fêmea foi bem documentado em pequenos ruminantes, onde a introdução de fêmeas ciclando (em cio) a um grupo de fêmeas em anestro estacional adianta a estação reprodutiva induzindo e sincronizando a ovulação. Quando as porcas pré-púberes, por outro lado, são alojadas em pequenos grupos de dois ou três animais, o início da puberdade é retardado em comparação com indivíduos alojados em grupos maiores. A bioestimulação das fêmeas através do contato com um macho é conhecida como efeito macho (figura 20). Foi determinado que imediatamente após a introdução do macho se inicia o desenvolvimento e maturação folicular como uma resposta a um aumento na secreção de LH. Esse efeito será explicado em próximos trabalhos de minha autoria. -/- Estresse -/- Em vários estudos, foi demonstrado que o estresse pode bloquear a ciclicidade, devido ao aumento nas concentrações de corticosteroides ou opioides que causam redução na resposta da hipófise ao GnRH. Alojamentos inadequados, um ambiente social adverso e deficiências no manejo são considerados condições estressantes. -/- Figura 20: efeito do macho sobre as fêmeas (suínos). -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- AURICH, Christine. Reproductive cycles of horses. Animal reproduction science, v. 124, n. 3-4, p. 220-228, 2011. AISEN, Eduardo G. Reprodução ovina e caprina. MedVet, 2008. BARTLEWSKI, Pawel M.; BABY, Tanya E.; GIFFIN, Jennifer L. Reproductive cycles in sheep. Animal reproduction science, v. 124, n. 3-4, p. 259-268, 2011. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. CHRISTIANSEN, I. J. Reprodução no cão e no gato. São Paulo: Manole, 1988. CONCANNON, Patrick W. Reproductive cycles of the domestic bitch. Animal reproduction science, v. 124, n. 3-4, p. 200-210, 2011. COLAZO, Marcos Germán; MAPLETOFT, Reuben. Fisiología del ciclo estral bovino. Ciencia Veterinaria, v. 16, n. 2, p. 31-46, 2017. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. . Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. . Fisiologia do Estro e do Serviço na Reprodução Bovina. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Acribia, 1980. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. FATET, Alice; PELLICER-RUBIO, Maria-Teresa; LEBOEUF, Bernard. Reproductive cycle of goats. Animal reproduction science, v. 124, n. 3-4, p. 211-219, 2011. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. FORDE, N. et al. Oestrous cycles in Bos taurus cattle. Animal reproduction science, v. 124, n. 3-4, p. 163-169, 2011. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HIDALGO, Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MEIDAN, R. et al. Intraovarian regulation of luteolysis. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 217-228, 1999. NETT, T. M. et al. Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle. Domestic Animal Endocrinology, v. 4, n. 2, p. 123-132, 1987. NISWENDER, Gordon D. et al. Mechanisms controlling the function and life span of the corpus luteum. Physiological reviews, v. 80, n. 1, p. 1-29, 2000. NORMAN, Anthony W.; LITWACK, Gerald. Hormones. Academic Press, 1997. PATTERSON, David J. et al. Control of estrus and ovulation in beef heifers. Veterinary Clinics: Food Animal Practice, v. 29, n. 3, p. 591-617, 2013. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. RANGEL, L. Ciclo estral. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. REKAWIECKI, R. et al. Regulation of progesterone synthesis and action in bovine corpus luteum. J Physiol Pharmacol, v. 59, n. suppl 9, p. 75-89, 2008. REYNOLDS, L. P.; REDMER, D. A. Growth and development of the corpus luteum. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 181-191, 1999. RIPPE, Christian A. El ciclo estral. In: Dairy Cattle Reproduction Conference. 2009. p. 111-116. SANGHA, G. K.; SHARMA, R. K.; GURAYA, S. S. Biology of corpus luteum in small ruminants. Small Ruminant Research, v. 43, n. 1, p. 53-64, 2002. SARTORI, R.; BARROS, C. M. Reproductive cycles in Bos indicus cattle. Animal Reproduction Science, v. 124, n. 3-4, p. 244-250, 2011. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 1997. SMITH, Matthew J.; JENNES, Lothar. Neural signals that regulate GnRH neurones directly during the oestrous cycle. Reproduction (Cambridge, England), v. 122, n. 1, p. 1-10, 2001. SOEDE, N. M.; LANGENDIJK, P.; KEMP, B. Reproductive cycles in pigs. Animal reproduction science, v. 124, n. 3-4, p. 251-258, 2011. WEBB, R. et al. Mechanisms regulating follicular development and selection of the dominant follicle. REPRODUCTION-CAMBRIDGE-SUPPLEMENT-, p. 71-90, 2003. WHITTEMORE, Colin et al. The science and practice of pig production. Blackwell Science Ltd, 1998. -/- FIXAÇÃO DO ASSUNTO -/- 1. Disserte sobre o papel do eixo hipotálamo-hipófise-gonadal sobre o ciclo estral dos animais domésticos. -/- 2. Qual a importância do controle endócrino para a apresentação do estro? -/- 3. De acordo com a frequência do ciclo estral, como se classificam as vacas, porcas, éguas, gatas, cadelas, cabras e ovelhas? -/- 4. Defina e diferencia monoéstricas e poliéstricas. -/- 5. Um produtor possui fêmeas em primeiro cio, e deseja introduzi-las na vida reprodutiva. Explique por que não é ideal utilizar fêmeas em primeiro cio na vida reprodutiva? -/- 6. Quais são as etapas do ciclo estral? -/- 7. Defina e diferencia fase folicular e fase lútea. -/- 8. Defina e diferencie os tipos de ovulação e formação do corpo lúteo nas espécies domésticas? -/- 9. Quais os eventos ocorrem durante as fases proestro, estro, metaestro, diestro e inter-estro. -/- 10. Explique por que a égua possui ciclo diferente da vaca? -/- 11. Disserte e diferencie a endocrinologia do ciclo estral da cadela, da égua, da gata e da vaca? -/- 12. Fale sobre o desenvolvimento folicular durante o ciclo estral. -/- 13. Disserte sobre a ovulação das fêmeas domésticas. -/- 14. Defina e diferencie luteinização e luteólise. -/- 15. Disserte sobre os principais fatores que afetam a apresentação e manifestação do ciclo estral. -/- 16. Qual o papel da nutrição e do ECC sobre o ciclo estral? -/- 17. Defina e diferencie efeito fêmea-fêmea e efeito macho sobre a apresentação do estro nas fêmeas. -/- 18. Um produtor de ruminantes possui um rebanho de 10 bezerras, 10 cabritas e 10 cordeiras, todas com 1 mês de idade. Elabore um projeto reprodutivo para que essas fêmeas tenham seu primeiro parto após ciclos estrais normais e sem complicações. -/- Leve em consideração os fatores de idade ao primeiro cio ou a puberdade que é diferente entre as espécies, bem como aos fatores que podem afetar a manifestação do cio. (shrink)
GAMETOGÊNESE -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Departamento de Zootecnia – UFRPE Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes bem informados, estão a buscando conhecimento a todo momento. O estudante de Veterinária e Zootecnia, sabe que a Reprodução é uma área de primordial importância para sua carreira. Logo, o conhecimento da mesma torna-se indispensável. No primeiro trabalho da série fisiologia reprodutiva dos animais domésticos, foi abordado de forma clara, didática e objetiva os mecanismos de diferenciação (...) sexual dos embriões em desenvolvimento, quais os genes envolvidos nesse processo e tudo mais. Nesse segundo trabalho, a abordagem será teórica, mas também clara, sobre a formação primordial dos gametas femininos e masculinos, através da ovogênese nas fêmeas e a espermatogênese nos machos. Esse trabalho visa levar a importância do processo de formação dos gametas e a produção hormonal das gônadas, bem como o entendimento sobre as interações com o eixo hipotálamo-hipofisário. -/- •____INTRODUÇÃO -/- A reprodução sexual é um processo mediante a qual dois organismos da mesma espécie unem seu material genético para dar lugar a um organismo fixo com combinação única de genes; para isso, cada organismo produz células que contém a metade do material genético característico da espécie. Essas células haploides (1n) são denominadas gametas; ao combinar-se um gameta masculino com um feminino produz-se uma célula diploide (2n) (zigoto ou ovo) a partir da qual se forma o embrião. A grande maioria das espécies com reprodução sexual são anisogâmicas, o que significa que produzem dois tipos de gametas diferentes: os gametas masculinos são microscópios, móveis e produzem-se em grande quantidade, enquanto que os femininos são grandes, imóveis e produzem-se em menor quantidade. O tipo de gameta que um indivíduo produz é o que define seu sexo; sobre os animais o macho é o indivíduo que produz grandes quantidades de espermatozoides e a fêmea produz uma menor quantidade de óvulos, enquanto que nas plantas as gônadas masculinas são as produtoras pólen e as femininas produzem oosferas. Os gametas são diferentes do resto das células do organismo, as quais se chamam células somáticas; essas últimas são diploides porque contém dois pares de cromossomos, um par herdado do pai do indivíduo e o outro da mãe. As células somáticas, ademais, se dividem por mitose, ao qual os cromossomos se duplicam antes de cada divisão celular e cada uma das células filhas recebe um complemento diploide idêntico dos cromossomos, logo todas as células somáticas de um indivíduo possuem o mesmo material genético, embora cada tipo celular expresse diferentes combinações de genes. Em contraponto, os gametas são células haploides porque possuem somente um par de cromossomos e a metade do material genético característico da espécie. Cada um dos cromossomos em um gameta é resultado da recombinação dos genes contidos nos cromossomos paterno e materno do indivíduo que originam o gameta, e cada um destes possuem uma combinação única de genes. Os gametas se formam a partir das células germinais, que são células que em sua origem são diploides e elas de “comprometem” a manter-se como uma linha celular especial que em determinado momento sofrerá o processo de meiose para dar origem aos gametas haploides, sejam óvulos ou espermatozoides segundo o sexo do animal. Como descrito no trabalho sobre a diferenciação sexual, as células germinativas primordiais originam-se no epiblasto do embrião, e migram desde o saco vitelino até colonizar as cristas gonodais, onde, por sua vez, proliferam-se e se organizam junto com as células somáticas da gônada primitiva para formar o testículo ou o ovário. As células germinais masculinas e femininas tem a mesma origem embrionária. As gônadas indiferenciadas em um embrião possuem três tipos celulares: as células que dão origem aos gametas (ovogonia ou espermatogonia), as precursoras de células que nutrem os gametas em desenvolvimento (células da granulosa no ovário; células de Sertoli no testículo) e as precursoras de células que secretam hormônios sexuais (células da teca no ovário; células de Leydig no testículo). As células germinais são as únicas estruturas do organismo que têm a capacidade de dividir-se por meiose sofrendo uma redução no número de seus cromossomos, sendo responsável pela transmissão da carga genética aos descendentes. Em contraste, as células somáticas somente se dividem por mitose. A formação dos gametas compreende fases sequenciais de mitose, meiose e pós-meiose. Esses processos são altamente organizados e necessitam de um preciso e bem coordenado programa de expressão genética. Uma das características importantes da gametogênese é a redução cromossômica, que através da meiose, reduz pela metade o número de cromossomos e produz células distintas entre si, devido a trocas de material genético entre os pares de cromossomos provenientes do pai e da mãe, o que ocorre no processo de “crossing over” durante a primeira fase da meiose. A gametogênese é o processo mediante o qual as células germinais de cada sexo se multiplicam, dividem e diferenciam até formar os gametas. No caso da formação dos gametas masculinos o processo recebe o nome específico de espermatogênese, e para os gametas femininos é denominado como ovogênese. Embora os dois processos alcancem o objetivo comum de produção das células haploides, por onde compartilham algumas características, existem diferenças marcadas entre eles devido a necessidade de produzir um número muito distinto de gametas, de tamanho diferente, e com características de motilidade também distintas. -/- •___ESPERMATOGÊNESE -/- A espermatogênese é o processo mediante o qual se produz os gametas masculinos denominados espermatozoides. Durante a vida fetal as células germinais e as células somáticas do testículo em formação organizam-se em túbulos seminíferos que se derivam dos cordões sexuais primários e conformam a maior parte da medula do testículo. Na etapa fetal cada tubo seminífero é delimitado por uma membrana basal, recoberta na parte interior pelas células precursoras das células de Sertoli (um tipo de células somáticas). No exterior do túbulo localizam-se as células precursoras das células de Leydig ou intersticiais (figura 1), que também são células somáticas. Entre a membrana basal e as células de Sertoli encontram-se algumas células germinais denominadas espermatogonias de reserva A0 (denominadas gonócitos) que serão o único tipo de células germinais presentes no testículo enquanto o animal não alcançar a puberdade. As células de Sertoli estabelecem na região basal uniões oclusoras entre si, formando parte da barreira hemato-testicular. As espermatogonias A0 localizam-se por dentro da membrana basal do túbulo seminífero, embora fora da barreira hemato-testicular. Figura 1: fase neonatal. Nota-se a grande infiltração de tecido intersticial em quase 50% da seção originando que os túbulos sejam pequenos e redondos em sua maioria. O citoplasma e núcleo das células pré-Leydig são notadas claramente por essa ser uma espécie suína onde o tecido intersticial está claramente diferenciado. Hematoxilina-eosina (X 220.5). Fonte: Embrapa. -/- O número de células de Sertoli no testículo depende da influência do hormônio folículo estimulante (FSH) presente durante a vida fetal e as primeiras etapas de vida pós-natal. A população de células de Sertoli ao chegar a puberdade se manterá fixa durante o resto da vida do animal; existe uma relação positiva entre o tamanho e a população de células de Sertoli e a capacidade de produção de espermatozoides do testículo. As células de Sertoli são as únicas células somáticas que estão no epitélio seminífero, e sua função é a nutrição, sustentação e controle endócrino das células germinais. As células de Sertoli participam ativamente no processo de liberação dos espermatozoides para a luz do túbulo. Nesse momento, as células de Sertoli realizam a fagocitose de parte do citoplasma do espermatozoide dos chamados corpos residuais. As células de Sertoli também fagocitam as células germinais que se degeneram no curso normal da espermatogênese. Essas células ainda sintetizam grande quantidade de proteínas, como por exemplo as proteínas ABP (androgen hinding protein), que transportam andrógenos para todo o aparelho reprodutivo, transferrinas, que transportam ferro para a respiração celular das células germinais e também às inibinas, que regulam a liberação de FSH pela hipófise, através de um sistema de retroalimentação (feedback) negativa (figura 2). Figura 2: epitélio seminífero, células de Sertoli (flecha) (400 X). Fonte: Embrapa. -/- Antes da puberdade dos túbulos seminíferos observam-se ao corte como estruturas de diâmetro pequeno, sem luz, e conformados unicamente pelas células de Sertoli e espermatogonias de reserva e rodeados por abundante tecido intersticial, ao que estão presentes as células precursoras das células de Leydig. Ainda antes da puberdade, a diferenciação celular manifesta-se primeiro pela presença de espermatócitos primários, os quais se degeneram em geral na fase de paquíteno, por falta de estimulação hormonal. A partir de que o animal chega a puberdade inicia-se o processo de espermatogênese, que se manterá durante toda a vida do animal, exceto em espécies de animais silvestres muito estacionais, ao qual pode se suspender durante a época não reprodutiva para voltar e ser retomada na época ou estação reprodutiva. Depois da puberdade, os túbulos seminíferos possuem um diâmetro muito maior; em seu interior observa-se um grande número de células germinais de todos os tipos, diferentes estádios de divisão, e em seu lúmen contém líquido e espermatozoides. Ainda sobre o alcancei da puberdade, as espermatogonias começam a dividir-se aceleradamente por mitose, enquanto que no espaço intersticial as células mesenquimais também começam a se diferenciar e a dar origem as células de Leydig (figura 3). A partir dessa etapa as células de Leydig (totalmente diferenciadas) são também evidentes no exterior do túbulo, junto com as células mioides ou peritubulares que o rodeiam o que ao contrair-se são responsáveis por controlar o avanço dos fluidos e as células presentes no lúmen do túbulo. As células mioides estão situadas ao redor do túbulo, e é creditado a elas a promoção da contração e da integridade estrutural do túbulo. Esse tipo celular apenas se diferencia na puberdade pela ação dos andrógenos (figura 4). As interações entre as células de Sertoli e as mioides parecem ter um papel importante na manutenção das funções do testículo. Durante o processo de espermatogênese, as espermatogonias de reserva dividem-se periodicamente e enquanto algumas células fixas permanecem como espermatogonias de reserva, outras proliferam e sofrem uma seção de divisões mitóticas durante as quais se vão diferenciando até formarem espermatócitos primários (espermatocitogênese ou fase de mitose), logo sofrem divisões especiais mediante as quais reduzem seu número de cromossomos (fase de meiose), e ao final trocam de forma para converter-se em espermatozoides (espermatocitogênese) (figura 5). Cada uma dessas etapas da espermato- gênese será descrito detalhadamente adiante, antes é necessário a explicação de algumas características das células de Sertoli e de Leydig que ajudarão a entender seu papel durante a espermatogênese. Figura 3: células de Leydig no espaço intersticial do testículo bovino adulto PAS (400 X). Fonte: Embrapa. -/- Figura 4: o estabelecimento da puberdade pela presença de espermatozoides no túbulo. Hematoxilina-eosina (400 X). Fonte: Embrapa. Figura 5: fases mitóticas das espermatogonias (A0 e B) para formação de um espermatócito primário e as duas fases de meiose que se sucedem antes da espermatogênese. Fonte: ZARCO, 2018. -/- Ao início da espermatocitogênese as uniões oclusoras entre as células de Sertoli se abrem por etapas (como as comportas de um submarino) para permitir a passagem das espermatogonias em direção ao centro do túbulo seminífero sem que se estabeleça uma continuidade entre o exterior e o interior da barreira hemato-testicular. Uma vez ultrapassada essa barreira, as sucessivas gerações de espermatogonias, espermatócitos, espermátides e espermatozoides irão se localizar em direção ao interior do túbulo seminífero, em estreita associação com as células de Sertoli. Em consequência, as células de Sertoli dividem o túbulo seminífero em dois compartimentos; o compartimento basal (debaixo das uniões oclusoras das células de Sertoli), ao qual residem as espermatogonias de reserva, e o compartimento adluminal (em direção ao centro do túbulo), cujos espaços entre as células de Sertoli desenvolvem o resto do processo de espermatogênese (meiose e espermatocitogênese). Esse feito é importante porque durante a vida fetal as únicas células germinais existentes eram as espermatogonias de reserva, pelo que os antígenos expressados por gerações mais avançadas (espermatogonias intermediárias, secundárias, espermátides e espermatozoides) não são reconhecidos como próprios do corpo pelo sistema imunológico. Logo, o anterior implica que deve existir uma barreira entre eles e o sangue para evitar um ataque imunológico. Em todas as etapas da espermatogênese, as células de Sertoli atuam como células de suporte para as células germinais, que sempre permanecem recoberta pela membrana das células de Sertoli. Também atuam como células nutricionais já que proporcionam o meio em que as células germinais se desenvolvem e maturam, assim como as substâncias que regulam e sincronizam as sucessivas divisões e transformações das células germinais. As células de Sertoli produzem hormônios, como estrógenos e inibina que atuam sobre a hipófise para regular a secreção das gonadotropinas que controlam a espermatogênese. As células de Leydig que residem no exterior do túbulo seminífero também são importantes para a espermatogênese: produzem a testosterona que estimula e mantém a espermatogênese, bem como serve como substrato sobre o qual atua como aromatizador das células de Sertoli para transformá-las em estrógenos. Como supracitado, para seu estudo podemos dividir a espermatogênese em três fase: espermatocitogênese, meiose e espermiogênese (figura 6). Agora, serão descritas cada uma dessas etapas. Em algumas espécies, incluindo no homem, os macrófagos representam o segundo tipo celular intersticial mais numeroso no testículo, depois das células de Leydig. Os macrófagos e vários subtipos de linfócitos são identificados nós testículos de ovinos e ratos. Eles estão intimamente associados com as células de Leydig e atuam juntamente na regulação da esteroidogênese. Figura 6: fluxograma da espermatogênese. -/- Espermatocitogênese -/- A espermatocitogênese, também chamada de etapa proliferativa ou de mitose, consiste numa série de divisões mitóticas sofridas pelas células descendentes de uma espermatogonia de reserva. Uma vez que a célula se divide, abandona o estado de reserva e começa um processo de diferenciação. As espermatogonias de reserva (denominadas espermatogonias A0 na rata ou As nos humanos) são células que existem desde a vida fetal e que permanecem mitoticamente inativas durante a infância. Uma vez que alcançam a puberdade começam a dividir-se em intervalos regulares, e as células filhas podem permanecer como espermatogonias de reserva ou abandonar a reserva e ingressar na dita espermatocitogênese. Uma vez abandonada a reserva, as células filhas que vão se formando em cada divisão permanecem unidas por pontes citoplasmáticas, constituindo um clone que se divide sincronicamente. As células que se formam depois de cada divisão continuam sendo espermatogonias, porém cada geração é ligeiramente diferente da anterior. Na rata, por exemplo, as espermatogonias tipo A0 ao dividir-se originam espermatogonias do tipo A1, que em sucessivas divisões formam espermatogonias dos tipos A2, A3 e A4, as quais, por sua vez, sofrem outra mitose para formar espermatogonias intermediárias e uma mais para formar espermatogonias do tipo B. Essas últimas se diferenciam (sem se dividir) em espermatócitos primários, processo em que termina a fase de espermatocitogênese, que literalmente significa processo de geração de espermatócitos. As espermatogonias tipo A0 são a fonte para a contínua produção de gametas. A metade delas se dividem e formam células iguais (as chamadas células tronco) e a outra metade forma as espermatogonias A1, que sofre novas divisões mitóticas e formam os tipos 2, 3 e 4. O tipo A4 sofre mitose para formar a intermediária (A In), que por mitose, forma a tipo B (figura 6). Esses tipos de espermatogonias podem ser identificadas em evoluções histológicas de acordo com sua organização topográfica na membrana basal dos túbulos seminíferos ou mediante seu conteúdo de heterocromatina. Outra maneira de diferenciação se baseia em marcadores moleculares específicos que distinguem as espermatogonias tronco (A0) das demais, com os fins de isolamento, desenvolvimento in vitro e transplante. As tipo B passam por mitose para formarem os espermatócitos primários; estes iniciam a primeira etapa da meiose formando os espermatócitos secundários; na segunda etapa da divisão meiótica, cada espermatócito secundário se divide e formam as chamadas espermátides. Quando o testículo alcança seu desenvolvimento total, a meiose completa-se e as espermátides originadas se convertem em espermatozoides. Um dos maiores sinais característicos desse fenômeno é o alargamento das espermátides e sua migração em direção ao lúmen do túbulo seminífero (figuras 4, 7 e 8). Figura 7: espermatogonias marcadas por imuno-histoquímica, anticorpo monoclonal TGFa (400 x). Figura 8: fases de divisões meióticas (M), espermatócitos em paquíteno (PA) e espermatócitos secundários (ES). -/- Figura 9: estádio posterior a liberação dos espermatozoides na luz do túbulo. Hematoxilina-eosina (400 x). Mediante as seis divisões mitóticas que ocorrem durante a espermatocitogênese se forma potencialmente um clone de 64 espermatócitos primários a partir de cada espermatogonia A que ingressa sobre o processo. Não obstante, algumas células sofrem apoptose em cada uma das etapas do processo, ao qual o número real formado é menor. Em outras espécies produzem-se um transcurso similar de divisões mitóticas sucessivas durante a espermatocitogênese, embora a nomenclatura utilizada possa ser distinta, por exemplo nos bovinos as duas últimas divisões mitóticas dão origem as espermatogonias de tipo B1 e B2. -/- Meiose -/- Uma vez que as espermatogonias B se diferenciam em espermatócitos primários, esses iniciam a etapa de meiose, com uma nova divisão; desta vez a divisão é do tipo meiótica. Ao completar-se a primeira divisão meiótica (meiose I) se obtém os espermató-citos secundários, que ao sofrer a segunda divisão meiótica (meiose II) dão origem as espermátides. Vale salientar que a meiose é o processo mediante o qual reduz-se a metade do número de cromossomos, pelo que as espermátides que se obtém são células haploides (1n). Os espermatócitos secundários que se formam depois da primeira divisão meiótica contém a metade do número normal de cromossomos, porém a mesma quantidade de DNA já que cada cromossomo é duplo. As espermátides formadas na conclusão da segunda divisão meiótica (figura 7), por sua vez, contém a metade dos cromossomos, e esse já não são duplos, já que se trata de células 1n. Também deve-se enfatizar que durante a meiose é relevante o entrecruzamento dos cromossomos homólogos, pelo que cada espermátide possui uma combinação única e diferente de genes paternos e maternos. Outro ponto que deve ser levado em consideração é que cada espermátide somente possui um cromossomo sexual; a metade das espermátides contém o cromossomo X herdado da mãe do macho que está levando a cabo a espermatogênese e a outra metade contém o cromossomo Y herdado de seu pai. Para cada espermatócito primário que entra no processo de meiose obtém-se cerca de quatro espermátides, pelo qual ao ser completada a meiose potencialmente se poderiam formar até 256 espermátides por cada espermatogonia que abandona a reserva e ingressa na espermatocitogênese. -/- Espermiogênese -/- Durante a espermiogênese, também chamada de fase de diferenciação, as esper-mátides sofrem, sem se dividir, uma metamorfose que as transforma em espermatozoides, os quais finalmente são liberados das células de Sertoli em direção ao lúmen do túbulo seminífero. A espermiogênese é um processo complicado e longo já que a espermátide deve sofrer complexas trocas nucleares, citoplasmáticas e morfológicas que resultam na forma-ção dos espermatozoides. Algumas dessas mudanças incluem a condensação do material nuclear para formação de um núcleo plano e denso, a eliminação do citoplasma para a constituição de uma célula pequena, a formação de uma estrutura especializada denomi-nada acrossomo ou tampa cefálica, e a formação do pescoço e da cauda (flagelo) do esper-matozoide, do que depende a sua motilidade. Durante a maior parte da espermiogênese, as espermátides se mantém com uma estreita associação com as células de Sertoli; logo, chega-se a observar, então, flagelos que se projetam em direção a luz do túbulo que pare-cem sair das células de Sertoli, sendo na realidade os flagelos dos espermatozoides que ainda não tinham sido liberados pelo lúmen. Ao liberar os espermatozoides em direção a luz do túbulo, as células de Sertoli realizam a fagocitose de parte do citoplasma dos espermatozoides (corpos residuais). Também fagocitam os restos de todas as células germinais que sofrem apoptose ou degeneram-se durante a espermatogênese. Credita-se que ao realizar essas funções as células de Sertoli podem fazer uma monitoração eficiente da espermatogênese, o que lhes permitiria emitir sinais para colaborar na regulação desse processo em nível gonodal e a nível sistêmico através da secreção de hormônios como a inibina e o estradiol. Além da inibina e activina, as células de Sertoli sintetizam outras proteínas, como a ABP (proteína ligadora de andrógenos) que serve como uma molécula de transporte de andrógenos dentro dos túbulos seminíferos, ductos deferentes e epidídimo, ou a transfer-rina, que transporta o ferro necessário para a respiração celular. -/- Resultados da espermatogênese -/- O resultado da espermatogênese não significa apenas uma simples multiplicação das células germinais (até 256 espermatozoides a partir de cada espermatogonia A1), senão que através dela são produzidos gametas haploides pequenos, móveis e com grande diversidade genética entre eles, ao mesmo tempo que se mantêm uma reversa de células mãe (espermatogonias A0) a partir das quais se poderiam originar novos ciclos de esper-matogênese durante o resto da vida do animal. -/- Controle hormonal da espermatogênese -/- Como mencionado, o FSH reproduz um importante papel para o estabelecimento das células de Sertoli durante a vida fetal e início da vida pós-natal. O começo da esper-matogênese também é estimulado pelo FSH, que atua sobre as células de Sertoli para estimular sua função e a ativação de sinais dessas células em direção as células germinais, incluindo-as a abandonar a reserva e ingressar na espermatogênese. O FSH, assim mesmo, estimula a mitose durante o resto da espermatogênese e aumenta a eficiência do processo, já que reduz a apoptose e a degeneração de espermatogonias intermediárias e do tipo B. O FSH também estimula as células de Sertoli para produzirem inibina e ABP. Uma vez iniciada a espermatogênese somente requerem níveis baixos de FSH para se mantê-la. As células de Sertoli também devem ser estimuladas pela testosterona para funcio-nar de maneira adequada; se requer também do LH hipofisário: hormônio que estimula as células de Leydig para produzir testosterona. Por sua vez, a secreção de LH e FSH é regulada pelo GnRH hipotalâmico: esse neurohormônio também faz parte do mecanismo de regulação da espermatogênese. A espermatogênese também é modulada em nível local mediante a produção de determinados fatores e interações entre as células. Dentro dos fatores locais podemos mencionar o fator de crescimento parecido com a insulina 1 (IGF-1), o fator de crescimen-to transformante beta (TGF- β), activina, ocitocina e diversas citocinas. Entre as intera-ções celulares existem tanto uniões de comunicação entre as células de Sertoli e as células germinais, como pontes citoplasmáticas entre todas as células germinais que formam o clone de células descendentes de uma espermatogonia A1. Uma vez que as células de Sertoli iniciam sua função na puberdade é possível manter experimentalmente a espermatogênese somente com testosterona, sem ser requeri-dos nenhum outro hormônio. A quantidade de espermatozoides produzidos, no entanto, é maior quando há presença do FSH. Abaixo do estímulo do FSH as células de Sertoli produzem estradiol e inibina, hormônios que geram uma retroalimentação sobre o eixo hipotálamo-hipofisário para a regulação da secreção de gonadotropinas. Em particular, a inibina reduz a secreção de FSH, pelo qual é factível que sirva como um sinal que evite uma excessiva estimulação as células de Sertoli. -/- Ciclo do epitélio seminífero -/- Em cada espécie as espermatogonias de reserva iniciam um novo processo de divi-sões celulares em intervalos fixos: a casa 14 dias no touro; 12 dias no garanhão e a cada 9 dias no cachaço (reprodutor suíno). A nova geração de células que começam a proliferar sobre a base do tubo deslocam-se em direção ao centro do túbulo a geração anterior, que por sua vez deslocam-se as gerações anteriores. Devido as mudanças que vão sofrendo cada geração celular se ajustam a tempos característicos de cada etapa, já que rodas as células em uma determinada seção do túbulo estão sincronizadas entre si pelas células de Sertoli; em cada espécie somente é possível encontrar um certo número de combinações celulares: 14 diferentes combinações no caso da rata, 8 no touro e 6 no ser humano. A sucessão de possíveis combinações até regressar a primeira combinação se conhece como o ciclo do epitélio seminífero. Na maioria das espécies os espermatozoides que são libera-dos em direção a luz do túbulo provém das células que entraram no processo de esperma-togênese quatro gerações antes que a geração que está ingressando nesse momento, pelo que a espermatogênese no touro dura ao redor de 60 dias e um pouco menos em outras espécies domésticas. Significa que os efeitos negativos das alterações na espermatogêne-se podem estar presentes até dois meses depois de que se produziram essas alterações. Como supracitado, geralmente se observa a mesma combinação celular em toda a área de uma determinada secção transversal do túbulo seminífero. No entanto, se fizermos uma série de secções, observa-se que ao longo do túbulo há uma sucessão ordenada de combinações (a primeira em uma determinada secção; a segunda combinação na seguinte secção, e assim sucessivamente em secções subsequentes até regressar a primeira combi-nação. Teremos, então, que ao início da divisão das espermatogonias A1 se produz de forma sincronizada em uma secção do túbulo, e vai-se transmitindo como uma onda peristáltica as secções adjacentes. Esse processo é denominado como onda do epitélio seminífero e graças à esse túbulo seminífero sempre tem secções em todas as etapas da espermatogênese, com o que se alcança uma produção constante de espermatozoides. -/- Alterações da espermatogênese -/- Nas espécies estacionais a espermatogênese, como já mencionado, pode reduzir-se ou inclusive suspender sua atividade fisiológica durante a época não reprodutiva dessas espécimes, porém esse processo fisiológico não pode ser considerado como uma altera-ção. No entanto, a espermatogênese só pode ser alterada pelas enfermidades ou por fatores externos. A principal causa de alterações na espermatogênese é o aumento da temperatura testicular. Por isso, os testículos são localizados na saco escrotal e são “caídos” para fora do corpo como pode-se observar nos bovinos, caprinos, ovinos, caninos e no próprio homem. A temperatura testicular deve estar cerca de 2 a 6 °C abaixo da temperatura corporal normal. As células germinais masculinas são sensíveis ao calor, pelo qual na maioria dos mamíferos os testículos se encontram fora da cavidade abdominal e existe um sofisticado sistema de termorregulação para mantê-los a uma temperatura menor que a corporal. Se a temperatura corporal for elevada ou se os testículos permanecerem na cavidade abdominal, ou ainda se os sistemas termorreguladores do testículo sejam afetados por fatores inflamatórios como edema ou falta de mobilidade testicular dentro do escroto, a temperatura do tecido testicular aumentará e a espermatogênese sofrerá alterações proporcionais ao excesso de temperatura e a duração da elevação. A espermatogênese também pode ser afetada pela exposição a hormônios ou a outras substâncias. É possível que a causa mais comum (sobretudo no homem) seja o uso de esteroides anabólicos, que elevam a concentração de andrógenos na circulação, provo-cando um feedback negativo sobre a secreção de gonadotropinas. Ao deixar de estimular-se o testículo pelas gonadotropinas, este deixará de produzir testosterona, e as concentra-ções de andrógeno exógeno nunca alcançará as altíssimas concentrações de testosterona que normalmente estão presentes a nível do tecido testicular por ser o local onde se produz o hormônio. Também se supõe que diversas substâncias com propriedades estrogênicas derivadas de processos industriais (indústria dos plásticos, hidrocarbonetos etc.) e presentes no ambiente (fatores xenobióticos) podem ser responsáveis pelas alterações na espermatogênese em diversas espécies, entre as quais se inclui o ser humano. -/- • OVOGÊNESE E FOLICULOGÊNESE -/- A ovogênese é o processo seguido pelas células germinais da fêmea para a forma-ção dos óvulos, que são células haploides. Durante a vida fetal as células germinais proliferam-se no ovário por mitose, formando um grande número de ovogonias, algumas das quais se diferenciam em ovócitos primários que iniciam sua primeira divisão meiótica para deter-se na prófase da divisão. Somente alguns desses ovócitos primários retornarão e concluirão a primeira divisão meiótica em algum momento da vida adulta do animal, dando origem a um ovócito secundário e a um corpo polar. O ovócito secundário inicia a sua segunda divisão meiótica, a qual volta a ficar suspensa até receber um estímulo apropriado, já que somente os ovócitos secundários que são ovulados e penetrados por um espermatozoide retornam e concluem a segunda divisão meiótica, dando origem a um óvulo (figura 10). O processo de ovogênese é realizado dentro dos folículos ovarianos, que também tem que sofrer um longo transcurso de desenvolvimento e diferenciação denominado foliculogênese pelo que a ovogênese como tal realiza-se dentro do marco desse último processo. Por essa razão, na seguinte seção descreverei tanto a ovogênese como a folicu-logênese, e a relação que existe entre ambos. Figura 10: representação da ovogênese. Na etapa de proliferação, as células germinais se diferen-ciam por mitose. A meiose I se caracteriza por uma prófase prolongada, ocorrendo a duplicação do DNA. Nas duas divisões, que ocorrem antes da ovulação e depois da fertilização, a quantidade de DNA é reduzida a 1n, com o fim de que a fusão dos pronúcles (singamia) pós-fertilização, seja gerado um zigoto com um número de cromossomos de 2n (diploide). -/- Geração de ovócitos primários e folículos primordiais Tanto a ovogênese como a foliculogênese iniciam-se durante a vida fetal, quando as células germinais primordiais provenientes do saco vitelino colonizam a gônada primitiva e, junto com as células somáticas z organizam-se para a formação dos cordões sexuais secundários, que se desenvolvem principalmente no córtex do ovário. Nesse período, as células germinais que colonizaram o ovário sofrem até 30 divisões mitóticas, proliferando-se até formar milhares ou milhões de ovogonias, que inicialmente formam “ninhos” constituídos cada um deles por um clone de várias ovogonias que descendem da mesma célula precursora e que se mantêm unidas por pontes citoplasmáticas, sincronizan-do suas divisões mitóticas. Nessa etapa alcança-se a máxima população de células germinais no ovário, que antes de nascer se reduzirá drasticamente por apoptose. No ovário do feto humano chegam a haver até sete milhões de células germinais que ao nascimento se reduzem a dois milhões. Os ovários fetais do bovino, de maneira análoga, chegam a ter até 2.100.000 células germinais, que ao nascimento reduzem para 130.000 aproximadamente. A redução no número de ovogonias produz-se ao mesmo tempo que essas células, que vêm dividindo-se por mitose e estão agrupadas em ninhos, iniciam sua primeira divisão meiótica para se transformarem em ovócitos primários: células germinais que se encontram em uma etapa de suspensão (diplóteno) da prófase da primeira divisão meiótica. Nesse período produz-se uma grande proporção de células germinais; as células somáticas dos cordões sexuais, por sua vez, emitem projeções citoplasmáticas que separam a isolam os ovócitos primários sobreviventes, ficando cada um deles rodeados por uma capa de células aplanadas da (pré) granulosa. Ao mesmo tempo em que se forma uma membrana basal entre as células da granulosa e o tecido intersticial do ovário. Ao ovócito primário rodeado de uma capa de células da (pré) granulosa aplanadas e delimita-das por uma membrana basal denomina-se de folículo primordial (figura 11). Nas vacas os folículos primordiais bem formados já estão presentes nos ovários a partir do dia 90 da gestação. A maioria dos folículos primordiais com os que nasce uma fêmea se manterão inativos durante um longo tempo; muitos deles durante toda a vida do animal. Nos folículos primordiais inativos tanto os ovócitos primários como as células da granulosa conservam sua forma original e mantém um metabolismo reduzido estritamente ao mínimo necessário para manter-se viáveis. Por essa razão, ao realizar um corte histológico de qualquer ovário as estruturas mais numerosas que se observam serão os folículos primordiais. No entanto, cada dia da vida de um animal, inclusive desde a vida fetal, um certo número de folículos primordiais reiniciam seu desenvolvimento, e a partir desse momento um folículo exclusivamente pode ter dois destinos: o primeiro, prosseguir seu desenvolvi-mento até chegar a ovular, e o segundo (que é muito mais frequente) encontrar em algum momento condições inadequadas que fazem fronteira com ele para parar seu desenvolvi-mento, levando-o a sofrer atresia e degenerar até desaparecer do ovário. Figura 11: sequência da foliculogênese apresentando as diferentes estruturas que podemos encontrar em cada fase. Fonte: ZARCO, 2018. Culminação da ovogênese A ovogênese somente se completará quando um ovócito primário reinicia a meio-se; completa sua primeira divisão meiótica para formar um ovócito secundário e um primeiro corpo polar e, quando, finalmente sofrer uma segunda divisão meiótica para formar um óvulo e um segundo corpo polar. Os óvulos são as células 1n que constituem os gametas femininos, pouco numerosos, grandes e imóveis. A grande maioria dos ovóci-tos primários, como veremos mais adiante, nunca retomam a meiose e, em consequência, não chegam a formar ovócitos secundários, e muitos dos ovócitos secundários tampouco sofrem uma segunda divisão meiótica, pelo que não chegam a formar os óvulos. Ao longo da vida de uma fêmea, na maioria das espécies, menos de 0,1% dos ovócitos primários (um a cada mil) chega a terminar a ovogênese, dando origem a um óvulo. O supracitado deve-se a que a ovogênese somente pode retomar-se e ser completa-da em ovócitos primários que se encontram dentro dos folículos primordiais que (uma vez ativados) vão alcançando diversas etapas de seu desenvolvimento em momentos precisos aos que encontram as condições ideais de oxigenação, nutrição, vascularização e exposição a fatores parácrinos e a exposição a concentrações de hormônios que se requerem para que o folículo continue em cada etapa de seu desenvolvimento com o processo de foliculogênese até chegar a ovular. Qualquer folículo que não esteja nessas condições ao longo do desenvolvimento sofrerá degeneração e atresia, pelo que o ovócito primário em seu interior nunca chegará ao ponto em que pode retomar a primeira divisão meiótica. No que resta da presente seção revisaremos o processo de foliculogênese em cujo marco se desenvolve a ovogênese; havemos que tomar de conta que essa última se limita ao que ocorre nas células germinais (ovogonia, ovócito primário, secundário e óvulo), pelo qual depende intimamente do desenvolvimento do folículo de que essas células formam parte. Em um princípio a ativação do folículo primordial e o desenvolvimento folicular são independentes das gonadotropinas: não se conhecem os mecanismos precisos median-te os quais um folículo primordial se ativa e reinicia seu desenvolvimento, nem como se decide quais folículos, dentre as dezenas de milhares de ou centenas de milhares presentes em um ovário se reativarão em um dia em particular. A reativação trata-se de uma liberação de influência de fatores inibidores, já que os folículos primordiais se reativam espontaneamente quando cultivados in vitro, isolados do resto do tecido ovariano. Uma vez que um folículo primordial se ativa, inicia-se um longo processo de desenvolvimento que somente depois de vários meses (ao redor de cinco meses no caso dos bovinos) o levará a um estádio em que seu desenvolvimento posterior requer a presença das gonado-tropinas; daí que se diz que as primeiras etapas do desenvolvimento são independentes das gonadotropinas. Durante a fase independente de gonadotropinas, um folículo primordial que tenha sido ativado e tenha começado a crescer; passará primeiro para a etapa de folículo primá-rio, caracterizada por conter um ovócito primário que está rodeado, por sua vez, por uma capa de células da granulosa, que não são planas, e sim cúbicas. Depois, se o folículo continuar crescendo se transformará em um folículo secundário, ao qual as células da granulosa começam a proliferar (aumentando em número) e se organizam em duas ou mais capas que rodeiam o ovócito primário. Entre o ovócito e as células da granulosa que o rodeiam se forma nesta uma zona pelúcida; ainda assim o ovócito mantém contato direto com essas células, mediante o estabelecimento de pontes citoplasmáticas que atravessam a zona pelúcida. Através dessas pontes citoplasmáticas as células da granulosa podem passar nutrientes e informação ao ovócito primário. O volume e o diâmetro do ovócito primário aumentam ao mesmo tempo que as células da granulosa proliferam-se, para incrementar as capas ao redor do ovócito. De maneira gradual o citoplasma do ovócito primário aumenta até 50 vezes seu volume e a proliferação das células continua. Esses folículos que possuem cada vez mais células e portanto mais capas de células da granulosa se denominam folículos secundários. Para evitar confusões, há a necessidade de nomen-clatura ao qual o folículo vá mudando de nome de primordial a primário e logo, de secun-dário, a terciário, por sua vez, o ovócito que encontra-se em seu interior, a todo momento, segue sendo um ovócito primário. Durante a etapa dependente de gonadotropinas, os folículos secundários começam a formar um espaço cheio de líquido, o antro folicular, desse modo se convertem em folí-culos terciários. Com a utilização de outra nomenclatura, a formação do antro marca a transição entre folículos pré-antrais (sem antro) e folículos antrais (com antro). Em algum momento dessa transição entre folículo secundário e terciário, também aparece a depen-dência de folículos em direção as gonadotropinas, pelo qual somente podem seguir crescendo na presença do hormônio luteinizante (LH) e do hormônio folículo estimulante (FSH). Nos bovinos e em outras espécies (para seu estudo), os folículos antrais são dividi-dos em pequenos, médios e grandes. Embora todos eles possuam um antro folicular, dependendo do seu grau de desenvolvimento requerem diferentes concentrações de gona-dotropinas para continuar o crescimento. Os folículos antrais mais pequenos somente re-querem concentrações baixas de LH e FSH, pelo qual podem continuar crescendo em qualquer momento do ciclo estral inclusive em animais que não estão ciclando (fêmeas em anestro pré-puberal, gestacional, lactacional, estacional). Nas etapas posteriores os folículos antrais requerem primeiro concentrações elevadas de FSH, e nas etapas finais somente podem continuar crescendo na presença de pulsos frequentes de LH, pelo qual somente os folículos que encontram-se sob concentrações apropriadas desses hormônios podem seguir crescendo. Por essa razão, nos animais que se encontram em anestro de qualquer tipo somente é possível encontrar folículos antrais pequenos ou médios, segundo a espécie, e nos animais que se encontram ciclando (estro) o maior tamanho folicular encontrado em um determinado dia do ciclo dependerá das concentrações de FSH e LH presentes nesse momento e nos dias anteriores. Um folículo que chega ao estado máximo de desenvolvimento, conhecido como folículo pré-ovulatório, ao final, somente chegará a ovular se for exposto a um pico pré-ovulatório de LH. Como supracitado, cada dia na vida de uma fêmea inicia seu desenvolvimento um certo número de folículos; a grande maioria sofrem atresia, mas depois da puberdade em cada dia do ciclo estral um ou vários folículos vão encontrando ao longo do seu desenvol-vimento concentrações hormonais que lhes permite chegar na etapa de folículo pré-ovula-tório. Somente nestes folículos, e como consequência de um pico pré-ovulatório de LH, se reinicia e completa-se a primeira divisão meiótica do ovócito primário, produzindo duas células distintas. Uma delas é o ovócito secundário, que retém praticamente todo o citoplasma. Contém, assim mesmo, em seu núcleo um par de cromossomos duplos, a outra é o primeiro corpo polar, que é exclusivamente um núcleo com uma quantidade mínima de citoplasma. Na maioria das espécies ovula-se um ovócito secundário que se encontra, então, suspendido na segunda divisão meiótica. Esta segunda divisão meiótica somente reinicia-rá e completarar-se uma vez que o espermatozoide começa a penetrar sob o ovócito secundário. Ao concluir-se a divisão se forma o segundo corpo polar e completa-se a ovogênese com o qual se obtém o óvulo, célula 1n que constitui o gameta feminino. No entanto, o óvulo existe pouco tempo como tal, já que em poucos minutos/horas (depen-dendo da espécie) se produzirá a fusão do núcleo do mesmo (pró-núcleo feminino) com o do espermatozoide (pró-núcleo masculino), com o qual se completa a fertilização e se forma um novo indivíduo (o ovo ou zigoto). -/- Ondas foliculares -/- Como mencionado supra, todos os dias um determinado número de folículos pri-mordiais se ativam e começam a crescer, os quais crescem em um ritmo característico em cada espécie. Isso provoca que em qualquer momento existam nos ovários folículos pri-mordiais (que começam a crescer em alguns dias ou semanas), assim como folículos secundários em diversas etapas do desenvolvimento, os quais iniciaram seu desenvolvi-mento em semanas ou inclusive meses (segundo o grau de desenvolvimento atual). Também em qualquer momento poderá haver folículos antrais nas etapas iniciais de seu desenvolvimento (com antros que já se podem detectar em cortes histológicos mas não são visíveis macroscopicamente). Todos esses folículos chegaram até seu estado de de-senvolvimento atual (primário, secundário ou antral pequeno), independente da etapa do ciclo estral em que sejam observados ou encontrados. Nos bovinos, os folículos que chegam ao início da etapa antral iniciaram seu desenvolvimento cinco meses antes, e todavia requerem ao redor de 42 dias para chegar ao estado pré-ovulatório. Para continuar seu desenvolvimento, os folículos antrais pequenos devem encon-trar concentrações altas de FSH, que os estimulam para prosseguir o crescimento. Cada vez que se produz uma elevação nas concentrações de FSH, esse hormônio estimula o desenvolvimento de um grupo de folículos antrais pequenos, que começaram a crescer muito tempo antes e que o dia da elevação de FSH tenha alcançado o grau de desenvolvi-mento preciso para responder com eficiência a este hormônio, o qual atuará através de seus receptores nas células da granulosa para estimular a produção de estradiol, a secreção de inibina, a produção de líquido folicular e a proliferação das células da granulosa. Um grupo de folículos antrais pequenos é assim recrutado pelo FSH para acelerar seu cresci-mento e aumentar sua produção de estradiol e inibina (figura 12). Mediante um seguimento ultrassonográfico dos ovários é possível identificar pou-cos dias depois um certo número de folículos, que por haver sido recrutados começam um período de crescimento acelerado. Durante alguns dias vários folículos crescem juntos, porém depois um deles é selecionado para continuar crescendo, enquanto que o restante do grupo deixam de fazê-lo e terminam sofrendo atresia. Através da ultrassom é possível identificar o folículo selecionado, agora chamado folículo domi-nante, já que sua trajetória de crescimento sofre um desvio com respeito a seguida pelo restante do grupo. Os folículos que não foram selecionados deixam de crescer e sofrem atresia já que deixam de possuir o suporte gonadotrópico de FSH, uma vez que as concentrações desse hormônio são suprimidos pela inibina e o estradiol produzidos pelo conjunto de folículos que conformam a onda folicular (figura 12), porém o folículo mais desenvolvido do grupo se converterá em dominante. A inibina atua diretamente a nível hipofisário para reduzir a secreção de FSH. Figura 12: onda folicular e relação dos níveis de FSH, estradiol e LH. Fonte: ZARCO, 2018. -/- Figura 13: Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. Fonte: SILVA, E. I. C. da, 2019. -/- A razão pela qual o folículo dominante é capaz de continuar seu desenvolvimento apesar da baixa nas concentrações de FSH é que o folículo é o único que alcançou o grau de progresso necessário para que apareçam os receptores para LH em suas células da granulosa. Esse processo permite ao folículo dominante ser estimulado pela LH, e que requeira baixas concentrações de FSH para manter seu desenvolvimento. A secreção de LH em forma de pulsos de baixa frequência (um pulso a cada quatro a seis horas), característica da fase lútea do ciclo estral; é suficiente para permitir que um folículo dominante continue crescendo por mais dias depois da sua seleção e que mais tarde mantenha-se viável durante alguns dias embora não aumentem de tamanho. Contu-do, se durante o período viável desse folículo não seja finalizada a fase lútea e não diminuam as concentrações de progesterona, o folículo terminará sofrendo atresia devido a exigência de um padrão de secreção acelerada de LH (aproximadamente um pulso por hora) durante o desenvolvimento pré-ovulatório, que somente pode ser produzido com a ausência da progesterona. Uma vez que um folículo dominante sofre atresia deixa de produzir inibina, pelo qual as concentrações de FSH podem elevar-se novamente para iniciar o recrutamento de outro grupo de folículos a partir da qual se origina uma nova onda folicular. Durante o ciclo estral de uma vaca podem gerar-se dois ou três ondas foliculares; somente em raros casos quatro. A etapa de dominância folicular da primeira onda na grande maioria dos casos não coincide com a regressão do corpo lúteo, pelo qual o primei-ro folículo dominante quase invariavelmente termina em atresia. Em algumas vacas o fo-lículo dominante da segunda onda ainda está viável quando se produz a regressão do corpo lúteo e acelera-se a secreção de LH, pelo qual esse segundo folículo dominante se converte em folículo pré-ovulatório e, ao final ovula. Em outros animais o segundo folícu-lo dominante também perde a sua viabilidade antes da regressão do corpo lúteo, por onde nesses animais se inicia uma terceira onda folicular, da qual surge o folículo que finalmen-te ovulará depois de produzir-se a regressão do corpo lúteo. Sem importar a onda em que se origine, uma vez que um folículo dominante é ex-posto a alta frequência de secreção de LH que se produz depois da regressão do corpo lúteo, aumenta ainda mais sua secreção de estradiol até que as altas concentrações desse hormônio comecem a exercer um feedback positivo para a secreção do LH. Isso provoca-rá a aceleração da frequência de secreção do LH até que os pulsos são tão frequentes que começam a ficar por cima e produzir-se o pico pré-ovulatório de LH, que é responsável pela realização da ovulação e a maturação final do ovócito. -/- •___DIFERENÇAS ENTRE ESPERMATOGÊNESE E OVOGÊNESE -/- Enquanto que na fêmea a ovogênese inicia-se durante a vida fetal, no macho a es-permatogênese começa na puberdade. Na fêmea, a partir de um ovócito primário se origi-na um óvulo; no macho, de um espermatócito primário se produzem, teoricamente, quatro espermatozoides. Outra característica interessante é que enquanto a fêmea já conta desde o nasci-mento com todos os ovócitos que necessitará na vida adulta, o macho necessitará chegar a puberdade para iniciar o desenvolvimento das células sexuais, já que ao nascer somente possui gonócitos precursores das células germinais, células de Sertoli e intersticiais. Na vida adulta de uma fêmea, o número de células germinais desaparece paulati-namente. Uma vez iniciada a espermatogênese no macho, a cada ciclo do epitélio seminí-fero as células germinais são renovadas mantendo a provisão para toda a vida reprodutiva. Na fêmea, a meiose sofre duas interrupções em seu transcurso, e no macho é ininterrupta. Figura 14: representação em diagramação comparativa do desenvolvimento da gametogênese. -/- Principais pontos abordados sobre as diferenças entre a gametogênese masculina e feminina: ❙ Na ovogênese a meiose contêm-se em duas ocasiões esperando acontecimentos externos para prosseguir. Já na espermatogênese não existe a suspensão da meiose. ❙ A espermatogênese é um processo contínuo, enquanto que a ovogênese pode completar exclusivamente um óvulo em cada ciclo estral; já que só pode ser completada por mais de um nas espécies que ovulam vários ovócitos no caso das porcas, cadelas, gatas etc. ❙ Na espermatogênese existem células de reserva que permitem a continuação du-rante toda a vida, enquanto que na ovogênese o número de ovócitos primários é limitado. A fêmea somente conta com os que nasceu, e eles não se dividem. ❙ Na espermatogênese obtém-se até 256 espermatozoides para cada espermatogo-nia que inicia o processo, enquanto que na ovogênese somente se obtém um óvulo a partir de cada ovócito primário. ❙ Durante a espermatogênese se produz uma metamorfose que transforma as es-permátides em espermatozoides. Na ovogênese não ocorre um processo análogo. ❙ Na espermatogênese, durante a meiose produzem-se quatro espermátides a partir de cada espermatócito primário. Na ovogênese se produz somente um óvulo a partir de cada ovócito primário; produz, ademais, dois corpos polares. ❙ Todos os óvulos que se produzem durante a ovogênese contém um cromossomo X, enquanto que a metade dos espermatozoides possuem um cromossomo Y e a outra metade um cromossomo X. ❙ Na espermatogênese produzem-se centenas ou dezenas de milhões de esperma-tozoides por dia, enquanto que na ovogênese se produz um ou alguns óvulos a cada ciclo estral. ❙ A espermatogênese produz gametas macroscópicos e com motilidade própria, enquanto que a ovogênese produz gametas grandes e imóveis. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABDEL-RAOUF, Mohammed et al. The postnatal development of the reproductive organs in bullswith special reference to puberty.(Including growth of the hypophysis and the adrenals). Acta endocrinologica, n. Suppl No. 49, 1960. ADONA, Paulo Roberto et al. Ovogênese e foliculogênese em mamíferos. Journal of Health Sciences, v. 15, n. 3, 2013. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre‐antral follicle development. Reproduction in domestic animals, v. 45, n. 1, p. 171-179, 2010. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in domestic animals, v. 45, n. 1, p. 180-187, 2010. ALBERTINI, David F.; CARABATSOS, Mary Jo. Comparative aspects of meiotic cell cycle control in mammals. Journal of molecular medicine, v. 76, n. 12, p. 795-799, 1998. AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. BAKER, T. G. Oogenesis and ovulation. In. Reproduction in Mammals I Germ Cells and Fertilization, p. 29-30, 1972. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BIGGERS, John D.; SCHUETZ, Allen W. Oogenesis. University Park Press, 1972. BINELLI, Mario; MURPHY, Bruce D. Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, v. 22, n. 1, p. 1-12, 2009. CHIARINI-GARCIA, Helio; RUSSELL, Lonnie D. High-resolution light microscopic characterization of mouse spermatogonia. Biology of reproduction, v. 65, n. 4, p. 1170-1178, 2001. CHOUDARY, J. B.; GIER, H. T.; MARION, G. B. Cyclic changes in bovine vesicular follicles. Journal of animal science, v. 27, n. 2, p. 468-471, 1968. CLERMONT, Yves; PEREY, Bernard. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy, v. 100, n. 2, p. 241-267, 1957. COSTA, DEILER SAMPAIO; PAULA, T. A. R. Espermatogênese em mamíferos. Scientia, v. 4, 2003. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. 2020. Acervo pessoal. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Acervo pessoal. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. EPIFANO, Olga; DEAN, Jurrien. Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism, v. 13, n. 4, p. 169-173, 2002. ERICKSON, B. H. Development and senescence of the postnatal bovine ovary. Journal of animal science, v. 25, n. 3, p. 800-805, 1966. REFERÊNCIAS BIBLIOGRÁFICAS -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. GALINA-HIDALGO, Carlos Salvador. A study of the development of testicular function and an evaluation of testicular biopsy in farm animals. 1971. Tese de Doutorado. Royal Veterinary College (University of London). GALLICANO, G. Ian. Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci, v. 6, p. D1089-1108, 2001. GILBERT, Scott F. Biología del desarrollo. Ed. Médica Panamericana, 2005. GNESSI, Lucio; FABBRI, Andrea; SPERA, Giovanni. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocrine reviews, v. 18, n. 4, p. 541-609, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HEDGER, Mark P. Testicular leukocytes: what are they doing?. Reviews of reproduction, v. 2, n. 1, p. 38-47, 1997. HUTSON, James C. Testicular macrophages. In: International review of cytology. Academic Press, 1994. p. 99-143. HYTTEL, P. Gametogênese. In. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. JONES, Richard E.; LOPEZ, Kristin H. Human reproductive biology. Academic Press, 2013. KIERSZENBAUM, Abraham L.; TRES, Laura L. Primordial germ cell‐somatic cell partnership: A balancing cell signaling act. Molecular Reproduction and Development: Incorporating Gamete Research, v. 60, n. 3, p. 277-280, 2001. MATZUK, Martin M. et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, v. 296, n. 5576, p. 2178-2180, 2002. MCLAREN, Anne. Germ and somatic cell lineages in the developing gonad. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 3-9, 2000. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MERCHANT-LARIOS, Horacio; MORENO-MENDOZA, Norma. Onset of sex differentiation: dialog between genes and cells. Archives of medical research, v. 32, n. 6, p. 553-558, 2001. MINTZ, Beatrice et al. Embryological phases of mammalian gametogenesis. Embryological phases of mammalian gametogenesis., v. 56, n. Suppl. 1, p. 31-43, 1960. MORALES, M. E. et al. Gametogénesis. I. Revisión de la literatura, con enfoque en la ovogénesis. Medicina Universitaria, v. 8, n. 32, p. 183-9, 2006. NAKATSUJI, NORIO; CHUMA, SHINICHIRO. Differentiation of mouse primordial germ cells into female or male germ cells. International Journal of Developmental Biology, v. 45, n. 3, p. 541-548, 2002. NILSSON, Eric; PARROTT, Jeff A.; SKINNER, Michael K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and cellular endocrinology, v. 175, n. 1-2, p. 123-130, 2001. REFERÊNCIAS BIBLIOGRÁFICAS -/- NORRIS, David O.; LOPEZ, Kristin H. The endocrinology of the mammalian ovary. In: Hormones and reproduction of vertebrates. Academic Press, 2011. p. 59-72. PEDERSEN, Torben. Follicle growth in the immature mouse ovary. European Journal of Endocrinology, v. 62, n. 1, p. 117-132, 1969. PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. ROSER, J. F. Endocrine and paracrine control of sperm production in stallions. Animal Reproduction Science, v. 68, n. 3-4, p. 139-151, 2001. RUSSELL, Lonnie D. et al. Histological and histopathological evaluation of the testis. International journal of andrology, v. 16, n. 1, p. 83-83, 1993. RÜSSE, I.; SINOWATZ, F. Gametogenese. Lehrbuch der Embryologie der Haustiere, p. 42-92, 1991. SAITOU, Mitinori; BARTON, Sheila C.; SURANI, M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature, v. 418, n. 6895, p. 293-300, 2002. SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. SAWYER, Heywood R. et al. Formation of ovarian follicles during fetal development in sheep. Biology of reproduction, v. 66, n. 4, p. 1134-1150, 2002. SCARAMUZZI, R. J.; MARTENSZ, N. D.; VAN LOOK, P. F. A. Ovarian morphology and the concentration of steroids, and of gonadotrophins during the breeding season in ewes actively immunized against oestradiol-17β or oestrone. Reproduction, v. 59, n. 2, p. 303-310, 1980. SEIDEL JR, G. E. et al. Control of folliculogenesis and ovulation in domestic animals: puberal and adult function. In: 9th International Congress on Animal Reproduction and Artificial Insemination, 16th-20th June 1980. II. Round tables. Editorial Garsi., 1980. p. 11-16. SKINNER, Michael K. Cell-cell interactions in the testis. Endocrine Reviews, v. 12, n. 1, p. 45-77, 1991. SMITZ, J. E.; CORTVRINDT, Rita G. The earliest stages of folliculogenesis in vitro. Reproduction, v. 123, n. 2, p. 185-202, 2002. SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. SUTOVSKY, Peter; MANANDHAR, Gaurishankar. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In. The sperm cell: Production, maturation, fertilization, regeneration, p. 1-30, 2006. TAZUKE, Salli I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, v. 129, n. 10, p. 2529-2539, 2002. VAN STRAATEN, H. W. M.; WENSING, C. J. G. Leydig cell development in the testis of the pig. Biology of Reproduction, v. 18, n. 1, p. 86-93, 1978. TURNBULL, K. E.; BRADEN, A. W. H.; MATTNER, P. E. The pattern of follicular growth and atresia in the ovine ovary. Australian Journal of Biological Sciences, v. 30, n. 3, p. 229-242, 1977. WASSARMAN, Paul M. Gametogenesis. Londres: Academic Press, 2012. WROBEL, K.-H.; SÜß, Franz. Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and embryology, v. 197, n. 6, p. 451-467, 1998. REFERÊNCIAS BIBLIOGRÁFICAS -/- ZARCO, L. Gametogénese. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. ZIRKIN, Barry R. et al. Endocrine and Paracrine Regulation of Mammalian Spermatogenesis. In: Hormones and Reproduction of Vertebrates. Academic Press, 2011. p. 45-57. -/- REALIZAÇÃO -/- . (shrink)
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE ZOOTECNIA – 50 ANOS EMANUEL ISAQUE CORDEIRO DA SILVA REPRODUÇÃO ANIMAL: OVULAÇÃO, CONTROLE E SINCRONIZAÇÃO -/- REPRODUÇÃO ANIMAL: OVULAÇÃO, CONTROLE E SINCRONIZAÇÃO DO CICLO ESTRAL -/- ANIMAL REPRODUCTION: OVULATION, CONTROL AND SYNCHRONIZATION OF THE ESTRAL CYCLE -/- Autor: Emanuel Isaque Cordeiro da Silva – IFPE-BJ/CAP-UFPE/EEFCC-BJ/UFRPE 1. INTRODUÇÃO As fêmeas dos animais domésticos possuem em seus ovários, desde praticamente o nascimento, a dotação completa de gametas dos quais vão dispor para o resto de sua (...) vida. No entanto, terão que esperar até a puberdade para que se produza a evolução completa dos folículos (foliculogênese) que darão como resultado as primeiras ovulações. Este momento caracteriza-se, por um lado, pelo início gradual da secreção por parte da hipófise de quantidades importantes de hormonas gonadotropinas (hormonas folículo estimulante «FSH» e sobretudo luteinizante «LH»); por outro lado, pelo aumento da capacidade dos seus ovários para responder a estas secreções. A partir daí, o aparelho reprodutor feminino das fêmeas domésticas deve apresentar, durante todo o período de atividade sexual, alterações morfológicas, endócrinas e fisiológicas, que devem ser repetidas sequencialmente e periodicamente, consoante com a duração e a frequência do ciclo estral característico de cada espécie animal, assegurando assim a liberação de um ou mais ovócitos férteis nos ciclos estrais correspondentes. -/- 2. EVOLUÇÃO DO OVÓCITO E DOS FOLÍCULOS OVÁRICOS O ovário constitui um órgão de armazenamento de ovócitos formados durante a vida fetal ou após o nascimento, os quais permanecerão «latentes», num estado de imaturidade, paralisando a sua atividade de desenvolvimento e crescimento após o processo de mitose pelo qual as células germinativas ou ovogonias evoluem para ovócitos primários. Estes ovócitos devem ser rodeados por células foliculares para alcançar sua maturação e posterior ovulação, constituindo-se, desta maneira, os folículos. Estes últimos, que se localizam no parênquima ovárico, sofrem uma série de mudanças evolutivas que os fazem passar de folículos primordiais (constituídos por um ovócito rodeado de células planas) a folículos maduros ou de Graaf, passando pelos estágios primário, secundário e terciários. A estrutura do ovário e a terminologia correspondente, bem como a sua fisiologia, já foram tratados em trabalhos anteriores. Basicamente, o folículo maduro ou de Graaf, que ressalta já na superfície ovariana como se tratasse de uma pequena vesícula cheia de líquido, encontra-se constituído, no caso dos mamíferos, pelas tecas externa e interna, a folha basal, o ovócito e o seu núcleo ou vesícula germinativa e um acúmulo de células da granulosa chamado cumulus. O antro-folicular ou cavidade intrafolicular formada durante o estágio de folículo terciário possui no seu interior um líquido cuja composição provém do plasma sanguíneo. Por outro lado, o ovócito, que desde a constituição da reserva de folículos primordiais se encontrava em estado de ovócito primário, começa a aumentar de volume (durante a fase de evolução do folículo terciário a folículo maduro) e a cobrir-se de uma membrana celular denominada zona pelúcida. Nos momentos que precedem imediatamente à ovulação reativa-se a meiose, liberando-se o primeiro corpúsculo polar e convertendo-se o ovócito em secundário. Produzida a ovulação retoma-se de novo a meiose, que tinha permanecido em repouso, e depois de ocorrer a fecundação libera-se o segundo corpúsculo polar, passando a ser uma ovotida ou óvulo maduro. -/- 3. A OVULAÇÃO Acabado o crescimento, o folículo maduro ou de Graaf é capaz de responder à descarga pré-ovulatória de gonadotropinas (LH e em menor medida FSH) de tal forma que se produza uma reestruturação completa do mesmo e a subsequente liberação de um ovócito fértil através de um pequeno orifício (estigma) produzido no ponto de ruptura da sua parede celular e das camadas celulares mais superficiais do córtex ovárico, cuja espessura, neste momento, é muito reduzida. No momento da ovulação tanto o líquido folicular como o ovócito são projetados, entre outras causas, pela contração da musculatura lisa que rodeia os folículos para a cavidade peritoneal caindo perto das fimbrias do oviduto ou trompas de Falópio. Esta expulsão, no caso das vacas e ovelhas, ocorre sob a forma de um fluxo fluido, enquanto na coelha ocorre sob a forma de um jato súbito ou de um processo explosivo. No caso da égua, a estrutura dos seus ovários difere das outras fêmeas domésticas, no sentido em que a zona vascular se localiza superficialmente e os folículos se distribuem no interior do ovário. Ao mesmo tempo, a ovulação ocorre unicamente num determinado ponto denominado fossa de ovulação. Por tudo isso, durante a foliculogênese, os folículos vão migrando para a fossa de ovulação, chegando em algumas ocasiões a ficarem presos no interior do ovário, não conseguindo desenvolver-se nem evolucionar (folículo cístico) e que, ao apresentar uma secreção contínua de estrogênios, produz na fêmea um estado de cio permanente ou ninfomania. Nas espécies cuja ovulação é espontânea, o processo supra ocorre periódica e sequencialmente em todos os ciclos estrais com um intervalo conhecido a partir do início do estro ou, no caso da vaca, após o término deste (tabela 1). Por outro lado, nas espécies de ovulação induzida (coelha, gata e fêmeas de furão e camelo) esta ocorre pouco depois de realizado o coito. Nestas espécies, o estímulo coital, favorecido pelas espículas localizadas no pênis do macho, determina por via eferente nervosa a liberação hipotalâmica de GnRH, que em poucos minutos depois provoca a secreção adeno-hepática de LH, que por via sistêmica alcança os folículos, desencadeando os processos fisiológicos que conduzem à ovulação. Tabela 1: Parâmetros que definem o ciclo sexual e tipo de ovulação de algumas espécies domésticas (adaptado e elaborado a partir de DUKES, et. al. 1996). -/- Espécie Duração do ciclo estral Atividade sexual Tipo de ovulação E/I N° de ovócitos Duração do estro Momento da ovulação Vaca 21 dias Poliéstrica contínua E 1 18 horas 11 horas após o final do estro Ovelha 17 dias Poliéstrica estacional E 1-3 29 horas Ao final do estro Porca 21 dias Poliéstrica contínua E 11-24 45 horas 24-36 horas do começo do estro Égua 21 dias Poliéstrica estacional E 1 6 dias 24-48 horas antes do final do cio Cabra 20 dias Poliéstrica estacional E 1-3 40 horas 33 horas do começo do estro Cadela 9 dias Monoéstrica a cada 4-8 E — 7-9 dias 3-4 dias do começo do estro Gata 5 dias Poliéstrica estacional I 3-4 4 dias 27 horas postcoito Coelha 16 dias Poliéstrica I 4-12 Não definida 10 horas postcoito -/- Dado que a vida fértil dos ovócitos, uma vez produzida a ovulação, raramente ultrapassa as 10-12 horas, é importante, sobretudo quando se realiza inseminação artificial ou monta dirigida, determinar, a partir da presença dos sintomas de cio, o período de tempo durante o qual a fertilização numa exploração específica será efetuada, evitando-se assim uma redução da fecundidade. 3.1 Ovulação simples e múltipla Em algumas ocasiões, dependendo da espécie (ver tab. 1), são vários os folículos que apresentam uma evolução completa, chegando a possuir nas células da granulosa receptores de LH, com o qual realiza-se a descarga ovulante de gonadotropinas e produz-se uma ovulação múltipla ou multiovulação, sendo, neste caso, libertados vários ovócitos férteis. No esquema abaixo, observa-se os processos de recrutamento, seleção e dominação da espécie ovina, a partir dos quais um ou vários folículos em crescimento chegam a ovular, bem como a influência das gonadotropinas FSH e LH em cada uma destas fases. Independentemente da influência genética, manifestada pelas diferenças entre espécies, raças e mesmo estirpes, os processos que determinam que entre um grupo de folículos em crescimento sejam um ou vários deles que cheguem a ovular englobam-se sob os termos de recrutamento, seleção e dominação folicular (fig. 1). -/- Figura 1. Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. SILVA, 2019. O recrutamento é definido como a entrada em crescimento terminal de um grupo de folículos gonadodependentes, ou seja, que dentre os folículos em crescimento que existem no reservatório ovariano iniciarão seu crescimento terminal aqueles que possuem receptores à FSH (a partir do estágio primário já os possuem) e tenham igualmente atingido um tamanho determinado, que varia entre as diferentes espécies (2 mm Ø em ovelhas). Geralmente o número de folículos recrutados é duas ou três vezes superior ao número de folículos ovulados. O recrutamento no caso da ovelha ocorre três dias antes da ovulação sob a regressão do corpo lúteo e aumento de FSH. A seleção é caracterizada porque entre os folículos recrutados um ou vários folículos continuam a aumentar de tamanho, enquanto o resto se torna atrésico. No caso da ovelha, o tamanho do folículo no momento da seleção corresponde ao tamanho em que aparecem os receptores de LH sobre a granulosa (folículo terciário) ou quando, como se verá posteriormente, a aromatização de andrógenos em estrogênios é máxima. Por outro lado, a produção de inibina (hormônio gonodal não esteroide) é igualmente elevada. A interação destes dois fatores de retroalimentação (estrogénios e inibina) para a secreção de FSH provoca uma redução dos níveis desta hormona, facilitando a seleção: neste contexto, verificou-se que a injeção de FSH em ovinos bloqueia a seleção produzindo, com efeito, uma multiovulação. No caso da vaca, poderia existir um segundo mecanismo regulador: o folículo maior poderia secretar, em um momento da seleção, um composto de ação parácrina, diminuindo a resposta de outros folículos à ação dos níveis existentes de FSH. A dominância que produz os folículos selecionados está associada com a regressão ou atresia de outros folículos recrutados e com a inibição do recrutamento de novos folículos. Embora os níveis de FSH diminuam, os folículos dominantes persistem porque reduzem suas necessidades em FSH. Esta adaptação a meios mais pobres em FSH poderia explicar-se, entre outras causas, pela ampliação da resposta a esses níveis baixos em FSH graças à produção de IGFI (Insulin Like Growth Factor l), no caso da ovelha, pelo folículo dominante. O IGFI estimula a aromatização dos androgênios em estrogênios e, por sua vez, o estradiol estimula a produção de IGFI nas células granulosas, tornando-a ao mesmo tempo mais sensível ao IGFI. Este laço formado pelo estradiol e IGFI pode desempenhar um papel importante na produção do folículo dominante do estradiol. -/- 4. MECANISMOS NEUROENDÓCRINOS QUE CONDUZEM À OVULAÇÃO A ovulação, propriamente dita, pode ser um bom ponto de partida para explicar os mecanismos neuroendócrinos que se sucedem para alcançar, no próximo ciclo estral, uma nova ovulação. Imediatamente após a ocorrência da ovulação, forma-se um coágulo de sangue no interior do folículo em consequência da hemorragia causada pela ruptura celular (folículo hemorrágico) e que servirá de substrato para o crescimento das células granulosas. Em seguida, as células da granulosa hipertrofiam e proliferam rapidamente, acumulando lipídios e pigmentos carotenoides (luteína) que lhe conferem uma cor amarelada (corpo lúteo). Esta estrutura formada, sob a ação do LH e também da prolactina, começa a produzir progesterona, a qual além de preparar o aparelho reprodutor para uma possível gestação inibe, a nível da hipófise, a secreção cíclica de LH, impedindo assim novas ovulações. À medida que os níveis de progesterona diminuem devido à regressão do corpo lúteo sob a ação da PGF2a (prostaglandina 2a), vários folículos começam seu crescimento sob a ação dos níveis de FSH (cada vez maiores), atingindo o seu crescimento final na fase folicular. Alcançado o estado de terciário, as células da teca interna do folículo, estimuladas pela secreção tônica do LH liberada pela hipófise em pequenas ondas (sem chegar a atingir a quantidade que provoca a ovulação), sintetizam a partir do colesterol, passando por alguns passos intermediários, testosterona, que é depois aromatizada a estradiol sob a ação do FSH pelas células da granulosa (fig. 2). A prolactina, juntamente com o FSH, também influencia o crescimento e a maturação dos folículos, bem como a produção de estrogênios. À medida que avança o crescimento e maturação dos folículos, a concentração de estradiol aumenta (os folículos que em um momento da evolução se tornam atrésicos aportam também uma quantidade importante de estradiol), sendo máxima nos momentos imediatos à ovulação (fig. 3). Este aumento, sustentado na taxa circulante de estrogênios, é a responsável pelo aparecimento do cio nas fêmeas, cujo final, geralmente, exerce um efeito feedback positivo sobre o eixo hipotálamo-hipofisário induzindo o pico pré-ovulatório de LH (e também FSH), que conduz a nova ovulação. Figura 2. Processo de aromatização dos andrógenos em estrógenos. (Adaptado e elaborado a partir de ILLERA, 1994). -/- Figura 3. Crescimento prático folicular, e níveis de progesterona e 17 estradiol (a) e FSH e LH (b), durante o ciclo estral da ovelha. (Elaborado a partir de DURÁN DEL CAMPO, 1980). Nota importante: a ovulação em algumas espécies não é acompanhada do cio (ovulações silentes ou silenciosas), sobretudo nas primeiras ovulações da puberdade e após o anestro estacionário, devido a produção nula da estimulação prévia da progesterona. Embora citado anteriormente que o crescimento folicular começa no final da fase lútea no caso da vaca, a ovelha e a égua, a população de folículos ovulatórios se renova ao longo do ciclo estral, produzindo-se um crescimento e regressão dos folículos, denominado onda folicular. Nestas ondas, que também podem ocorrer durante o período pré-púbere, anestro estacionário e pós-parto, os folículos são receptores à descarga de LH, no entanto, a sua capacidade de produzir estradiol é muito limitada devido a uma deficiência de precursores em tecas ou a uma inadequação da aromatização dos androgênios em estrogênios, com o qual não se atinge a quantidade de estrogênios necessários para produzir a ativação nervosa necessária para a liberação cíclica de LH. Do ponto de vista prático, o conhecimento dos mecanismos neuroendócrinos que se sucedem durante o ciclo estral e que conduzem à ovulação, bem como a sua possível regulação mediante técnicas culturais ou tratamentos hormonais, é de vital importância quando o que se pretende é realizar um controle e sincronização tanto do cio quanto da ovulação. -/- 5. ALTERAÇÕES MORFOLÓGICAS ASSOCIADAS À OVULAÇÃO Nos momentos prévios à ovulação, o folículo ovulatório experimenta uma série de mudanças morfológicas e histológicas regulamentadas endocrinamente e cuja finalidade será a modificação da estrutura do folículo, facilitando a liberação do ovócito fértil. Logo após a descarga pré-ovulatória, ocorre um aumento do fluxo sanguíneo associado a um acúmulo de sangue que dependerá, entre outros, da prostaglandina E2 (PGF2) secretada pelas células granulosas. A teca externa é edemaciada pela difusão do plasma sanguíneo e o volume do antro folicular aumenta pela atração de água exercida pelo ácido hialurônico secretado pelas células do cumulus sob a ação do FSH/LH. Este aumento de volume é facilitado pela dissociação dos feixes de fibras de colágeno da teca externa e da túnica albugínea sob a ação de duas enzimas: a colagenase e a plasmina. A plasmina age em primeiro lugar e aparece como resultado da produção de ativadores do plasminogênio pelas células da granulosa e do cumulus; sua atividade é máxima no ápice do folículo dissociando a matriz proteica dos feixes de fibras de colágeno e ativando o precursor da colagenase. Além disso, a atividade da colagenase é máxima no momento da ruptura do folículo. A maioria das células da granulosa que estão fixadas na lâmina basal se soltam, perdem sua união em colônia e deixam de se dividir (fig. 4). As ligações que as ligavam desaparecem, mas a sua dissociação não é completa devido, provavelmente, à produção local de inibidores da colagenase. As células do cumulus sofrem as mesmas transformações, mas a sua dissociação é total porque estas secretam ácido hialurônico. No entanto, as células que asseguraram, desde o início do crescimento folicular, a ligação entre a granulosa e o ovócito permanecem durante um período mais ou menos longo, ligadas à coroa radiada. Figura 4. Estado de um folículo pouco antes da ovulação. DRIANCOURT, et al. 1991. Pouco antes da ovulação, a lâmina basal desaparece de seu lugar, ocorre uma individualização dos vasos sanguíneos e as células da teca interna penetram no folículo. No ápice do folículo, produz-se uma deficiência na irrigação sanguínea e, portanto, de oxigênio, o que faz com que as células do epitélio ovariano morram. As hidrolases, que nesse momento são liberadas, contribuem para a destruição completa dos tecidos subjacentes. Em definitivo, é o conjunto de fatos comentado supra que conduzem à ruptura do ápice do folículo e provocam um aumento da pressão hidrostática que se traduz em uma contração do folículo expulsando o ovócito e as células da coroa radiada. -/- 6. CONTROLE, SINCRONIZAÇÃO E INDUÇÃO DA OVULAÇÃO 6.1 Introdução O controle e a sincronização da ovulação se situa dentro de um contexto muito mais amplo como é o controle da reprodução, entendendo como tal o governo dos elementos manipuláveis do processo reprodutivo. No âmbito do controle da reprodução, existem muitos objetivos, entre os quais a indução da puberdade, a cobertura em época de anestro, aumento da prolificidade, entre outras. Além disso, o controle da reprodução é necessário para a utilização de determinadas técnicas, como a inseminação artificial ou a transferência de embriões. Com efeito, e consoante com o objetivo pretendido, poderão ser utilizadas diferentes técnicas e métodos, tais como os tratamentos hormonais, o efeito macho, a alimentação (Flushing) e os cruzamentos, tudo isso, por sua vez, empregado nos esquemas de seleção. Neste sentido e como passo prévio à sincronização e indução da ovulação, em muitas ocasiões se realiza também um controle e sincronização do cio. Este último, além de permitir que o criador regule o momento do estro e da cobrição, podendo em algumas espécies suprimir o anestro estacionário, permite que os animais se agrupem em lotes homogêneos e assim poder alimentá-los com as dietas adequadas segundo o estado de gestação, atender os partos e assim diminuir a mortalidade neonatal, programar os desmames e engordar os animais para, por fim, vender os animais por lotes. Na sincronização do cio o que se pretende é atuar sobre o intervalo entre a fase folicular e a fase luteica, modificando, portanto, a duração do ciclo estral (fig. 5). Figura 5. Representação dos métodos de sincronização do ciclo estral: (a) duração normal das fases luteica e folicular: (b) fase luteica cortada: (c) extensão da fase luteica. HUNTER, 1987. Para alcançar esse objetivo, os criadores podem adotar dois métodos: a) Induzindo a regressão do corpo lúteo de um grupo de animais de forma que todos eles iniciem a fase folicular e apresentem o cio num espaço de tempo bastante semelhante (injeções de prostaglandinas) (fig. 5b). b) Alargando artificialmente, através de um bloqueio hormonal, a fase luteica de tal modo que, ao cessar esse bloqueio e injetar-lhes gonadotropinas exógenas, os animais iniciem conjuntamente uma fase folicular seguida de um cio sincronizado (injeções de progesterona, implantes de progesterona ou progestágenos, esponjas vaginais impregnadas de progestágenos) (fig. 5c). 6.2 Objetivos e fundamentos Os tratamentos de controle e sincronização da ovulação têm por objetivo tentar regular, por um lado, o momento exato da ovulação, e por outro, o número de folículos que possam chegar a liberar ovócitos férteis, ao qual pode-se conseguir mediante a intervenção nos processos de recrutamento e seleção dos folículos. O primeiro objetivo permitirá que se realize a inseminação artificial no momento propício, evitando o envelhecimento dos ovócitos e que se possa calcular o momento da fertilização e a fase de desenvolvimento dos embriões (realização de transplantes). Por outro lado, o segundo objetivo ajudará a aumentar a fertilidade e a prolificidade em um rebanho e, no caso de fêmeas doadoras para a transferência de embriões, a relação: número de embriões/fêmea doadora. A indução da ovulação e/ou o aumento da taxa de ovulação pode ser conseguida aumentando os níveis de gonadotropinas no sangue antes do início da atresia folicular, ou seja, 3 a 5 dias antes da ovulação. Por outro lado, a taxa de ovulação pode também ser aumentada através da imunização contra esteroides, embora, por outro lado, permitam uma sincronização de cios. Além disso, o aumento dos níveis de gonadotropinas pode ser conseguido estimulando a sua secreção pelo próprio organismo do animal, por injeção de fatores de liberação hipotalâmicos que estimulem na hipófise a secreção de gonadotropinas, através do manejo dos reprodutores (efeito macho) e da alimentação (Flushing) ou por injeção das gonadotropinas no animal. 6.3 Imunização contra esteroides A imunização contra esteroides é uma técnica eficaz para aumentar a taxa de ovulação de animais que encontram-se em atividade sexual, ou seja, fora do anestro, uma vez que o seu mecanismo de ação baseia-se na alteração do controle endócrino da ovulação devido à ação dos anticorpos contra os esteroides ováricos, especialmente contra a androstenediona. Esta última regula a produção de uma proteína denominada «interleucina l», secretada pelos macrófagos do sistema imunitário e que inibe a diferenciação dos receptores à LH nos folículos, sem afetar a quantidade de sangue do FSH. Por isso, a teoria que tenta explicar o mecanismo de ação dos tratamentos de imunização é a seguinte: «O bloqueio dos esteroides pelos anticorpos do tratamento reduziria a produção de «interleucina l», permitindo assim que um maior número de folículos tivessem receptores à LH e pudessem ovular». Existem dois tipos de imunização: imunização ativa e imunização passiva. Na primeira, a metodologia consiste em tratar o animal com uma série de vacinas por via subcutânea ou intradérmica, pelo menos em duas ocasiões, até que a resposta imunitária atinja o nível desejado e ele próprio produza os anticorpos contra o antígeno (androstenediona) contido no conteúdo da vacina. Por outro lado, na imunização passiva o animal tratado recebe soro, por via intravenosa, de outro animal que foi imunizado (anticorpos policlonais), ou anticorpos monoclonais produzidos mediante técnicas imunológicas modernas. 6.4. Injeções de hormonas gonadotropinas As preparações hormonais de gonadotropinas injetadas num momento adequado do ciclo estral permitem, por um lado, aumentar o número de folículos em desenvolvimento (preparações ricas em atividade FSH) e, por outro lado, controlar e sincronizar o momento da ovulação (preparações ricas em atividade LH). Atualmente, os preparados hormonais à base de LH e FSH puros obtidos a partir de glândulas pituitárias em matadouros deixaram de ser utilizados, já que, além de não serem economicamente rentáveis, a sua conservação e utilização acarreta inúmeros problemas. a) A PMSG ou gonadotropina do soro de égua gestante com atividade predominante em FSH. Este hormônio, que permite aumentar o número de folículos em desenvolvimento, deve ser injetado (em doses variáveis segundo a espécie; tabela 2) no início da fase folicular, imediatamente após a regressão do corpo lúteo, quando as gonadotropinas endógenas do próprio animal estimulam o crescimento folicular. Para determinar esse exato momento, normalmente se realiza uma sincronização do cio. Tabela 2. Doses de aplicação do PMSG e do HCG (em unidades internacionais SI) para regular a quantidade e o momento da ovulação Espécie PMSG HCG Vaca 2000 - 3000 500 - 2500 Ovelha 500 - 800 250 - 500 Porca 750 - 1500 500 - 1000 Adaptado e elaborado a partir de HUNTER, 1987. b) A HCG ou gonadotropina coriónica humana com atividade predominante em LH. Pode ser obtida facilmente, já que se acumula na urina da mulher gestante, servindo sua detecção como teste para a determinação da gestação (teste da rã: origina a ejaculação na rã macho). Uma vez que com esta hormona se pretende controlar o momento da ovulação, a injeção deve ser feita por via intravenosa ou intramuscular, algumas horas antes do animal ter iniciado o estro e portanto a liberação das hormonas gonadotropinas. Pode-se conseguir mediante a injeção, com um intervalo conhecido e em doses adequadas (2), após estimulação com PMSG ou após sincronização do estro. 6.5 Limites das técnicas de controle, sincronização e indução à ovulação Os objetivos almejados durante o tratamento de sincronização e indução da ovulação, acima mencionados, não chegaram a ser alcançados em sua totalidade devido, principalmente, aos seguintes fatores: a) O hipotálamo mediante a liberação em forma de ondas ou pulsações cada um ou dois minutos de fatores liberadores (GnRH) estimula a hipófise para a secreção de hormônios gonadotropinas, o que na prática é muito difícil de se artificializar. b) Como resultado das injeções de hormonas gonadotropas produz-se um feedback dos esteroides gonodais, o qual interfere na secreção de hormonas endógenas e na precisão da resposta. c) As preparações hormonais de natureza proteica provocam a formação de anticorpos no animal, pelo qual a relação dose-resposta não é exata. d) Uma vez que os níveis de resposta tenham sido atingidos, a administração de doses excessivas de gonadotropinas produz uma redução do número de ovulações e interfere nos mecanismos ovulatórios. -/- 7. RESUMO E PRIMEIRAS CONCLUSÕES A ovulação marca o culminar de uma série de alterações morfológicas, fisiológicas e endócrinas que se sucedem no aparelho reprodutor feminino e mais concretamente no ovário e nos folículos ováricos e cujo objetivo é a liberação, após a descarga ovulante de LH, de um ou mais ovócitos férteis, de acordo com as espécies. Da mesma forma, a ovulação se caracteriza pela retomada da meiose e a liberação do primeiro corpúsculo polar, bem como a iniciação da luteinização das células da granulosa e a reestruturação da parede do folículo. Isto ocorre tanto em espécies de ovulação espontânea como induzida. Todas estas alterações são condicionadas pela variação da concentração sanguínea das hormonas gonadotropinas devido ao feedback positivo ou negativo que os esteroides ováricos exercem sobre o hipotálamo em cada uma das fases do ciclo estral. Por este motivo, se num momento preciso do ciclo estral estimula-se a secreção, por parte da hipófise, de hormonas gonadotropinas mediante a injeção de fatores de liberação hipotalâmicos (GnRH) ou a aplicação de algumas técnicas de manejo (efeito macho e Flushing) ou mediante a incrementação da sua concentração no sangue através de injeções de preparações hormonais, será obtido um controle, sincronização e indução da ovulação. Os diferentes tratamentos de sincronização e indução da ovulação, embora apresentem algumas limitações, permitem regular o momento da ovulação e o número de folículos que chegarão a ovular, alcançando em alguns casos uma superovulação, objetivo pretendido na técnica de transplante de embriões. -/- 8. REFERÊNCIAS BIBLIOGRÁFICAS -/- BARUSELLI, Pietro Sampaio; GIMENES, Lindsay Unno; SALES, José Nélio de Sousa. Fisiologia reprodutiva de fêmeas taurinas e zebuínas. Revista Brasileira de Reprodução Animal, v. 31, n. 2, p. 205-211, 2007. -/- BINELLI, Mario; IBIAPINA, Bruna Trentinaro; BISINOTTO, Rafael Siscôneto. Bases fisiológicas, farmacológicas e endócrinas dos tratamentos de sincronização do crescimento folicular e da ovulação. Acta Scientiae Veterinariae, v. 34, n. Supl 1, p. 1-7, 2006.p -/- BRACKETT, B. G.; JÚNIOR, G. E. A.; SEIDEL, S. M. Avances en zootecnia. Nuevas técnicas de reproducción animal. 1ª ed. Zaragoza: Editorial Acribia, 1988. -/- COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. -/- CORTEZ, A. A.; TONIOLLI, R. Aspectos fisiológicos e hormonais da foliculogênese e ovulação em suínos. Revista Brasileira de Reprodução Animal, v. 36, p. 163-173, 2012. -/- CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. -/- DA SILVA, Emanuel Isaque Cordeiro. Características Gerais dos Bovinos/General Characteristics of Cattle Bovine. Disponível em: philpeople. Acesso em: Fevereiro de 2020. -/- DERUSSI, A. A. P.; LOPES, M. D. Fisiologia da ovulação, da fertilização e do desenvolvimento embrionário inicial na cadela. Revista Brasileira de Reprodução Animal, v. 33, n. 4, p. 231-237, 2009. -/- DRIANCOURT, M. A. et al. The ovarian function. Paris: INRA, 1991. -/- DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Rio de Janeiro: Guanabara Koogan, 1996. -/- DURÁN DEL CAMPO, A. Anatomia, fisiologia de la reproduccion e inseminación artificial en ovinos. Montevideo, Editorial Hemisferio Sur, 1980. 245p. -/- HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. -/- HUNTER, R. H. F. Reproducción de los animales de granja. Zaragoza: Acribia, 1987. -/- ILLERA, M. Endocrinología Veterinaria y Fisiología de la Reproducción. Zaragoza: Fareso, 1994. -/- MARTIN, Ian; FERREIRA, João Carlos Pinheiro. Fisiologia da ovulação e da formação do corpo lúteo bovino. Veterinária e Zootecnia, v. 16, n. 2, p. 270-279, 2009. -/- RASWEILER IV, John J.; BADWAIK, Nilima K. Anatomy and physiology of the female reproductive tract. In: Reproductive biology of bats. Academic Press, 2000. p. 157-219. (shrink)
OBJETIVO -/- O estudante de Zootecnia e de Veterinária, quando se depara com a produção animal, um dos pilares importantes é a reprodução, uma vez que é a perpetuação da espécie, seja para gerar filhas de uma vaca campeã em produção leiteira e de um touro com rusticidade e com aptidão produtiva de corte, ou mesmo para reposição de um plantel, o mesmo deve estar consciente de que esse ramo é de extrema responsabilidade, já que estará intimamente lidando com a (...) vida e com um investimento que pode gerar lucros em demasia para a propriedade ou, se mal feito o manejo da reprodução, trazer sérios transtornos para a mesma. -/- Nesse trabalho, o estudante revisará os sucessos da puberdade e estacionalidade reprodutiva relacionando-os com os processos endócrinos e os fatores que afetam sua manifestação como os nutricionais, para compreender a maneira ao qual podem ser manipuladas. -/- -/- • _____INTRODUÇÃO -/- A puberdade marca o início da vida reprodutiva do animal, permitindo integrar o indivíduo ao seu ciclo produtivo. A estacionalidade é uma característica de adaptação que algumas espécies desenvolveram para fazer garantir a eficiência da reprodução e a sobrevivência dos filhotes. -/- -/- • _____PUBERDADE -/- A puberdade é atingida quando o animal é capaz de produzir e liberar gametas viáveis e funcionais (férteis). Na fêmea esse fato ocorre na primeira ovulação, que geralmente coincide com a manifestação do comportamento do cio; e nos machos durante a primeira ejaculação com espermatozoides viáveis. -/- Do ponto de vista da produção animal, puberdade prematura ou precoce, é importante para poder permitir a incorporação dos animais ao ciclo produtivo o mais rapidamente possível. No caso de touros holandeses, por exemplo, é desejável que produzam sêmen precocemente para incorporá-los a prova de progênie; nas fêmeas, entretanto, deve-se considerar que nem sempre é conveniente usar o primeiro ciclo ou cio para reprodução. É o caso das marrãs (porcas primíparas), onde é benéfico esperar até o segundo ou terceiro estro para aumentar o tamanho da ninhada. Também pode ser vantajoso esperar que o indivíduo alcance sua maturidade sexual, que ocorre quando a fêmea consegue se reproduzir sem sofrer efeitos adversos. A ovelha nascida na primavera, por exemplo, pode engravidar no outono seguinte e dar à luz no primeiro ano de vida, mas seu crescimento pode ser afetado; o mesmo ocorre com a novilha, em que o acasalamento precoce pode promover distorcia por falta de desenvolvimento pélvico. -/- A puberdade é um processo gradual e está intimamente relacionada à taxa de crescimento e ao metabolismo energético. O recém-nascido usa energia para funções vitais, principalmente termorregulação; esse feito se deve ao fato de os jovens possuírem uma superfície corporal muito elevada em relação ao seu volume. Durante o desenvolvi-mento subsequente dos tecidos também há prioridade no uso de nutrientes, que inicialmente favorecem o desenvolvimento do tecido ósseo e muscular, e uma vez que estes atingem determinado tamanho de acordo com as condições genéticas do indivíduo, inicia-se o desenvolvimento do tecido adiposo, que é indicativa de um reservatório de energia. É importante ressaltar que existe uma interação entre a genética e o meio ambiente, de forma que o potencial genético só será expresso se o meio ambiente for favorável. -/- Para que a ovulação ocorra, é necessário considerar o funcionamento do eixo hipotálamo-hipófise-gonodal. O aumento da frequência pulsátil do GnRH hipotalâmico e em consequência do LH hipofisário provoca a maturação do folículo em nível gonodal, o que aumenta a produção de estrógenos. O aumento dos estrogênios causa, por feedback positivo no hipotálamo, a liberação do pico pré-ovulatório de LH e, consequentemente, a ovulação. Na fase pré-púbere, a frequência dos pulsos de GnRH e LH é muito baixa e insuficiente para provocar a maturação folicular, pois o hipotálamo é inibido e, portanto, não ocorre ovulação. -/- A geração pulsátil de GnRH no momento reprodutivo adequado para desencadear o início da puberdade depende de uma rede neural complexa que, além dos neurônios GnRH, inclui outros neurônios e células da glia; ele também integra vários sinais internos e externos para o corpo. A morfologia dos neurônios GnRH também é única, uma vez que seus dendritos também podem funcionar como axônios, dando-lhes uma função distinta. A geração de pulsos também indica a necessidade de sincronização entre subpopulações de neurônios GnRH, que, acima de tudo, parece ser extrínseca a esses neurônios e envolve múltiplos hormônios e neurotransmissores -/- Se dois níveis de conexões aferentes são considerados, estima-se que cada neurônio de GnRH pode ser conectado a cerca de cinco milhões de outros neurônios; milhares de genes, então, podem estar envolvidos no processo da puberdade. A importância funcional e hierárquica de cada um desses genes no controle dos neurônios GnRH, juntamente com outros fatores neuronais e gliais, pode diferir entre as espécies. Existem, no entanto, componentes fundamentais que parecem ser comuns a todos os mamíferos e que se situam nos níveis hierárquicos mais elevados, ajudando a compreender a progressão do processo puberal. Assim, todas as espécies de mamíferos estudadas, por exemplo, têm aglomerados de neurônios kisspeptinérgicos (que secretam kisspeptina), envolvidos na regulação da secreção tônica e secreção cíclica de GnRH, que também se classifica como o elemento mais alto na hierarquia desse complexo neuronal após considerar os neurônios GnRH. -/- Sabe-se que o eixo hipotálamo-hipofisário-gonodal está ativo desde as primeiras fases da vida do indivíduo, mesmo antes do nascimento em certas espécies. A secreção de GnRH, no entanto, é suprimida mais tarde no desenvolvimento e permanece dessa forma até o período pré-púbere, quando será reativada gradualmente. -/- Por várias décadas, a supressão e reinicialização dos pulsos de GnRH foi atribuída a uma hipótese conhecida como teoria gonadostat que afirma que o centro tônico do hipotálamo é inibido devido à sua sensibilidade ao mecanismo de feedback negativo dos esteroides gonodais, é aumentado; portanto, o GnRH e a consequente secreção de gonadotrofinas (FSH e LH) são insuficientes para a ocorrência da maturação folicular e espermatogênese. Essa sensibilidade diminui progressivamente à medida que a puberdade se aproxima. -/- Sabe-se agora que existem fatores não gonodais que agem em paralelo com os esteroides para mediar mudanças no feedback negativo que também são específicos da espécie. -/- Na fêmea, o centro gerador de pulso cíclico também deve ser considerado, o qual é responsável por iniciar a primeira ovulação. O centro cíclico é composto por uma segunda subpopulação de neurônios GnRH que é reativada por meio de uma complexa interação entre vários sistemas neuronais inibitórios (que devem reduzir progressiva-mente sua influência) e outros sistemas excitatórios, que, por sua vez, operam por meio de diferentes neurotransmissores, como o ácido γ-amino-butírico (GABA) e seus receptores, glutamato, óxido nítrico e neuropeptídio Y (NPY). Esses fatores, juntamente com as alterações morfológicas observadas nos neurônios do GnRH à medida que a puberdade se aproxima, e com as interações e sinais aferentes das células gliais, levam a um padrão de progressão linear que culminará na reativação do centro cíclico. Esse processo era conhecido anteriormente como teoria da maturação central e faz parte das mudanças que configuram o processo para chegar à puberdade. A elevação nas concen-trações de estradiol subsequente à reativação gradual do centro gerador de pulso tônico GnRH provavelmente permitirá a maturação final do centro cíclico. -/- A forma como cada organismo estabelece o momento certo para iniciar as mudanças que levam à puberdade é conhecido; a existência de algum mecanismo neurobiológico que constitui um relógio interno pode ser considerada. No entanto, esse mecanismo afetaria principalmente o desenvolvimento neuronal no nível central; também seria difícil compará-lo com a maneira pela qual fatores externos ao indivíduo afetam o início da puberdade. Nessa perspectiva, um sistema que permita receber informações completas sobre o crescimento e desenvolvimento do indivíduo poderia ser mais prático. Os mediadores desse sistema incluem o hormônio do crescimento, IGF-I, leptina e outros substratos metabólicos. A leptina em particular, que sinaliza as reservas de tecido adiposo, é um dos elementos mais importantes e, embora não determine quando começa a puberdade, se atua como fator permissivo para que o processo progrida, uma vez que excede um nível limite. A consideração do estágio de desenvolvimento do animal para o início da puberdade era anteriormente conhecida como o peso corporal crítico ou teoria do lipostato. É importante considerar que as três teorias mencionadas não são exclusivas. -/- O mecanismo da puberdade nos machos é semelhante ao já descrito; entretanto, deve-se lembrar que no macho o centro cíclico não está ativo. À medida que a puberdade se aproxima, o crescimento testicular é desencadeado e, em ruminantes e suínos, o pênis que estava preso à mucosa prepucial é gradualmente liberado. -/- -/- • _____FATORES QUE INFLUENCIAM A PUBERDADE -/- Os animais podem manifestar a puberdade de três formas diferentes. Pode ser tardia e o animal demorar para estar apto a reprodução; precoce e o animal entrar na vida reprodutiva antes do esperado ou pode ser normal e o animal estar com boa conformação e idade. Para tanto, alguns fatores podem interferir à manifestação da puberdade pelos animais como a genética, idade e peso, nutrição, fotoperíodo e o próprio manejo adotado. -/- -/- Genética -/- O genótipo afeta a idade da puberdade, pois algumas raças são anteriores a outras. Nos bovinos, as raças europeias atingem a puberdade antes dos zebuínos, isto é, uma novilha ou novilho da raça holandesa atinge a puberdade primeiro que os animais da mesma idade e do mesmo peso da raça nelore, por exemplo. -/- Da mesma forma, as porcas da raça chinesa Meishan atingem a puberdade por volta dos 115 dias de idade, metade da idade das raças brancas. As ovelhas de raças de corte, da mesma forma, são mais precoces que os produtores de lã. As raças pequenas, da mesma forma, são geralmente mais precoces, pelo menos em bovinos (jersey x guzerá) e em caninos. Os híbridos, por outro lado, apresentam puberdade mais precoce que os puros, devido ao efeito da heterose. Por este motivo, em certas espécies são utilizadas linhas híbridas. -/- -/- Idade e peso -/- A tabela 1 mostra a idade média de início da puberdade em espécies domésticas. O peso vivo (PV) adulto é mais relevante para a idade na puberdade nos ruminantes, enquanto em suínos é menos decisivo. A tabela também apresenta a porcentagem de peso corporal necessária para a puberdade ocorrer de forma natural. -/- -/- Tabela 1: Idade e peso a puberdade das espécies domésticas -/- Espécie -/- Fêmea (meses) -/- Macho (meses) -/- PV adulto (%) -/- Gado holandês -/- 11 (8-15) -/- 11 (7-18) -/- 30-40 -/- Gado brahman -/- 19 -/- 17 -/- 45-60 -/- Caprinos e ovinos -/- 7 (4-14) -/- 7 (6-9) -/- 40-60 -/- Suínos -/- 6 (5-7) -/- 7 (5-8) -/- 75 -/- Equinos -/- 18 (12-19) -/- 14 (10-24) -/- - -/- Caninos -/- 12 (6-24) -/- 9 (5-12) -/- - -/- Felinos -/- 8 (4-12) -/- 9 (8-10) -/- - -/- Fonte: VALENCIA, 2018. -/- Nutrição -/- Como a puberdade está relacionada à taxa de crescimento, os animais que recebem uma nutrição adequada e balanceada apresentarão puberdade em uma idade mais jovem, ou seja, mais precocemente; ao contrário, a puberdade será tardia nos animais que sofreram restrição alimentar, que estão desnutridos ou que tiveram seu crescimento afetado por doenças infecciosas ou parasitárias. A superalimentação também não é recomendada, pois pode alterar tanto os sinais que são recebidos pelo hipotálamo quanto sua resposta a eles. -/- Logo, o manejo alimentar adotado deve estar de acordo com as normas estabeleci-das pelos especialistas na área, principalmente no tocante as exigências nutricionais que devem servir de regra na propriedade. Sendo assim, os animais entrarão em puberdade com as taxas de alta qualidade o que afetará positivamente na prole futura e dará retorno lucrativo ao proprietário. -/- -/- Época do ano (Fotoperíodo) -/- Em fêmeas de espécies sazonais, como ovelhas e cabras, existem certos requisitos de fotoperíodo que devem ser atendidos para que a puberdade ocorra. Nessas espécies, um período de exposição a dias longos é necessário, seguido por outro de exposição a dias curtos. Na verdade, os cordeiros e cabritos nascidos fora da estação, mesmo que tenham atingido o peso necessário, terão que esperar até o outono seguinte (a estação reprodutiva) para atingir a puberdade. Os machos, por outro lado, não estão sujeitos a essas limitações nos requisitos fotoperiódicos para apresentar a puberdade. -/- Em novilhas nascidas no outono, por outro lado, a puberdade ocorre antes de um ano de idade, no verão seguinte ou no início do outono, mais cedo do que nas nascidas na primavera, devido à exposição a longos dias durante os primeiros seis meses do ano após seu nascimento aceleram seu crescimento. Em gatos, o aumento do fotoperíodo também acelera o início da puberdade. -/- Em ovelhas e novilhas, a primeira ovulação que ocorre ao entrar na puberdade é silenciosa; ou seja, não é acompanhada de sinais comportamentais de cio como a micção frequente, inchamento da vulva, uma montando a outra e deixando-se montar etc., pois para que esse comportamento se manifeste, o sistema nervoso necessita de uma pré-sensibilização com progesterona que não estará presente até o próximo ciclo, após o desenvolvimento do corpo lúteo vindo desta primeira ovulação. -/- -/- Sociossexual -/- A interação de indivíduos da mesma espécie ou a presença ou ausência de sinais de bioestimulação, como feromônios, pode afetar o período de puberdade. A puberdade, por exemplo, é atrasada em porcas criadas individualmente em comparação com porcas criadas em grupo. Além disso, na porca, ovelha e cabra, a exposição ao macho estimula as fêmeas e a puberdade aparece mais precocemente. -/- -/- Manejo -/- Certas práticas de manejo podem acelerar a puberdade, especialmente no período pré-púbere. Em porcas próximas à puberdade, por exemplo, o estresse causado por procedimentos, como o transporte de um local para outro ou a exposição ao macho, faz com que apareça o estro em torno de sete dias após a realização do manejo mencionado. -/- -/- • _____ESTACIONALIDADE REPRODUTIVA -/- A estacionalidade ou sazonalidade reprodutiva é uma estratégia evolutiva que se desenvolveu em algumas espécies; tende a tornar a reprodução mais eficiente. Nos países de latitudes distantes do equador, o objetivo é que as crias nasçam na primavera, época do ano mais favorável, graças à abundância de alimentos e às amenas condições climáticas. No caso da ovelha, cuja gestação dura cinco meses, para que os partos ocorram na primavera, ela deve engravidar no outono (figura 1), quando os dias são curtos; enquanto a égua, tendo uma gestação de aproximadamente 11 meses, deve conceber na primavera, quando os dias são longos; assim, o parto ocorrerá na primavera do ano seguinte (figura 2). -/- -/- Figura 1: Esquema ilustrativo da estacionalidade reprodutiva na espécie ovina. Fonte: PIRES et al., 2011. -/- -/- Esta característica evolutiva desenvolvida pela seleção natural na maioria das espécies silvestres e ainda é conservado por algumas espécies domésticas, como ovelhas, cabras, cavalos e gatos. Em bovinos e suínos, ao contrário, a domesticação levou à perda quase total da estacionalidade reprodutiva. -/- A estacionalidade reprodutiva é codificada nos genes; significa então que a seleção natural favoreceu a propagação de genes que permitiam acoplar a hora do nascimento com a melhor época do ano, por isso passou a ser considerada um método anticoncepcional natural. -/- -/- Figura 2: ciclo reprodutivo anual em espécies estacionais; onde são apresentados os períodos de gestação e a forma como se agrupam os nascimentos, independentemente da época reprodutiva da espécie, em vermelho as fêmeas estão apresentando estro ou cio. Fonte: VALENCIA, 2018. -/- -/- Fotoperíodo -/- Para sincronizar o período fértil com a época mais favorável do ano, a maioria das espécies sazonais usa o fotoperíodo (quantidade de luz diária ao longo do ano). -/- Este sinal ambiental é seguro, confiável e se repete a cada ano. Ovinos e caprinos se reproduzem na época do ano em que os dias são curtos e os equinos quando são longos. O grau de sazonalidade depende da origem da raça. As raças nativas de países localizados em latitudes elevadas (> 50°,ovelhas: soay, blackface, suffolk; cabras: saanen, alpino francês, toggenburg; equinos: puro-sangue, hanoveriano) terão uma estacionalidade mais acentuada do que as latitudes menores ou mediterrâneas (ovelhas: merino; cabras: murciana granadina; equinos: quarto de milha). Também existem raças de latitudes próximas ao Equador cuja estacionalidade é baixa ou nula (ovelhas: raças de pelo, crioulas; cabras: raças africanas e asiáticas) (tabela 2). -/- Para a maioria das raças de ovinos e caprinos, a estação reprodutiva começa no final do verão e início do outono; caracteriza-se pela apresentação de ciclos estrais sucessivos, e termina no final do inverno, quando se inicia o anestro, que se caracteriza pela ausência de ovulação. Nos equinos, ocorre o contrário, uma vez que a estação reprodutiva ocorre na primavera e no verão. -/- -/- Tabela 2: Relação entre a origem da raça e o grau de estacionalidade ou sazonalidade -/- Espécie -/- Alta -/- Média -/- Baixa -/- Ovinos -/- Suffolk, raças britânicas de lã e corte -/- Merino -/- Pelibuey, crioulas -/- Caprinos -/- Saanen, alpino, toggenburg -/- Murciana granadina -/- Crioula -/- Equinos -/- Puro-sangue, hanoveriano, quarto de milha -/- - -/- Crioula, burros -/- Fonte: VALENCIA, 2018. -/- -/- Mecanismo neuroendócrino da estacionalidade -/- Durante o período de anestro, o fotoperíodo exerce efeito inibitório sobre o centro tônico do GnRH no hipotálamo, diminuindo a frequência de pulso. Consequentemente, a pulsatilidade do LH também diminui, que agora é incapaz de induzir a maturação folicular, o aumento dos estrogênios, o pico pré-ovulatório de LH e, portanto, a ovulação. -/- Isso ocorre porque durante o anestro a sensibilidade do hipotálamo ao mecanismo de feedback negativo dos estrogênios e de outros fatores de origem não gonodal é aumentada. Ao aproximar-se da estação reprodutiva, a sensibilidade hipotalâmica diminui e o aumento da pulsatilidade do GnRH causa as mudanças que culminam na ovulação. Portanto, o mecanismo endócrino do anestro estacional é semelhante ao do anestro pré-púbere e de alguns outros tipos de anestro. -/- A estacionalidade é um bom exemplo da interação entre o meio ambiente e o sistema neuroendócrino, pois o organismo é capaz de traduzir um sinal externo ambiental, como o fotoperíodo, em um sinal hormonal interno, que neste caso é a melatonina. -/- A glândula pineal secreta melatonina durante as horas de escuridão. Os animais sazonais apresentam um ritmo reprodutivo endógeno, que é regulado por janelas de fotossensibilidade, determinadas por mudanças na duração do dia. O sinal luminoso é captado pela retina e conduzido, via nervo, pelo trato retino-hipotalâmico até o núcleo supraquiasmático, que funciona como o relógio biológico do corpo. Daí o sinal viaja para o núcleo para-ventricular, depois para o gânglio cervical e, finalmente, para a glândula pineal, que responde secretando melatonina (figura 3). -/- Nas ovelhas, a estação reprodutiva começa quando a duração do dia diminui e, naturalmente, a noite aumenta; na égua, ocorre quando os dias se alongam. -/- A primavera não é necessariamente a melhor época do ano em todas as regiões do globo. Nas latitudes tropicais, a primavera coincide com a seca e não com a abundância de forragem, aspecto a ser levado em consideração ao programar a reprodução. -/- Outro ponto importante a considerar é que as raças europeias sazonais mantêm sua estacionalidade no Brasil. -/- -/- Figura 3: Mecanismo do fotoperíodo em ovinos e a melatonina. Fonte: HAFEZ, 2004. -/- -/- Estacionalidade no macho -/- O macho é menos afetado que a fêmea pelas mudanças típicas de cada época do ano, já que sua função reprodutiva não é necessariamente interrompida durante o anestro ou repouso sexual, embora a produção de hormônios reprodutivos, tamanho e tônus testicular, a libido, as características qualitativas e quantitativas do ejaculado e a fertilidade do esperma podem ser diminuídas. O nível de afetação depende do grau de sazonalidade da raça e da latitude. Por fim, os efeitos do fotoperíodo devem ser separados dos nutricionais, que também variam com a época do ano. -/- -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- -/- BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. -/- BROOKS, P. H.; COLE, D. J. A. The effect of the presence of a boar on the attainment of puberty in gilts. Reproduction, v. 23, n. 3, p. 435-440, 1970. -/- CARDOSO, Daniel; DE PAULA NOGUEIRA, Guilherme. Mecanismos neuroendócrinos envolvidos na puberdade de novilhas. Arquivos de Ciências Veterinárias e Zoologia da Unipar, v. 10, n. 1, 2007. -/- CHEMINEAU, P. et al. Induction and persistence of pituitary and ovarian activity in the out-of-season lactating dairy goat after a treatment combining a skeleton photoperiod, melatonin and the male effect. Reproduction, v. 78, n. 2, p. 497-504, 1986. -/- CLARKE, Iain J. et al. Kisspeptin and seasonality in sheep. Peptides, v. 30, n. 1, p. 154-163, 2009. -/- CORTEEL, J. M. Production, storage and insemination of goat semen. In: Management and Reproduction in Sheep and Goats Symposium, Madison, Wis. (USA), 1977. University of Wisconsin, 1977. -/- CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. -/- CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. -/- DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. -/- DÝRMUNDSSON, Ó. R.; LEES, J. L. Effect of rams on the onset of breeding activity in Clun Forest ewe lambs. The Journal of Agricultural Science, v. 79, n. 2, p. 269-271, 1972. -/- EBLING, F. J. P.; FOSTER, D. L. Photoperiod requirements for puberty differ from those for the onset of the adult breeding season in female sheep. Reproduction, v. 84, n. 1, p. 283-293, 1988. -/- FIELDS, Michael J.; SAND, Robert S.; YELICH, Joel V. (Ed.). Factors affecting calf crop: Biotechnology of reproduction. CRC Press, 2001. -/- HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. -/- HUGHES, P. E.; PHILIP, G.; SISWADI, R. The effects of contact frequency and transport on the efficacy of the boar effect. Animal Reproduction Science, v. 46, n. 1-2, p. 159-165, 1997. -/- KARSCH, FRED J. et al. Neuroendocrine basis of seasonal reproduction. In: Proceedings of the 1983 Laurentian Hormone Conference. Academic Press, 1984. p. 185-232. -/- LINCOLN, G. A.; SHORT, R. V. Seasonal breeding: nature's contraceptive. In: Proceedings of the 1979 Laurentian Hormone Conference. Academic Press, 1980. p. 1-52. -/- MELLO, Raquel Rodrigues Costa. Puberdade e maturidade sexual em touros bovinos. Agropecuária Científica no Semiárido, v. 10, n. 3, p. 11-28, 2015. -/- MEZA‐HERRERA, C. A. et al. Neuroendocrine, metabolic and genomic cues signalling the onset of puberty in females. Reproduction in Domestic Animals, v. 45, n. 6, p. e495-e502, 2010. -/- MONTEIRO, Claudia Dias; BICUDO, Sony Dimas; TOMA, Hugo Shisei. Puberdade em fêmeas ovinas. Pubvet, v. 4, p. Art. 850-857, 2010. -/- OLIVEIRA, Daniel de Jesus Cardoso de. Mecanismos neuroendócrinos envolvidos na puberdade de novilhas da raça Nelore. 2006. Tese de Doutorado em Medicina Veterinária. Universidade de São Paulo. -/- OLSTER, DEBORAH H.; FOSTER, DOUGLAS L. Control of gonadotropin secretion in the male during puberty: a decrease in response to steroid inhibitory feedback in the absence of an increase in steroid-independent drive in the sheep. Endocrinology, v. 118, n. 6, p. 2225-2234, 1986. -/- PIRES, Bruno Carlos et al. Métodos para elevar o ritmo reprodutivo dos ovinos. PUBVET, Londrina, V. 5, N. 11, Ed. 158, Art. 1071, 2011. -/- PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. -/- RAMIREZ, Domingo V.; MCCANN, S. M. Comparison of the regulation of luteinizing hormone (LH) secretion in immature and adult rats. Endocrinology, v. 72, n. 3, p. 452-464, 1963. -/- ROSER, JANET F.; HUGHES, JOHN P. Seasonal effects on seminal quality, plasma hormone concentrations, and GnRH‐induced LH response in fertile and subfertile stallions. Journal of andrology, v. 13, n. 3, p. 214-223, 1992. -/- SALOMONI, Eduardo et al. Idade e peso à puberdade em fêmeas de corte puras e cruzas em campo natural. Pesquisa Agropecuária Brasileira, v. 23, n. 10, p. 1171-1179, 1988. -/- SMITH, Jeremy T.; CLARKE, Iain J. Seasonal breeding as a neuroendocrine model for puberty in sheep. Molecular and cellular endocrinology, v. 324, n. 1-2, p. 102-109, 2010. -/- VALENCIA, J. Pubertad y estacionalidad reproductiva. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. -/- WHITTEMORE, Colin et al. The science and practice of pig production. Blackwell Science Ltd, 1998. -/- -/- -/- FIXAÇÃO DO ASSUNTO -/- -/- 1. Defina o que é puberdade e como ela manifesta-se no corpo. -/- -/- -/- 2. Diferencie puberdade de maturidade sexual. -/- -/- -/- 3. Quais são os fenômenos que devem ser observados em fêmeas que estão entrando na puberdade? -/- -/- -/- 4. Qual o papel do GnRH e do IGF-I sobre a puberdade? -/- 5. Um produtor possui duas ovelhas e um carneiro reprodutor, as ovelhas possuem idade e peso, mas não manifestaram seu primeiro cio, quais elementos que você recomenda ao produtor para induzir a ciclicidade dessas fêmeas? -/- -/- -/- 6. De forma geral, quais os fatores que podem afetar a entrada na puberdade dos animais? -/- -/- -/- 7. Defina estacionalidade reprodutiva. -/- -/- -/- 8. O que é fotoperíodo e qual sua importância para a reprodução dos animais domésticos? -/- -/- -/- 9. Defina as relações existentes entre a origem da raça e o grau de estacionalidade e como tais teorias se aplicam ao rebanho brasileiro. -/- -/- -/- 10. Qual o papel da glândula pineal para a estacionalidade reprodutiva? -/- -/- -/- 11. Por que os machos são menos afetados pela sazonalidade reprodutiva do que as fêmeas? -/- -/- -/- 12. Sabendo-se sobre os termos de puberdade e estacionalidade e as características de ambos nas espécies domésticas, pede-se: um criador deseja obter 5 novas crias ovinas e 5 caprinas em seu plantel até o final do ano, para tanto ele ainda possui um ano e está na estação do verão, sabendo-se sobre a estacionalidade dessas espécies elabore um projeto reprodutivo de modo que essas 10 fêmeas possam gerar uma cria cada até a primavera. -/- -/- Dados: 10 fêmeas gerando 10 crias. 1 macho ovino e 1 caprino. Fêmeas com 1 ano de idade (2º cio) e peso corporal = 55% do peso adulto. Verão de 2020 para parir na primavera de 2020. (shrink)
COMPORTAMENTO SEXUAL DOS ANIMAIS OBJETIVO O estudante explicará a conduta sexual de fêmeas e machos de diferentes espécies domésticas para detectar a fase de receptividade sexual, com a finalidade de programar de maneira adequada a monta ou a inseminação artificial. A observação da conduta sexual dos animais é indispensável para o sucesso da estação reprodutiva em uma determinada propriedade. Logo, o estudante obterá o alicerce necessário sobre os pontos teóricos e práticos a serem observados para a seleção dos animais aptos (...) para a reprodução, além dos meios de identificação comportamental dos animais no que se refere a atividade cíclica das fêmeas. • _____INTRODUÇÃO O comportamento sexual característico de fêmeas e machos devem-se, por um lado, ao ambiente endócrino do organismo e, por outro, a uma influência da aprendizagem obtida ao longo da vida. Este comportamento é indispensável para alcançar a cópula em um momento apropriado, a fim de alcançar uma fertilização que culmina com a gestação. Conhecer as características do comportamento reprodutivo das diferentes espécies domésticas é de grande utilidade para poder determinar o momento ideal de serviço nas fêmeas, bem como para avaliar a capacidade reprodutiva dos machos; também serve para detectar algumas alterações que modificam o comportamento sexual normal. No caso das fêmeas, o comportamento sexual distintivo está limitado ao estágio do ciclo estral conhecido como estro, enquanto nos machos, a atividade reprodutiva pode acontecer a qualquer momento. Nas fêmeas e nos machos das espécies sazonais, o comportamento sexual é suprimido ou diminuído, respectivamente, durante as épocas de anestro. Existem espécies em que certas mudanças observáveis no comportamento ou na genitália são suficientes para identificar as fêmeas no cio. Outras espécies, entretanto, requerem necessariamente a presença do macho para poder expressar seu comportamento estral e somente quando ele estiver presente será possível estabelecer o momento em que a fêmea está em estro. Em determinadas propriedades, o macho reprodutor somente é utilizado para cobrir as fêmeas em cio; o trabalho de detecção das fêmeas que pode ser desgastante para o reprodutor é realizado por um outro macho conhecido como rufião. Esse animal não cobre as fêmeas, apenas é utilizado para a observação de fêmeas aptas à monta. É comum que, quando se fala em comportamento sexual, seja dada mais importância à fêmea do que ao macho, pois seu comportamento é aquele que se limita a períodos curtos, além de ser aquele que permitirá a cópula; mas os machos também têm uma participação muito ativa, pois além de atrair e detectar as fêmeas no cio, devem ser capazes de realizar a cópula com sucesso. Através da conduta sexual dos machos é observada sua eficiência reprodutiva, isto é, se ele possui a capacidade de detecção e cobrição padrão esperada de um reprodutor. Se as observações forem negativas, o ideal é a realização de um exame andrológico. • _____ETAPAS DO COMPORTAMENTO SEXUAL O comportamento sexual feminino possui três finalidades: atrair o macho (atração) por meio de sinais e da busca ativa do mesmo, estimular o macho para realizar a cópula (proceptividade), ao qual alcançam exibindo-se ante o mesmo, e facilitar a cópula (receptividade) ao permanecer imóvel, realizando a lordose (figura 1) e o movimento lateral da cauda. Figura 1: reflexo de lordose na vaca e na gata, ambas em cio. Os machos também apresentam três estágios comportamentais; na primeira, procuram ativamente as fêmeas, realizam atividades de cortejo, se aproximam da fêmea e se estimulam sexualmente (fase pré-copulatória) (figura 2). Assim que detectam uma fêmea no cio, realizam a monta, que inclui movimentos pélvicos, penetração e ejaculação (fase copulatória). No final, eles exibem um estágio de descanso e desinteresse pela fêmea no cio, conhecido como estágio pós-copulador ou refratário. Figura 2: comportamento sexual de um macho caprino ante uma fêmea. A etapa pré-copulatória consiste na aproximação do macho, no ato de fugar que é o de cheirar a vulva da fêmea. Quando a fêmea urina o macho cheira e produz o reflexo de flehmen. Por último o macho escoiceia a fêmea para depois realizar a monta na etapa copulatória. • _____ESTIMULAÇÃO SEXUAL A estimulação sexual é um componente essencial para que o comportamento sexual ocorra. Como parte desse estímulo, machos e fêmeas de algumas espécies secretam substâncias voláteis conhecidas como feromônios fora do corpo, que exercem sua ação sobre outros indivíduos da mesma espécie. Essas substâncias são detectadas pelo órgão vomeronasal (figura 3), também conhecido como órgão de Jacobson; localizado no osso vômer, entre o nariz e o céu da boca; que possui dois dutos nasopalatinos cujas aberturas estão localizadas atrás do lábio superior. A superfície desses dutos e do órgão é recoberta por um epitélio com neurônios bipolares sensoriais que captam feromônios e enviam informações, por meio de um estímulo nervoso, ao bulbo olfatório acessório e para o hipotálamo. Para facilitar a entrada de feromônios no órgão vomeronasal, os ruminantes machos e equinos, bem como algumas fêmeas, realizam o reflexo de Flehmen (figura 4), que consiste em um movimento facial em que o lábio superior é levantado para expor a abertura dos dutos nasopalatinos. Determinou-se que as fêmeas produzem feromônios que são secretados na urina, bem como no muco cervical e vaginal, a fim de atrair o macho e promover sua atividade sexual; estimulação conhecida como efeito feminino indireto. Esses feromônios também podem estimular outras fêmeas; na verdade, foi visto que as fêmeas que estão juntas sincronizam a apresentação de seu estro e podem até iniciar a estação reprodutiva juntas. Este fenômeno é conhecido como efeito feminino-feminino ou efeito feminino direto. Figura 3: olfateio da genitália pelo macho. Aqui o macho é atraído pelo feromônio que a fêmea produz e exala pela vagina. Figura 4: movimento do lábio superior típico do reflexo de Flehmen. Os machos sexualmente ativos, por sua vez, também emitem feromônios, que podem ser detectados na urina, na secreção de algumas glândulas sebáceas, nas glândulas ante-orbitais de carneiros e, no caso de porcos, na saliva (figura 5). Essas emissões são dependentes de andrógenos, logo os machos castrados não conseguem produzi-las. Esses feromônios, sinergicamente com as vocalizações e o comportamento do macho, exercem um efeito bioestimulante eficiente conhecido como efeito macho, que é uma alternativa ecológica e econômica para a manipulação do ciclo estral de fêmeas domésticas. O efeito macho tem sido usado com sucesso para esse fim em ovinos, caprinos, suínos e, em menor medida, em bovinos. Figura 5: salivação em reprodutores suínos, com o qual estimulam as fêmeas. Com o efeito macho, é possível causar um aumento na frequência de secreção dos pulsos de LH, o que acelera o início da atividade reprodutiva nas fêmeas durante os períodos pré-púbere, estacional ou pós-parto; também prolonga a estação reprodutiva em fêmeas sazonais. Há não mais de uma década, considerava-se que esse efeito só funcionava em tempos de transição para a estação reprodutiva ou para o anestro; agora sabemos que os machos podem estimular as fêmeas mesmo durante anestro profundo, que ocorre desde que sejam estimulados e exibam comportamento sexual suficiente para interagir com as fêmeas. É importante notar que quando as fêmeas iniciam sua atividade reprodutiva, o efeito macho também pode ser usado para sincronizar a apresentação do cio e da ovulação. O efeito macho é mais eficiente quando é um estímulo novo, pois a introdução de um macho desconhecido, ou com o qual as fêmeas não tiveram contato anterior, é suficiente para causar ciclidade independentemente de estarem em coexistência com outro macho; este detalhe é importante visto que se considerava anteriormente que as fêmeas tiveram que permanecer completamente isoladas de todos os machos por, pelo menos, duas semanas. Foi constatado, inclusive, que toda vez que as fêmeas são expostas a um novo macho, ocorre um aumento na frequência dos pulsos de LH, com a consequente ovulação, ainda que a exposição ao macho não seja permanente ou constante. Foi sugerido que a presença intermitente de machos, algumas horas a cada 12 horas, é suficiente para estimular as fêmeas. Em ovelhas, foi descrito que a ovulação ocorre entre 50 e 56 h após o primeiro contato com o macho, variando de 30 a 72 h, tempo que pode dobrar quando se trata de animais pré-púberes. • _____DEFINIÇÃO DE ESTRO A palavra estro vem do grego oistros, que significa exaltação ou desejo desenfreado e se refere ao comportamento errático e nervoso que as vacas adotam quando são picadas pela mutuca ou mosca do estábulo (família Oestridae). O estro é uma fase reprodutiva que faz parte do ciclo estral das fêmeas de todos os mamíferos domésticos. É a fase mais fácil de reconhecer dentro deste ciclo, porque mudanças características são observadas no comportamento, nos ovários e nos órgãos genitais internos e externos. • _____CARACTERÍSTICAS DO ESTRO O estro é considerado a partir das características comportamentais das fêmeas, é a única fase do ciclo estral em que a fêmea mostra interesse pelo macho, aceitando o acasalamento e a cópula; por isso é definido como o período de receptividade sexual. O sinônimo utilizado com mais frequência é o cio. Se o foco de estudo dessa fase são as alterações que ocorrem no útero, o estro caracteriza a fase proliferativa, já que os estrogênios estão elevados, o que promove a proliferação tanto do endométrio quanto das glândulas endometriais. Nos genitais também ocorrem modificações que visam atrair o macho e favorecer a cópula, entre outras estão a hiperemia e o edema vulvar, além da secreção de muco cervical e vaginal (figura 6). Do ponto de vista dos processos ovarianos, o estro é uma fase que se classifica dentro da fase folicular do ciclo estral, ou seja, quando ocorre o desenvolvimento folicular. Os eventos endócrinos correspondentes podem ser consultados no trabalho sobre a endocrinologia reprodutiva . É necessário ressaltar que na maioria das espécies domésticas o comportamento estral ocorre quando as concentrações de estradiol são elevadas. A exceção pode ser observada na cadela, cujos níveis máximos de estradiol ocorrem durante o proestro, de forma que, quando o estro começa, as concentrações desse hormônio começam a diminuir. Esse declínio continua durante o estro, culminando quando as concentrações de estradiol caem para menos de 15 pg/ml. Isso acontece porque nessa espécie o pico de LH ocorre durante a transição do proestro para o estro, de modo que as concentrações de progesterona chegam a cerca de 1 ng/ml quando o comportamento estral começa e continuam a aumentar durante o estro. Figura 6: muco cristalino e fluido, característico de vacas em estro. • _____FATORES QUE PODEM AFETAR A MANIFESTAÇÃO DO ESTRO É importante lembrar que existem diferenças no grau e na forma em que ocorrem a manifestação e a duração do estro nas espécies animais, além da existência de variações individuais. Ainda temos parâmetros médios que podem ser usados para descrever este período em diferentes espécies. Em bovinos, por exemplo, pode-se fazer uma distinção entre bovinos especializados na produção de carne e bovinos leiteiros, onde a intensidade com que o estro se manifesta é menor no primeiro grupo, principalmente quando se trata de bovinos zebuínos. Em estudos genéticos realizados com bovinos, por outro lado, tem-se considerado que a intensidade da expressão da conduta sexual é uma característica hereditária (h2 = 0,21). Além disso, existe uma grande diversidade de fatores ambientais e sociais que podem modificar a apresentação dos ciclos estrais e a manifestação do comportamento estral. Fotoperíodo O principal regulador da estacionalidade reprodutiva é o fotoperíodo. A influência da mudança das horas do dia na atividade reprodutiva e, portanto, na apresentação do estro é amplamente determinada pela localização geográfica, e é maior à medida que a distância do equador aumenta. O fotoperíodo afeta principalmente as espécies que apresentam estro apenas em uma época do ano, conhecidas como poliéstricas sazonais. Nessas espécies, o fotoperíodo também pode modificar o tempo de início da puberdade. Nutrição Uma deficiência nutricional pode encurtar a estação de acasalamento e até mesmo suspendê-la se a desnutrição for severa. Em bovinos de corte, o reinício da atividade reprodutiva pós-parto ou puberdade também pode ser retardado quando a ingestão nutricional é inadequada. Aspectos sociais A superlotação pode atrasar o início da puberdade em animais jovens ou causar a ausência de ciclos estrais em adultos. Os efeitos fêmea e macho como estimulantes da ciclicidade também devem ser levados em consideração. Hierarquia Observado em cães cujas matilhas têm uma classificação hierárquica bem estabe-lecida, na qual os machos subordinados não têm permissão para acasalar com as fêmeas dominantes. Este comportamento é observado até mesmo em cães domésticos nos quais uma cadela dominante não permite ser montada facilmente, mesmo apresentando estro. Da mesma forma, em bovinos zebuínos, as vacas dominantes não aceitam que outras fêmeas as montem o que pode dificultar a detecção de estro a campo. Tipo de alojamento Quanto mais intensa a acomodação, menor a manifestação do comportamento sexual, pois há menos espaço para os animais interagirem entre si. É menos frequente observar as manifestações de estro se o local onde os animais estão alojados for muito grande e eles tiverem que caminhar grandes extensões para encontrar um animal com o qual possam se relacionar. Problemas nos membros Existem anomalias, principalmente nos membros posteriores, que impedem a fêmea de ter comportamento homossexual ou de aceitar a monta, pois causa dor tanto ao montar quanto ao ser montada. •_DURAÇÃO DO ESTRO E A RELAÇÃO COM O MOMENTO DA OVULAÇÃO Foi estabelecido que o pico de LH pode ser um bom preditor do tempo de ovulação, pois há uma alta correlação entre o tempo decorrido do pico de LH e a ovulação. Na Tabela 1 pode-se ver os períodos de duração do estro e o tempo em que o pico de LH e a ovulação ocorrem nas diferentes espécies domésticas. Tabela 1: momento de ovulação em diferentes espécies domésticas e a relação com o pico de LH. Espécie Duração do estro Ovulação Pico de LH até a ovulação (horas) Bovina 18 h (8 a 18 h) 10 h (4 a 16 h) de finalizado o estro 28 (24 a 32) Ovina 24 a 36 h 18 a 24 h após iniciado o estro 24 a 26 Caprina 36 h (24 a 48 h) 30 a 35 h após o início do estro 28 Suína 48 a 72 h 24 a 48 h após o início do estro 40 Equina 7 d (2 a 12 d) 1 a 2 d antes de finalizar o estro -- Canina 9 d (3 a 20 d) 2 a 3 d do início do estro (pode variar) 48 a 60 Felina 7 d (3 a 16 d) Induzida pela cópula 26 a 28 h depois 24 Onde d = dias; h = horas. Vale ressaltar que em equinos o aumento nas concentrações de LH ocorre gradati-vamente; um pico pré-ovulatório agudo não é visto como no resto da espécie, uma vez que o nível máximo desse hormônio é atingido um a dois dias após a ovulação. No entanto, deve-se entender que, no momento da ovulação, as concentrações de LH são altas o suficiente para desencadear a ovulação, como em qualquer outra espécie. A gata também apresenta uma particularidade no que diz respeito à ovulação, já que é um evento induzido pela cópula que estimula a liberação de LH, duas a quatro horas depois. No entanto, foi relatado que, às vezes, o pico de LH de uma única cópula pode ser insuficiente para induzir um nível adequado de LH, causando ovulação apenas em aproximadamente 50% das fêmeas. Por outro lado, verificou-se que entre 30 e 40% das fêmeas podem ovular espontaneamente. Além dos felinos, outras espécies com ovulação induzida são os leporídeos (por exemplo, o coelho e a lebre), os camelídeos (por exemplo a lhama, a alpaca, a vicunha e a camelo fêmea) e os mustelídeos (por exemplo, o visom, o furão e o arminho). • _____MECANISMOS PARA ATRAIR O MACHO Os mecanismos femininos de atração do macho podem ser divididos em dois tipos, de um lado, alterações na genitália externa, que por sua vez são consequência de processos endócrinos e modificações na genitália interna. Por outro lado, mudanças de comportamento, que por sua vez se dividem em dois tipos: cortejo e acasalamento. Mudanças nas genitais É importante observar que nas fêmeas todas as adaptações genitais são mediadas por altas concentrações de estrogênios, entretanto, é interessante notar que os efeitos podem variar de uma espécie para outra. Um padrão típico é o útero ficar túrgido, uma vez que os estrogênios promovem a contração muscular, aumento do suprimento sanguíneo e proliferação das glândulas endometriais; em éguas, ao contrário, os estrogênios fazem com que o útero fique edemaciado e sem tonalidade, enquanto o colo do útero parece relaxado, observações que devem ser consideradas ao realizar a palpação retal e a ultrassonografia. A imagem ultrassonográfica do útero da égua tem a aparência de uma “roda de vagão” (figura 7). Em carnívoros, o útero também apresenta edema durante o estro. Figura 7: imagem de ultrassom de um corte transversal do útero de uma égua em estro; observa-se edema grau 3, que provoca a típica imagem de “roda de carroça”. Fonte: HV-UFRPE. Outro efeito promovido pelos estrogênios é a produção de um muco cervical cristalino com certa viscosidade, que, mesmo quando ocorre em todos os animais, é mais abundante e característico nas vacas e, posteriormente, nas porcas (figura 6). O muco tem por finalidade favorecer a passagem dos espermatozoides para o útero, bem como reter aqueles que não são viáveis para que sejam fagocitados ou eliminados junto com as secreções vaginais. A secreção da cérvix é composta por glicoproteínas; dois tipos principais são reconhecidos: a sialomucina, que faz parte de um muco viscoso produzido nas áreas basais das criptas cervicais, e a sulfomucina, que é um muco altamente viscoso, um produto das células apicais. No caso da cadela, uma secreção com sangue pode ocorrer através da vulva (figura 8), isso se deve a uma diapedese causada por alta permeabilidade vascular em resposta aos estrogênios. A maioria das fêmeas apresentam esse corrimento durante o proestro e cerca de 70% continuarão com ele durante o estro. Uma proporção muito pequena de cadelas pode até continuar a ter secreção serossanguínea durante o início do diestro. Deve-se considerar que, quando a ausência de sangramento é relatada em cadelas, na verdade, pode ser devido à falta de observação, uma vez que pode ser escasso, ou passar despercebido se a mesma lamber com frequência, se a cor do pelo for escura ou possuir pelos muito longos, ou se for em grandes áreas onde a secreção é difícil de observar. Figura 8: aparência vulvar em cadelas. Esquerda: edema e hiperemia. À direita: secreção vulvar com sangue. O grau de hiperemia e edema vulvar varia nas diferentes espécies, sendo muito evidente nas porcas (figura 9). Em contraste, as gatas não têm receptores de estradiol nos lábios vulvares, razão pela qual não manifestam edema vulvar ou hiperemia. O inchaço acentuado e o alargamento da vulva na cadela são característicos da fase de proestro, devido às peculiaridades hormonais do seu ciclo. Na tabela 2 são mostradas as alterações mais comuns que ocorrem na genitália das diferentes espécies de mamíferos domésticos. Figura 9: aparência vulvar em porcas. Esquerda: vulva normal. À direita: hiperemia e edema típicos da fase de estro. Tabela 2: Mudanças características na genitália interna e externa, que ocorrem durante o estro em diferentes espécies domésticas Espécie Genitais externos Genitais internos Bovina Secreção abundante de muco cristalino. Pouco edema vulvar aparente e hiperemia. Turgor uterino Ovina Pouca secreção de muco abundante. Não há sinais muito evidentes. Turgor uterino Caprina Pouca secreção de muco abundante. Não há sinais muito evidentes. Turgor uterino Suína Pouca secreção de muco abundante. Hiperemia e edema vulvar muito aparente. Turgor uterino Equina Edema vulvar; as dobras dos lábios são frouxas. Vulva hiperêmica e com muco. Útero flácido e edematoso. Colo do útero macio e relaxado Canina Pode haver secreção com sangue. Edema vulvar muito aparente, lábios mais macios e alongados. Útero edematoso Felina Não há sinais evidentes. Turgor uterino Fonte: compilação de vários autores. Mudanças comportamentais Foi demonstrado que o comportamento sexual nas fêmeas é determinado pela secreção de estrogênios, principalmente 17β-estradiol, que percorre a corrente sanguínea como um sinal humoral e atinge o sistema nervoso central ao nível do hipotálamo, que possui um grupo de células entre o quiasma óptico e a região pré-óptica anterior, denominado centro sexual. Esses neurônios são responsáveis por transformar o estímulo humoral em um estímulo nervoso, que por sua vez induz o comportamento sexual. Em espécies como ovinos, e em menor grau os bovinos, observou-se que para a manifestação do comportamento estral ocorrer, o cérebro requer uma exposição prévia à progesterona que o sensibiliza para a ação dos estrogênios, que se dá pelas concentrações do ciclo anterior. Por isso, constatou-se que a primeira ovulação da estação reprodutiva ou puberdade (no caso dos bovinos a primeira ovulação pós-parto) ocorre sem manifestação de estro. É até a segunda ovulação que o comportamento normal do estro será observado. Esta condição é conhecida como ovulação silenciosa ou estro silencioso, e é indetectável para o trabalhador, o produtor e o veterinário, e que possui como principal causa os distúrbios nutricionais. Devido nas fêmeas o comportamento sexual se limitar a um curto período de horas ou dias, enquanto nos machos há poucas variações em seu comportamento sexual, aparentemente é ela quem inicia o comportamento de cortejo. Aparentemente, isso se deve ao fato de que, nos machos, o padrão de secreção de testosterona é constante e mostra apenas leves diminuições fora da estação reprodutiva em espécies sazonais. Nos machos, a testosterona é transformada no cérebro em estradiol para produzir o comportamento reprodutivo. Durante a fase de estro ocorrem manifestações comportamentais comuns a todas as espécies, como as seguintes: Aumento geral da atividade física, isso se reflete no aumento da locomoção e que é direcionado à busca do macho; Inquietação e movimento ao menor estímulo; Ingestão diminuída; Diminuição da produção de leite; Aumento gradual da temperatura corporal; Micção frequente na presença do macho: isso é importante, pois os feromônios responsáveis pela atração do macho estão presentes na urina; Vocalizações frequentes, típicas de cada espécie; Atração do macho. Na tabela 3 são apresentadas as características comportamentais mais comuns das fêmeas das diferentes espécies de mamíferos domésticos. Tabela 3: Comportamentos característicos durante o estro em diferentes espécies Espécie Conduta Bovina Monta entre fêmeas (conduta homossexual). Batidas antes da monta (figura 10). Aumento nas vocalizações. Ovina Movimentação da cauda. Pode haver conduta homossexual. Cabeça para trás em busca do macho. Caprina Movimento característico da cauda. Pode haver conduta homossexual. Cabeça para trás em busca do macho. Suína Grunhido característico (grunhido de estro). Falsas lutas. Pode haver pequena conduta homossexual. Orelhas eretas e projetadas para trás. Equina Diminuição da agressividade com o macho. Sem conduta homossexual. Mostra a área genital ante o macho e everte o clitóris. Espelhamento: contrações rítmicas dos lábios vulvares. Canina Reflexos contráteis na vulva e levantamento da cauda, inclinando-se para o lado, na presença do macho. Lambidas frequentes da região vulvar. Felina Inquietação. Chafurdamento. Miados característicos. Esfrega-se contra os objetos. Fonte: compilação de vários autores. O comportamento homossexual em fêmeas foi extensivamente estudado em bovinos (figura 10), por ser um dos sinais mais evidentes e importantes da manifestação do estro; ocorre em cerca de 70% dos animais e sua expressão é altamente influenciada pela hierarquia social do rebanho. Deve-se levar em consideração que os animais que estão em estro precisam interagir uns com os outros para expressar esse comportamento, sendo observada maior atividade quando há cerca de 20 fêmeas em estro. Sabe-se também que o tipo de instalações é imprescindível para a manifestação do comportamento homossexual, visto que os animais encontrados nos piquetes montam mais do que os alojados em instalações intensivas, isto fica ainda mais evidente quando o piso destas últimas é escorregadio. As montas entre fêmeas são observadas com maior frequência à noite, ocorrendo cerca de 70% das montas entre as sete da noite e as sete da manhã, o que se explica pelo fato de que durante estas horas os animais não são submetidos a nenhum manejo rotineiro, como ordenha, alimentação ou limpeza das instalações, além disso, acredita-se que os animais preferem montar nos períodos mais frios do dia, principal-mente em criações tropicais. Em bovinos de corte, sugere-se que tanto a fêmea que monta quanto a que é montada estejam em cio; ao contrário do gado leiteiro, em que se considera que o animal que monta está perto do cio, enquanto o que é montado está em cio. Figura 10: comportamento sexual em bovinos. À esquerda: batendo. À direita: comportamento homossexual. No caso de cadelas, deve-se levar em consideração que o comportamento homossexual está associado à hierarquia e dominância, mas não à manifestação do comportamento estral. Além disso, algumas fêmeas muito dominantes não permanecem imóveis na frente do macho, nem permitem que ele a monte, mesmo quando estão em estro. Na égua, uma característica do cio é o espelhamento, que consiste na abertura e fechamento dos lábios vulvares de forma rítmica, geralmente acompanhada pela eversão do clitóris (figura 11). Este último sempre ocorre durante a micção, mas neste caso a fêmea o faz na presença do macho, mesmo quando ela não está urinando. Uma vez que a fêmea no cio está na frente de um macho, ela exibe um comportamento receptivo; a atitude da fêmea é passiva e se caracteriza em todas as espécies pela imobilidade diante da monta do macho, considerada o sinal definitivo do estro. Em geral, a fêmea também adota uma postura diferenciada conhecida como lordose, pois arqueia as costas para baixo, ao mesmo tempo em que levanta a cauda e inclina-a, levantando também os lábios vulvares para promover a cópula. A descrição acima é muito típica dos ruminantes, da cadela e da gata. Na égua, ao contrário, a posição anterior à cópula implica em curvar a coluna para cima (cifose) e baixar a garupa ou inclinar a pelve. • ____COMPORTAMENTO SEXUAL DOS MACHOS O comportamento sexual do macho é muito importante, pois estima-se que o macho dominante pode ser responsável por até 80% dos nascimentos em um rebanho. Um fator a ser considerado é a libido, definida como a “disposição e entusiasmo” de um macho para tentar montar e servir a uma fêmea. No caso dos bovinos, estima-se que cerca de 21% dos machos em que a libido é avaliada não conseguem reproduzir. Isso se torna ainda mais crítico quando se leva em consideração que a libido baixa é hereditária e reproduzível, além de estar associada à puberdade tardia nas filhas. Figura 11: sinais feitos por éguas no cio. À esquerda: espelhamento. À direita: eversão do clitóris. Nos machos, as montas sem penetração e ejaculação durante a fase de cortejo (conhecidas como montas falsas) são muito importantes para estimular o desejo sexual e aumentar a quantidade e a qualidade do sêmen que mais tarde será ejaculado durante a cópula (figura 12). No caso dos touros, sabe-se que o macho monta na fêmea em média seis vezes antes de realizar a primeira cópula, embora o número de montas falsas seja reduzido nas ejaculações subsequentes. Figura 12: comportamento de um cachaço diante de uma fêmea no cio. À esquerda: olfateio dos flancos e salivação do macho. À direita: ereção e retirada do pênis. Na tabela 4 são listados os comportamentos típicos de machos de espécies de mamíferos domésticos durante o cortejo, detecção de fêmeas no cio e cópula. Tabela 4: Comportamentos característicos durante o cortejo e cópula em machos das diferentes espécies domésticas Espécie Conduta pré-cópula Conduta copulatória Bovina Reflexo de Flehmen; cheira e lambe a vulva; inquietude; esfrega o pescoço ou o focinho na fêmea; tentativa de montas. Salto ou golpe do rim; ejaculação precoce: 1 a 3 segundos pós-penetração. Ovina Reflexo de Flehmen; empurram e monta a fêmea; vocalizações; tentativa de montas; inquietude; mantém-se com os membros anteriores à garupa da fêmea (figura 13). Salto ou golpe do rim; ejaculação precoce: 1 a 2 segundos pós-penetração. Caprina Cheira a urina da fêmea e realiza o reflexo de Flehmen; urina a barba e o peito; apalpa o chão em volta da fêmea; vocalizações; língua dentro e fora da boca; cheira e bate na área genital; se sustenta com os membros anteriores à garupa da fêmea. Salto ou golpe do rim; ejaculação precoce: 1 a 2 segundos pós-penetração. Suína Cheira a região genital e dos flancos (figura 12); tentativas de montas; contato naso-nasal ou naso-genital; vocalizações; range os dentes e move as mandíbulas lateralmente; salivação e micção frequente; morde suavemente as orelhas e a cabeça da fêmea. Ereção depois da monta; contrações testiculares muito aparentes durante a ejaculação; ejaculação lenta: 5 a 20 minutos pós-penetração. Equina Vocalizações; reflexo de Flehmen; morde o pescoço da fêmea. Sinalização; movimento lateral da cauda durante a ejaculação; movimentos de fricção; ejaculação média: 20 a 60 segundos pós-penetração. Canina Tentativas de montas; reprodução. O macho se vira e fica abotoado durante a ejaculação; ejaculação lenta: 10 a 30 minutos, mas pode chegas até 50 pós-penetração. Felina Morde o pescoço da fêmea. A fêmea realiza o “ronco pós-coito” quando o macho desmonta. Fonte: compilação de vários autores. Depois de haver realizado com sucesso um serviço (um acasalamento acompanhado de ejaculação dentro do aparelho reprodutor da fêmea), os machos apresentam a fase pós-copulatória, também conhecida como período refratário, em que mostram desinteresse pela fêmea com quem acabam de realizar serviço. Esta fase tem duração variável entre os indivíduos, mas foi visto que eles podem retomar a atividade pré-copulatória e copulatória mais rapidamente se forem apresentados a uma fêmea diferente, fenômeno conhecido como “efeito Coolidge”. Os machos geralmente são capazes de realizar mais de uma cópula por dia antes de atingir a saciedade sexual. O número de cópulas varia entre espécies e indivíduos, portanto, suínos e equinos realizam em média três montas, enquanto pequenos ruminantes realizam 10 e bovinos até 20. Uma vez saciado, o macho pode parar de montar por um ou mais dias, mesmo que haja estímulo suficiente para induzir o comportamento sexual. Figura 13: monta em ovinos. É mostrado como o macho apoia os membros anteriores na garupa da fêmea. Nessa imagem o macho detectou o cio, por isso está usando um avental para impedir a penetração. • ____DETECÇÃO DE ESTROS (CIOS) A detecção adequada do estro é imprescindível para um bom manejo reprodutivo e produtivo dos animais do rebanho, pois é essencial determinar o momento ideal da monta ou inseminação artificial, que consequentemente atinge bons índices de fertilidade. A falha na detecção do estro (considerada uma das principais causas de perdas econômicas na pecuária), ocorre em função da baixa eficiência, bem como da precisão, dos métodos utilizados. A tabela 5 resume as consequências da falha na detecção do estro em vacas. Tabela 5: Consequências de falhas na eficiência e precisão dos testes utilizados para o diagnóstico de cio em bovinos Falha Eficiência (vacas não detectadas) Precisão (vacas mal detectadas) Aumenta-se Número de fêmeas vazias; Número de dias abertos; Intervalo entre partos. Números de serviços por concepção; Número de doses de sêmen. Diminui-se Número de crias por ano; Produção cárnea ou láctea. Fertilidade por serviço. Fonte: anotações de aulas na UFPB. Para implementar um programa de detecção de estro, é necessário ter alguns requisitos essenciais, como: A identificação dos animais que deve ser realizada de forma clara de modo que o observador possa distingui-los claramente. Os registros reprodutivos que permitem estimar a fase do ciclo estral em que os animais se encontram e ajudam a discernir os animais que sabemos que estão perto do cio daqueles que foram inseminados recentemente ou estão prenhes. Um pessoal qualificado deve observar animais no cio; esse trabalho não pode ser confiado a qualquer pessoa; deve ser realizado por quem conheça bem os sinais de estro da espécie e que saiba considerá-los em conjunto; deve reconhecer, assim mesmo, a evidência da manifestação de comportamento sexual quando o animal estiver fora de seu campo visual. Outro ponto importante nos programas de detecção de estro é a escolha do método para o seu diagnóstico, que deve estar de acordo com aspectos como as características comportamentais da espécie, disponibilidade e facilidade de uso, custos, entre outros. Alguns dos métodos existentes para detecção de cio são descritos abaixo. Detecção visual Este tipo de detecção é baseado na observação a curtas e longas distâncias pela equipe da unidade de produção, em busca de mudanças genitais e comportamentais nas fêmeas; é amplamente utilizado no caso dos bovinos. Foi estudado que a eficiência na detecção visual do estro aumenta em paralelo com o número de observações realizadas por dia. Ou seja, se a observação for realizada apenas durante as atividades rotineiras da exploração, a eficiência será de 50%; quando se realizam duas observações com 12 h de intervalo, a eficiência aumenta para 70%; quando três observações são feitas por dia em intervalos de 8 h, a eficiência chega a 90% e quando a detecção visual é feita constantemente, a eficiência na detecção do estro chega a ficar entre 95 e 100%. No caso dos bovinos, a detecção visual se baseia, entre outros aspectos, na observação do comportamento homossexual, no aparecimento de muco cristalino pela vulva, bem como nas marcas de monta (culote e garupa sujos, direção dos pelos no sacro ao contrário); inquietação, busca pelo macho, inapetência e segregação. Deve-se levar em consideração que nem todas as espécies animais são passíveis de serem detectadas por esse método, pois há espécies em que não há alterações evidentes na genitália e seu comportamento não denota nenhum sinal característico e forte de estar em estro, como é o caso de ovinos, caprinos e equinos; no qual é necessário submetê-los à presença de um macho para poder saber adequadamente o seu estado reprodutivo. Teste de monta Este teste é utilizado especificamente em porcas e consiste em observar a reação à pressão que uma pessoa exerce sobre a garupa e a coluna do animal, considerando que as fêmeas que estão em estro permanecem estáticas, enquanto as que não se movem (figura 14). A eficiência desse teste pode variar consideravelmente, estando a fêmea submetida ou não a algum estímulo do macho. Isso significa que quando o teste é realizado apenas pelo experimentador sem nenhum contato com o macho, a eficiência fica em torno de 48%, ao passo que, se o realizarmos para que a fêmea possa cheirar e ouvir o macho, a eficiência pode chegar a 90%. Se a porca também vê e toca o macho, a porcentagem de eficiência pode ser aumentada em mais 3 a 7%, respectivamente; enquanto é 100% eficiente quando se aloja e interage com o macho. Figura 14: imobilidade durante a prova de monta em porcas. É importante considerar que embora o teste de monta seja usado principalmente em porcas, as fêmeas no cio de quase todas as espécies apresentam uma reação de imobilização quando a garupa é pressionada; elas também movem a cauda para o lado e podem levantar a vulva. Machos auxiliares e rufiões O macho é o mais eficiente em distinguir as fêmeas de sua espécie no cio, pois é capaz de detectar coisas imperceptíveis aos humanos. A utilização de machos auxiliares e/ou rufiões baseia-se na apresentação de um macho às fêmeas e na observação da resposta de todo o grupo. As fêmeas que permitem ser montadas pelo macho e permanecem imóveis são consideradas no cio. A “guarda” ou “auxílio” pode ser realizada duas vezes ao dia, com intervalos de 12 horas entre eles. Para se utilizar o método é fundamental que haja machos inteiros com boa libido, porém, bons reprodutores não devem ser usados para esse fim, pois podem se machucar por uma fêmea que não esteja no momento ideal ou podem ficar exaustos e recusam-se a montar quando seu uso como reprodutores for necessário. Nos equinos essa técnica diagnóstica é a mais utilizada e é conhecida como “provocação”, já que o macho auxiliar é denominado como provocador e deve ser feito diariamente ou em dias alternados durante o período de cio previsto; nesta espécie, as fêmeas podem ser muito agressivas, por isso é comum o uso de uma barreira protetora entre o macho e a fêmea (figura 15). Quando os machos auxiliares são usados, é interessante evitar que ocorra a cópula fértil com as fêmeas, então várias estratégias foram desenvolvidas, principalmente cirúrgicas, para que os machos utilizados possam ser: Vestidos com um avental (figura 16); Vasectomizados; Epididectomizados; Pênis desviado; Com fixação peniana em forma de “S”; Com obliteração do orifício prepucial; Castrados e com tratamento androgênico. Os rufiões não são considerados machos auxiliares e sim como machos com capacidade de detectar uma fêmea apta para reprodução, porém sem a capacidade de fecundá-la. São utilizados na detecção de estros para monta natural ou inseminação artificial, já que sua presença estimula o cio e a ovulação na fêmea. Já que o animal não possui a capacidade de fecundar a fêmea, a obtenção de rufiões dá-se através de técnicas cirúrgicas como as citadas supra. Figura 15: provocação em equinos (método para instigar e/ou detectar a égua em cio). Figura 16: macho ovino vestido com avental para identificar a ovelha em cio. Fêmeas Em muitas unidades de produção, o uso de fêmeas (com certas características específicas) é preferível ao uso de machos para detecção de cio, pois seu manejo é mais simples e seguro, sua manutenção é menor e não há risco de ocorrência da penetração que pode ser uma fonte de transmissão de doenças. Por exemplo, fêmeas androgenizadas podem ser usadas, tanto tratadas exogenamente, quanto aquelas com pseudo-hermafroditismo ou freemartinismo. Palpação retal É um método muito útil no caso de bovinos e equinos, pois o estado reprodutivo em que o animal se encontra pode ser determinado de acordo com as estruturas ovarianas presentes, a tonicidade do tecido uterino e o tipo de corrimento vaginal que pode ser observado. Nessa técnica, a precisão e a eficiência dependem da experiência da sonda, bem como da correta subdivisão dos animais que são passados a ela para revisão. Ultrassonografia Com o uso do ultrassom em tempo real e sob o mesmo princípio da palpação retal, pode-se determinar o momento do ciclo estral; sua confiabilidade é maior quando comparada à palpação, pois os resultados são menos subjetivos. Medição de mudanças fisiológicas Toda fêmea em cio apresenta ligeiras mudanças fisiológicas nos seguintes aspec-tos: Sua temperatura aumenta; A frequência cardíaca aumenta; A produção leiteira diminui. Essas mudanças, quando medidas repetidamente, são úteis para determinar o momento do estro. Quando as concentrações de progesterona no sangue estão abaixo de 1 ng/ml, indica que a fase lútea daquele animal terminou e que, portanto, está perto de apresentar estro ou que acabou de estar. No caso das cadelas, a dosagem da progesterona tem sido muito valiosa para determinar o momento do início do estro, mas sua interpretação é exatamente o inverso do resto das espécies, quando atinge o nível de 1 ng/ml, sabemos que está prestes a iniciar a receptividade sexual. A citologia vaginal esfoliativa realizada, sobretudo, nas cadelas e tem como princípio determinar o tipo de células presentes no esfregaço vaginal, de acordo com sua morfologia e número. Sua base é que as camadas celulares da mucosa vaginal se multiplicam à medida que o nível de estrogênio aumenta, fazendo com que as células da superfície, que estão em direção ao lúmen, morram e adquiram a aparência folheada ou floculada. Durante a fase estral, entre 80 e 100% das células observadas são superficiais e cornificadas ou escamosas. A confiabilidade do método é muito alta, mas são necessárias amostras seriadas, pois o padrão celular é cíclico e nem sempre uma amostra isolada indica com precisão o estágio do ciclo reprodutivo. Uma ferramenta útil em equinos é observar a tonicidade e coloração do colo do útero e vagina através de um vaginoscópio. As alterações observadas são consequência dos estrogênios e a aparência nos animais em estro é de uma estrutura com secreções, hiperêmicas e edematosas. Também é eficaz para uso em cabras. O aumento da atividade física pode ser medido com um pedômetro, que é um detector eletrônico que é colocado nas patas e mede a atividade motora das fêmeas; transmite um sinal para um computador que registra e representa graficamente os dados. Lembre-se de que os animais no cio apresentam maior mobilidade. Em geral, considera-se que uma fêmea no cio anda pelo menos duas vezes mais que as que não estão. A viscosidade do muco cervical pode ser medida com o estrón, que é um dispositivo usado em bovinos e cuja base é medir a resistência elétrica no fluido vaginal ou impedância, que é diminuída durante o proestro e o estro. Para aumentar a eficiência desta ferramenta é necessário realizar medições repetidas e manter registros individuais. Junto com os métodos descritos aqui, ajudas foram desenvolvidas para tornar a detecção do estro mais eficiente, entre as quais estão: Detectores de monta Esses dispositivos são muito diversificados, a maioria deles são colocados na linha média da garupa da fêmea, logo na frente da inserção da cauda, mas também podem ser colocados no peito ou abaixo do queixo e início da barbela do macho. Sua função é deixar uma marca distinguível ou registrar uma monta no animal que está no cio. Entre eles estão os seguintes. A pintura com giz de cera na altura da garupa, é comum usá-la para que quando uma vaca for montada por outra, a marca fique borrada ou desbotada, indicando que a fêmea está no cio (figura 17). O arnês de marcador que é colocado abaixo do queixo e início da barbela do macho (“Bola de queixo” figura 18) ou no peito, para que ao montar uma fêmea receptiva, pinte sua garupa deixando uma marca facilmente identificável. As manchas de tinta chamadas de patches “kamar” (figura 19), que são colocadas na garupa da fêmea e quando ela é montada por outro animal, o peso faz com que ela quebre o recipiente e libere uma tinta que podemos facilmente observar. O relógio de cio é um dispositivo eletrônico que se conecta à garupa da fêmea e registra o momento em que é montada (figura 20), quando pressionado pelo peso mantido por alguns segundos, emitindo um sinal que é recebido por um computador. Tem sido indicado que a precisão na detecção do estro com este método é muito alta, podendo chegar a 96%. Figura 17: vacas com pintura de giz de cera na linha dorsal, utilizada para diagnóstico do cio. À esquerda vaca não montada. À direita vaca que já foi montada, a qual a marca de giz aparece desbotada. Figura 18: uso do arnês marcador para diagnóstico de cio. À esquerda macho com marcador na barbela. À direita marca no dorso da fêmea realizada pela monta de um macho e que indica que o animal marcado está em cio. Figura 19: pastas de “kamar” para a identificação de fêmeas em cio. Figura 20: relógio de cio, dispositivo eletrônico para a detecção de montas À esquerda foto do dispositivo. À direita, vacas com o dispositivo na garupa. REFERÊNCIAS BIBLIOGRÁFICAS AURICH, Christine. Reproductive cycles of horses. Animal reproduction science, v. 124, n. 3-4, p. 220-228, 2011. AISEN, Eduardo G. Reprodução ovina e caprina. MedVet, 2008. BARTLEWSKI, Pawel M.; BABY, Tanya E.; GIFFIN, Jennifer L. Reproductive cycles in sheep. Animal reproduction science, v. 124, n. 3-4, p. 259-268, 2011. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. CHRISTIANSEN, I. J. Reprodução no cão e no gato. São Paulo: Manole, 1988. CONCANNON, Patrick W. Reproductive cycles of the domestic bitch. Animal reproduction science, v. 124, n. 3-4, p. 200-210, 2011. COLAZO, Marcos Germán; MAPLETOFT, Reuben. Fisiología del ciclo estral bovino. Ciencia Veterinaria, v. 16, n. 2, p. 31-46, 2017. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. Fisiologia do Ciclo Estral dos Animais Domésticos. Fisiologia do Estro e do Serviço na Reprodução Bovina. Relação e Efeitos Bioquímico-nutricionais Sobre os Cios ou Estros Silenciosos em Vacas. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Acribia, 1980. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. DYCE, Keith M. Tratado de anatomia veterinária. Elsevier Brasil, 2004. FATET, Alice; PELLICER-RUBIO, Maria-Teresa; LEBOEUF, Bernard. Reproductive cycle of goats. Animal reproduction science, v. 124, n. 3-4, p. 211-219, 2011. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. FORDE, N. et al. Oestrous cycles in Bos taurus cattle. Animal reproduction science, v. 124, n. 3-4, p. 163-169, 2011. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HIDALGO, Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MEIDAN, R. et al. Intraovarian regulation of luteolysis. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 217-228, 1999. NETT, T. M. et al. Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle. Domestic Animal Endocrinology, v. 4, n. 2, p. 123-132, 1987. NISWENDER, Gordon D. et al. Mechanisms controlling the function and life span of the corpus luteum. Physiological reviews, v. 80, n. 1, p. 1-29, 2000. NORMAN, Anthony W.; LITWACK, Gerald. Hormones. Academic Press, 1997. PATTERSON, David J. et al. Control of estrus and ovulation in beef heifers. Veterinary Clinics: Food Animal Practice, v. 29, n. 3, p. 591-617, 2013. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. RANGEL, L. Ciclo estral. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. REKAWIECKI, R. et al. Regulation of progesterone synthesis and action in bovine corpus luteum. J Physiol Pharmacol, v. 59, n. suppl 9, p. 75-89, 2008. REYNOLDS, L. P.; REDMER, D. A. Growth and development of the corpus luteum. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 181-191, 1999. RIPPE, Christian A. El ciclo estral. In: Dairy Cattle Reproduction Conference. 2009. p. 111-116. SANGHA, G. K.; SHARMA, R. K.; GURAYA, S. S. Biology of corpus luteum in small ruminants. Small Ruminant Research, v. 43, n. 1, p. 53-64, 2002. SARTORI, R.; BARROS, C. M. Reproductive cycles in Bos indicus cattle. Animal Reproduction Science, v. 124, n. 3-4, p. 244-250, 2011. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 1997. SMITH, Matthew J.; JENNES, Lothar. Neural signals that regulate GnRH neurones directly during the oestrous cycle. Reproduction (Cambridge, England), v. 122, n. 1, p. 1-10, 2001. SOEDE, N. M.; LANGENDIJK, P.; KEMP, B. Reproductive cycles in pigs. Animal reproduction science, v. 124, n. 3-4, p. 251-258, 2011. WEBB, R. et al. Mechanisms regulating follicular development and selection of the dominant follicle. REPRODUCTION-CAMBRIDGE-SUPPLEMENT-, p. 71-90, 2003. WHITTEMORE, Colin et al. The science and practice of pig production. Blackwell Science Ltd, 1998. FIXAÇÃO DO ASSUNTO 1. O comportamento sexual dos animais é uma particularidade de cada espécie na iniciação da perpetuação da vida e que deve-se a quais fatores e por quê? 2. O que é anestro? É possível revertê-lo? 3. Defina e explique os estágios comportamentais de machos e fêmeas antes, durante e depois da cópula. 4. Defina e diferencia efeito fêmea e efeito macho. 5. Define e explique a estimulação sexual dos animais e como podemos induzi-la? 6. Defina e caracterize o estro das espécies zootécnicas. 7. Quais são os fatores que retardam ou adiantam a manifestação do cio e por quê? 8. Qual a relação direta ou indireta da duração do estro com o momento da ovulação? 9. Quais os mecanismos de atração dos machos? 10. Que mudanças ocorrem nas partes reprodutivas das fêmeas para a atração do macho? 11. Cite o comportamento característico das fêmeas durante o estro que visam a atração do macho para a cópula. 12. Disserte sobre a importância do macho e sobre seu comportamento sexual para o manejo reprodutivo. 13. Qual a importância e quais os meios de detecção do estro nas fêmeas. Como hipótese, você como criador utilizaria qual método de identificação e por quê? 14. Explique as principais diferenças entre machos reprodutores e machos rufiões. Como obter um rufião? (shrink)
HORMÔNIOS E SISTEMA ENDÓCRINO NA REPRODUÇÃO ANIMAL -/- OBJETIVO -/- As glândulas secretoras do corpo são estudadas pelo ramo da endocrinologia. O estudante de Veterinária e/ou Zootecnia que se preze, deverá entender os processos fisio-lógicos que interagem entre si para a estimulação das glândulas para a secreção de vários hormônios. -/- Os hormônios, dentro do animal, possuem inúmeras funções; sejam exercendo o papel sobre a nutrição, sobre a produção de leite e sobre a reprodução, os hormônios desempenham um primordial papel (...) quanto ao funcionamento do animal. -/- Nesse capítulo, o estudante identificará os hormônios relevantes para o controle reprodutivo, suas características e o uso clínico dos mesmos. -/- -/- INTRODUÇÃO -/- A endocrinologia é a ciência que se encarrega do estudo do sistema endócrino: um sistema de comunicação entre as células de um organismo; esse trabalho de comunicação é compartilhado com o sistema nervoso já que ambos sistemas possuem características distintas que lhes permite complementar-se para alcançar uma adequada coordenação das funções. Em algumas ocasiões o sistema nervoso e o sistema endócrino interagem direta-mente na transmissão de uma mensagem, pelo qual se conhece como sistema neuroendó-crino. -/- -/- OS HORMÔNIOS -/- A endocrinologia é a ciência que se encarrega do estudo dos hormônios e seus e-feitos. De maneira tradicional os hormônios são considerados como “substâncias secreta-das em direção a circulação pelas glândulas especializadas, e que exercem uma função sobre um órgão branco”. Essa definição, no entanto, é limitada e imprecisa. É necessário ser mais pontual, já que os hormônios não são produzidos em qualquer célula da glândula, senão nas células específicas. Por exemplo, o hormônio luteinizante (LH) é produzido pelos gonadotropos da adenohipófise e não por qualquer outro tipo de célula hipofisária. Da mesma maneira, falar de um “órgão branco” não é exato, já que os hormônios atuam somente nas células que tenham receptores específicos para esse hormônio, e não outras células do mesmo órgão; logo, falar de uma “célula branca” é mais apropriado que falar de um “órgão branco”. As células brancas do LH no testículo são as células de Leydig e as células brancas do hormônio folículo estimulante (FSH) no mesmo órgão são as células de Sertoli. -/- Mediante o supracitado, uma definição mais apropriada de hormônio é a seguinte: “Os hormônios são reguladores biológicos, produzidos e secretados em quantidades pe-quenas pelas células vivas, que depois de viajar pelo meio extracelular atuam sobre as cé-lulas brancas, onde exercem uma ação específica”. -/- É importante levar em conta que os hormônios somente regulam (estimulam ou inibem) funções que já existem na célula branca. Ademais, os hormônios são extraordina-riamente potentes, pelo qual se requerem quantidades muito pequenas para induzir uma resposta na célula. As concentrações circulantes da maioria dos hormônios estão na ordem de nanogramas (10-9 g) ou pictogramas (10-12 g) por mililitro. -/- Etimologicamente o termo “endócrino” significa “secretar em direção adentro”, já que os hormônios são secretados em direção ao interior do organismo (o sangue ou o espaço intracelular), em diferença das secreções exócrinas (em direção ao exterior), que são secretadas em direção a luz de um órgão, como o intestino no caso das enzimas pan-creáticas. -/- Algumas substâncias, sem deixar de ser hormônios, recebem uma classificação adicional em relação ao seu local de ação, ao tipo de células que lhes produzem, ou a al-guma outra característica. Agora, serão descritas algumas dessas características (figura 1). -/- -/- Parahormônio ou hormônio local -/- A maioria dos hormônios são transportados pela circulação desde seu local de se-creção até a célula branca. No entanto, alguns hormônios exercem seu efeito em células adjacentes aquelas que foram produzidos, ao qual não é necessário seu transporte através da circulação geral. Esse tipo de substâncias são chamadas de parahormônios ou hormô-nios locais, e sua liberação é denominada como secreção parácrina. Um exemplo é a pros-taglandina F2 alfa (PGF₂α), que é produzida no epitélio uterino (endométrio) e provoca as contrações nas células musculares do mesmo órgão (miométrio). Deve-se tomar em conta que a mesma substância poderia se comportar em outros casos como um hormônio clássico, atuando em um órgão distinto ao local de sua produção; é o caso da mesma PGF₂α de origem endometrial quando atua sobre as células do corpo lúteo do ovário, pro-vocando sua regressão. A classificação de uma substância como hormônio ou parahormô-nio não depende de sua estrutura química, senão da relação espacial existente entre a célu-la que o produz e a célula branca. -/- -/- Neurohormônio -/- A maioria dos hormônios são produzidos pelas células de origem epitelial, porém, muitos deles são produtos pelos neurônios, logo denominados como neurohormônios. To-dos os neurônios segregam alguma substância, porém tratam-se dos neurohormônios quando o neurônio que os produz despeja-os diretamente em direção a circulação geral, através da qual chegam aos órgãos para exercer seu efeito, sejam na indução, inibição ou estimulação do mesmo. -/- Esse processo é diferente dos neurotransmissores, os quais também são secretados por um neurônio, mas exercem seu efeito em uma célula adjacente com o qual o neurônio estabelece uma sinapse (neuroma com neurônio, neurônio com célula muscular, neurônio com célula glandular). A classificação de uma substância como hormônio ou como neuro-hormônio não depende de sua estrutura química, senão do tipo de célula que o produz. Uma mesma substância é um hormônio quando ele é produzido por uma célula epitelial e um neurohormônio se é produzido por um neurônio. A ocitocina, por exemplo, é secre-tada na neurohipófise por neurônios hipotalâmicos, nesse caso se trata de um neurohor-mônio, mas também é secretada por células do corpo lúteo dos ruminantes, e se trata nesse caso, de um hormônio. A distinção entre um neurohormônio e um hormônio é um neuro-transmissor, da mesma forma, não depende de sua estrutura química, e sim do local onde é secretado. Por exemplo, a dopamina atua como neurotransmissor quando se libera em sinapse da substância negra do mesencéfalo z mas atua como neurohormônio quando é liberada por neurônios hipotalâmicos em direção a circulação do eixo hipotálamo-hipofisário. -/- -/- Pré-hormônio -/- Em alguns casos, os hormônios são secretados em forma inativa (pré-hormônio), que requer uma transformação posterior para converter-se na forma ativa de hormônio. O angiotensinógeno circulante somente cobrará atividade biológica ao se transformar em angiotensina por ação da enzima renina. Algumas substâncias podem atuar como hormô-nios m alguns casos e como pré-hormônios em outros. A testosterona, por exemplo, atua como hormônio nas células musculares, aos quais possui um efeito anabólico direto. O certo é que para a testosterona induzir a masculinização dos órgãos genitais externos em um efeito macho é necessário que seja transformada previamente em 5α-di-hidrotes-tosterona pela enzima 5α-redutase presente nas células de tecido branco, por onde, nesse caso a testosterona é um pré-hormônio de di-hidrotestosterona. -/- -/- Feromônio -/- Os hormônios são mensagens químicas que comunicam a células distintas dentro do mesmo organismo, embora existam casos aos que requerem uma comunicação quími-ca entre organismos diferentes, em geral da mesma espécie. As substâncias empregadas para esse fim denominam-se feromônios. Essas substâncias devem possuir a capacidade de dispersão sobre o ambiente, pelo que nos organismos terrestres geralmente trata-se de substâncias voláteis, enquanto que os feromônios de organismos aquáticos geralmente são substâncias hidrossolúveis. Embora muitos feromônios possuam uma função sexual ou reprodutiva como é o caso de muitas espécies como a canina em que a fêmea em cio dispersa grandes quantidades de feromônios que são captados de longe pelos machos, todavia esse não é sempre o caso, e eles podem ser utilizados para outros tipos de comunicação, como é o caso dos feromônios utilizados pelas formigas para sinalização da rota em direção a fonte de alimentação. E como as abelhas no sentido de orientação da fonte de pólen até a colmeia. Muitos desses feromônios podem ser artificializados, isto é, elaborados pelo homem em laboratório para o estudo ou manipulação de algum animal. -/- -/- O SISTEMA ENDÓCRINO COMO UM SISTEMA DE COMUNICAÇÃO -/- O sistema endócrino é um sistema de comunicação que tem como objetivo coor-denar as funções das células de diferentes órgãos para mantença da homeostase do orga-nismo e promover seu desenvolvimento, crescimento e reprodução. Também ajuda os or-ganismos a adaptarem-se as mudanças de ambiente e ao habitat. O sistema endócrino representa um sistema de comunicação do tipo sem fio, diferentemente do sistema nervo-so que é um sistema de comunicação com fio. -/- Em todo o sistema de comunicação existe uma série de elementos que são necessá-rios para a realização da comunicação de forma efetiva. Esses elementos incluem o emis-sor, a mensagem, o sinal, o meio de transporte do sinal, o receptor, o efetor, a resposta e o feedback ou retroalimentação (figura 1). Todos os elementos são igualmente importan-tes e uma deficiência em qualquer deles pode interromper ou alterar a comunicação. -/- -/- Figura 1: componentes do sistema endócrino de comunicação. Fonte: ZARCO, 2018. -/- -/- Emissor ou transmissor -/- É o elemento responsável pela transmissão de uma mensagem; poderíamos com-pará-lo com a redação de notícias de um canal de televisão. Antes de decidir quais serão as notícias que serão transmitidas esse dia, em que ordem se apresentarão e que ênfase lhes darão, as pessoas da redação analisa rodas as informações disponíveis: provenientes de seus repórteres, de agências de notícias internacionais, publicada em jornais do dia, a existente na internet ou disponíveis através de redes sociais; isso significa que as mensa-gens transmitidas pelo emissor não são aleatórias, e sim respondem a uma análise respon-sável das necessidades de informação. -/- No sistema endócrino o emissor é a célula que produz e secreta um hormônio. Co-mo todo emissor responsável, a mesma célula analisa toda a informação relevante dispo-nível, tal como a concentração de diversos metabólitos no sangue, a concentração de ou-tros hormônios, e as mensagens que recebem por via nervosa, antes de decidir se secretará seu hormônio, em que quantidade o fará e com que frequência. Por essa razão, ao estudar o sistema endócrino não somente devemos conhecer a célula transmissora, e sim qual é a informação que a célula pode receber, e como a analisa e a prioriza para construir sua mensagem. -/- -/- Mensagem -/- É a informação transmitida pelo emissor. No caso de um sistema de notícias tele-visivas a mensagem é a notícia, por exemplo “Vaca dá a luz trigêmeos, um caso raro no Brasil”. No sistema endócrino a mensagem que se transmite é uma instrução para que em outra célula se realize determinadas ações. Por exemplo, os neurônios produtores de GnRH no hipotálamo de uma coelha, ao analisar as concentrações de estradiol circulantes e a informação nervosa procedente de neurônios sensoriais nós órgãos genitais da fêmea, podem “saber” que nos ovários existam folículos lisos para ovularem e que a coelha está copulando, pelo qual decidem transmitir a mensagem “Solicita-se os gonadotropos da adenohipófise a liberação de LH em quantidade suficiente para provocar a ovulação”. -/- -/- Sinal -/- É a forma a qual se codifica a mensagem para permitir sua difusão. No caso de um jornal, a mensagem (por exemplo a notícia da vaca que deu a luz trigêmeos) se codifi-ca em forma de ondas de rádio de uma determinada frequência, amplitude e intensidade; no caso do sistema endócrino a mensagem (a necessidade de realizar uma função celular) é codificada em forma de hormônio secretado em determinada quantidade, frequência e amplitude. Para o exemplo descrito supra, a mensagem se codifica na forma de uma grande elevação nas concentrações de GnRH no sangue do sistema porta hipotálamo-hipofisário. -/- É necessário tomar em conta que o emissor codifica a mensagem de forma tal que quando o receptor decifre o sinal obtenha a informação originalmente contida na mensa-gem. No entanto, o sinal pode ser interpretado de diferentes formas por receptores distintos, o que pode provocar respostas contrárias as esperadas. A notícia transmitida por um jornal de rádio, por exemplo, poderia estar codificada em forma de ondas de rádio que, casualmente, para o sistema eletrônico de um avião signifiquem “baixe a altitude e acelere”, razão pela qual é proibido utilizar aparelhos eletrônicos durante a decolagem e aterrissagem desses aparelhos. -/- Do mesmo modo, a mensagem codificada na forma de secreção de estradiol por parte dos ovários pode ser interpretado pelo sistema nervoso de uma ovelha como uma ordem para apresentar conduta de estro, pelas células do folículo ovariano como uma instrução para sofrer mitose e secretar o líquido folicular, pelos gonadotropos como uma ordem para a secreção de um pico pré-ovulatório de LH, e pelas células do endométrio como uma instrução para sintetizar receptores para a ocitocina. Dessa forma, o mesmo sinal (secreção de estradiol) pode conter diferentes mensagens para diferentes células do organismo. -/- Em alguns casos, pode-se apresentar uma resposta patológica devido as diversas formas de interpretação de uma mensagem, por exemplo, a repetição da secreção de adrenalina em um indivíduo estressado pode resultar no desenvolvimento de um proble-ma de hipertensão arterial. Por isso é necessário conhecer a maneira em que cada célula endócrina codifica suas mensagens, assim como a forma em que esses sinais podem ser interpretados em diferentes órgãos e tecidos, em diferentes momentos da vida do animal, em animais com diferentes antecedentes de espécies diferentes. -/- -/- Meio de transporte do sinal -/- O sinal tem que viajar ou difundir-se desde o emissor até o receptor, e em seu ca-minho pode ser modificado de diversas formas. Os sinais de rádio, por exemplo, viajam através da atmosfera e durante esse trajeto podem ser bloqueados por uma barreira física (como ocorre com as ondas de rádio AM em um túnel), ampliadas por uma estação repeti-dora, alteradas por um campo eletromagnético (uma aspiradora funcionando ao lado da sala de transmissão), entre outros. Da mesma forma, os sinais endócrinos que geralmente viajam no sangue, podem ser modificados ao longo do seu caminho. -/- A PGF₂α é inativada ao passar pelo pulmão, o angiotensinógeno é ativado pela re-nina na circulação, e a testosterona pode ser transformada em di-hidrotestosterona nas células da pele e na próstata, ou em estrógenos nos adipócitos e nos neurônios. Por tudo isso, o sinal que finalmente chega ao receptor pode ser diferente do transmitido pelo emissor. -/- Portanto, ao estudar qualquer sistema hormonal devemos conhecer as possíveis modificações que o hormônio pode sofrer desde o momento em que é secretado até que se uma ao seu receptor na célula branca. -/- -/- Receptor -/- É o elemento que recebe o sinal e interpreta a mensagem contida nele. No caso de um jornal de TV, o receptor é o canal correspondente (por exemplo o canal 2) em um aparelho de televisão. É importante ressaltar que um aparelho de TV possui muitos canais distintos, mas somente receberá mensagens se estiver ligado e sintonizado no canal que está transmitindo a mensagem de interesse. Ou seja, o receptor tem que estar ativo. -/- No caso das mensagens endócrinas os receptores são moléculas específicas nas células brancas. Essas moléculas são proteínas membranais ou citoplasmáticas (segundo o tipo de hormônio), que possui uma alta afinidade por seu hormônio, o que lhes permite registrar a mensagem apenas das baixíssimas concentrações em que os hormônios circu-lam. Os receptores possuem uma alta especificidade, o que significa que somente se unem a seu próprio hormônio, e não a outras substâncias. Em algumas ocasiões um receptor pode receber diversos hormônios do mesmo tipo; por exemplo o receptor de andrógenos pode unir testosterona, androstenediona, di-hidrotestosterona e diversos andrógenos sin-téticos. Apesar disso, cada um desses hormônios pode possuir uma afinidade diferente pelo receptor, pelo qual alguns serão mais potentes que outros para estimulação. -/- Em geral existe um número limitado de moléculas receptoras em cada célula, logo diz-se que os receptores são “saturáveis”, o qual significa que uma vez que todos sejam ocupados a célula não pode receber mais moléculas desse hormônio. Por essa razão a magnitude da resposta de um determinado hormônio vai aumentando conforme se aumen-tam suas concentrações, porém ao saturar-se os receptores alcançam um ponto em que a resposta já não aumenta embora sigam incrementando as concentrações hormonais já que os receptores não permanecem livres para unirem-se ao excesso de moléculas do hormô-nio. -/- As células, em contrapartida, podem regular tanto o número de receptores presen-tes como a afinidade destes por seu hormônio; isso significa que a magnitude da resposta antes um determinado sinal endócrino pode ser distinta em diferentes momentos da vida de um animal; depende do estado dos receptores presentes nos tecidos, pelo qual é impor-tante conhecer quais são os fatores que podem aumentar ou reduzir o número de recepto-res em uma célula, assim como aqueles que podem aumentar ou diminuir a afinidade des-ses receptores por seus hormônios. -/- -/- Efetor -/- É o elemento encarregado de responder a uma mensagem realizando uma ação, e é um elemento diferente do receptor. Vale ressaltar que no caso de uma transmissão de televisão o receptor é o aparelho sintonizado no canal de interesse, porém o efetor é o te-lespectador que está exposto as notícias. Esse telespectador sofrerá mudanças que podem resultar em uma ação. A mudança pode ser evidente (e auxiliar as vítimas de um desastre), ou simplesmente uma mudança potencial (ao se inteirar de uma notícia não se pode produ-zir nenhuma mudança aparente até que alguém lhe pergunte: já se interessou?, E nesse caso a resposta será: “sim” em lugar do “não”). Deve-se tomar em conta que o efetor pode estar ausente embora o receptor esteja presente (um televisor ligado em uma sala vazia). O efetor também pode estar inativado (o telespectador encontra-se dormindo); quando assim ocorre não irá produzir uma resposta embora o receptor esteja presente. -/- No sistema endócrino o efetor é, em geral, um sistema celular encarregado de rea-lizar uma determinada função. Na maioria dos casos trata-se de sistemas enzimáticos cuja função é estimulada pela união do hormônio ao seu receptor. Alguns hormônios, por exemplo, atuam através do sistema AMP cíclico (AMPc) logo, a união do hormônio ao seu receptor resulta na ativação de uma proteína chamada Proteína Gs, que ativa a enzima Adenil-ciclase (ou adenilato ciclase), a qual transforma ATP em AMPc. A presença de AMPc resulta na ativação de uma enzima cinese de proteínas que fosforiza outras enzi-mas, o que pode ativá-las ou inativá-las; nesses casos, é gerada uma cascata de eventos que resulta em uma mudança na atividade celular; por exemplo, a cadeia de eventos que produz-se em resposta ao AMPc quando a célula de Leydig do testículo é estimulada pela união do LH a seu receptor resulta na produção de testosterona, enquanto que a estimula-ção de um adipócito provocada pela união da adrenalina a seu receptor, que também atua através do sistema AMPc, resulta em uma série de eventos que provocam, finalmente, a liberação de ácidos graxos livres em direção a circulação. -/- Nos exemplos supra, o AMPc é considerado um mensageiro intracelular, já que o receptor capta o sinal (hormônio) no exterior da célula, o que resulta na produção de um novo sinal (mudança nas concentrações de AMPc) no interior da célula. Embora o sistema AMPc seja utilizado por muitos hormônios, não é um sistema universal; existem outros sistemas mensageiros intracelulares que também são utilizados para responder os hormô-nios que não entram nas células, por exemplo o sistema cálcio-calmodulina, ou os siste-mas baseados em receptores com atividade de cineses de tirosina. Nos casos que os hor-mônios possa atravessar livremente a membrana celular, como acontece com os hormôni-os esteroides, o hormônio se une a receptores presentes no citoplasma, que depois ingres-sam ao núcleo celular para intervir na regulação da transcrição do genoma. -/- De maneira independente ao mecanismo de ação de um determinado hormônio, sua presença finalmente desencadeará mudanças em um ou mais sistemas efetores da célula, o que permitirá que a mesma responda a mensagem que o emissor transmitiu originalmente. É evidente que para compreender a ação de qualquer hormônio é indispensável conhecer seu mecanismo de ação, o papel dos mensageiros intracelulares e as característi-cas dos sistemas efetores. Deve-se conhecer também quais são os fatores que afetam a transdução da mensagem já que uma célula pode regular seus sistemas efetores e dessa forma ter uma resposta maior, menor ou alterada ante a mesma mensagem. -/- -/- Resposta -/- Como mencionado, qualquer mensagem provoca uma resposta (embora somente seja potencial) sobre o efetor que a recebe. No sistema endócrino, as mensagens hormonais viajam constantemente pelo organismo e são captadas por todas as células que possuem receptores ativos para um determinado hormônio. Uma única célula pode ter receptores para diferentes hormônios, pelo qual pode estar recebendo diversas mensagens simultaneamente, e cada uma dessas mensagens pode afetar a resposta de outras mensagens. Por exemplo, a presença de progesterona pode alterar a resposta das células endometriais ao estradiol. Ademais, as células podem estar recebendo ao mesmo tempo uma informação não hormonal, como as concentrações de diversos metabólitos na circulação, ou a recebida pelo sistema nervoso. A célula analisa toda essa informação e com base nela decide se deve responder a mensagem hormonal que está recebendo como deve responder, com que intensidade e durante quanto tempo. A resposta final pode ser uma resposta física imediata (contração, secreção de um hormônio armazenado previa-mente), uma modificação bioquímica a curto prazo (síntese de um determinado hormônio ou outra substância), ou o início de uma série de mudanças que levam a uma mudança a longo prazo (divisão celular, diferenciação celular, crescimento, morte celular). -/- -/- Feedback ou retroalimentação -/- Quando em um sistema de comunicação se produz uma resposta, em muitos casos essa resposta engloba a geração de informação que vai retornar ao emissor, e que agora constituirá um ou mais dos elementos que o emissor tomará em conta antes de transmitir uma nova mensagem. Assim, se um jornal transmite uma mensagem “menina pobre necessita de doação de roupas”, a resposta de alguns efetores (telespectadores) que virão a doar roupas será conhecida pelo emissor, que assim saberá que já não será mais neces-sário voltar a transmitir a mensagem, o que o fará tomar a decisão de transmitir uma mensagem diferente como “menina pobre já não necessita de roupas, porém requer de ali-mentos para sua família”. Essa modificação da mensagem provocada pela resposta do efetor é conhecida como retroalimentação. -/- De forma análoga, no sistema endócrino a resposta da célula efetora geralmente é reconhecida pelo emissor, que em consequência modifica sua mensagem. Na maioria dos casos se produz uma retroalimentação negativa, que consiste em que a resposta do efetor provoca uma redução na intensidade da mensagem transmitida pelo emissor. Quando os gonadotropos de uma vaca secretam hormônio folículo estimulante (FSH), as células da granulosa de seus folículos ovarianos respondem realizando diversas funções, uma das quais é a secreção de inibina. A elevação nas concentrações circulantes de inibina é capta-da pelos gonadotropos, que logo sabem que o FSH já transmitiu sua mensagem, pelo que reduzem a secreção deste hormônio. A retroalimentação negativa é muito importante em qualquer sistema endócrino já que permite manter as concentrações hormonais dentro de limites aceitáveis. -/- A retroalimentação negativa pode ser de onda ultracurta, curta ou longa. A onda ultracurta é quando o hormônio produzido por uma célula pode inibir sua própria secre-ção. A retroalimentação negativa de onda curta é quando o hormônio produzido por uma célula pode inibir a de um órgão imediatamente superior na hierarquia (por exemplo, quando a progesterona produzida pelo corpo lúteo do ovário inibe a secreção de LH pelos gonadotropos da hipófise). O feedback negativo de onda longa sucede quando o hormônio produzido por uma célula inibe a uma célula de um órgão que está dois ou mais níveis por cima na escala hierárquica, por exemplo, quando a testosterona produzida pelas células de Leydig do testículo inibe diretamente os neurônios produtores de GnRH, saltando as células produtoras de LH e adenohipófise. -/- Existe também a retroalimentação positiva, da qual o primeiro hormônio estimula a secreção de um segundo hormônio, o que por sua vez estimula o primeiro, com o que se estabelece um círculo progressivo de estimulação. Um exemplo de retroalimentação positiva é a que se produz pouco antes da ovulação entre o LH hipofisário e o estradiol de origem folicular. Os dois hormônios se estimulam mutuamente até que alcancem níveis elevados de LH que provoca a ovulação. O círculo de feedback positivo termina quando o pico pré-ovulatório de LH mudanças sobre o folículo que incluem a perda da capacidade de produção de estrógenos. Todo o sistema de retroalimentação positiva deve ter um final abrupto sobre o qual se rompe o ciclo de estimulação mútua, já que não mais deverá ser produzida quantidades elevadas dos hormônios, até que todos os recursos do organismo sejam utilizados para esse fim. -/- -/- CLASSIFICAÇÃO QUÍMICA DOS HORMÔNIOS -/- Do ponto de vista químico e sobre o estudo da Fisiologia da Reprodução Animal, existem quatro grupos principais de hormônios: polipeptídios, esteroides, aminas e prostaglandinas; dentro de cada grupo, por sua vez, existem mais grupos de inúmeros outros hormônios dispostos em subdivisões. -/- -/- Hormônios polipeptídios -/- Os polipeptídios são cadeias de aminoácidos. Quando uma dessas cadeias está constituída por poucos aminoácidos é denominada simplesmente de polipeptídios, mas quando uma cadeia de aminoácidos é longa e adquire uma configuração espacial de três dimensões o polipeptídio é denominado proteína (figura 2). Muitos neurohormônios hipo-talâmicos são polipeptídios, como o liberador de gonadotropinas (GnRH), constituído por 10 aminoácidos, o hormônio liberador de tirotropina (TRH), formado por 3 aminoácidos, o somatostatina, constituído por 14 aminoácidos, a ocitocina que é formada por 8 aminoá-cidos etc. O sistema nervoso central e a hipófise produzem peptídeos opioides. -/- Entre os hormônios polipeptídios que por seu tamanho são considerados proteínas encontramos a prolactina, o hormônio do crescimento, os lactogênios placentários, a relaxina, a insulina e fatores de crescimento parecidos com a insulina (IGFs). Existe outro grupo de hormônios polipeptídios classificados como glicoproteínas. Trata-se de proteí-nas que possuem carboidratos unidos a alguns de seus aminoácidos. -/- -/- Figura 2: classificação dos hormônios polipeptídios. Fonte: ZARCO, 2018. -/- -/- Há um grupo de hormônios glicoproteicos que constituem uma família de molécu-las similares entre si, dentro das quais estão o hormônio luteinizante (LH), o hormônio folículo estimulante (FSH), o hormônio estimulante da tireoide (TSH), a gonadotropina coriônica humana (hCG) e a gonadotropina coriônica equina (eCG); todos estão formados pela subunidade alfa que é idêntica para os hormônios de uma determinada espécie animal, e por uma subunidade beta específica para cada hormônio. As duas subunidades mantém-se unidas através de ligações dissulfeto. Deve-se mencionar que os carboidratos associados as glicoproteínas podem ser distintos em diferentes idades, épocas do ano ou estados fisiológicos; esse processo é conhecido como microheterogenicidade, e recente-mente têm-se dado grande importância a seu estudo, já que é reconhecido fatores tais como a vida média de um hormônio ou sua atividade biológica podem ser modificados de acordo com o tipo de carboidratos presentes na molécula. -/- Existe outra família de hormônios glicoproteicos, que incluem a inibina A, a B, e a activina A, AB e B. Todos os hormônios polipeptídios possuem algumas características comuns. Em primeiro lugar, trata-se de moléculas hidrossolúveis que não conseguem atravessar as membranas celulares pelo qual se unem a receptores transmembranais que flutuam sobre a parede externa da membrana da célula branca e requerem de um segundo mensageiro intracelular, como o cálcio ou o AMPc, para levar sua mensagem ao interior da célula. -/- Os hormônios desse grupo, não podem ser administrados por via dérmica, oral, retal ou intravaginal, já que não podem atravessar a pela ou as mucosas intestinais, retais ou vaginais. Os polipeptídios são digeridos no estômago, o que também impede sua admi-nistração oral. Outra característica que deve-se tomar em conta é que as proteínas (embora não os polipeptídios pequenos) podem se desnaturalizar por fatores como o calor (são termolábeis), a congelação, ou mudanças de pH m a desnaturalização consiste em uma mudança na forma natural da proteína, o que leva a perda de sua função. Por essa razão, ao trabalhar com hormônios proteicos devem-se tomar cuidados especiais durante seu manejo para evitar a exposição a fatores desnaturalizantes. -/- -/- Hormônios esteroides -/- São moléculas derivadas do colesterol; a célula esteroidogênica pode sintetizar o colesterol, obtê-lo de reservas intracelulares ou da circulação. Na célula esteroidogênica existem diversas enzimas que atuam sequencialmente sobre a molécula de colesterol, provocando mudanças sucessivas até obter o hormônio final que será secretado, ao qual dependerá das enzimas que estão presentes e ativas na célula. -/- Existem cinco grupos principais de hormônios esteroides; os progestágenos, os estrógenos, os glicocorticoides e os mineralocorticoides (figura 3). -/- Os progestágenos são hormônios que favorecem o desenvolvimento da gestação; seus efeitos incluem, entre outros, a estimulação da secreção endometrial de substâncias nutritivas para o embrião, a estimulação do desenvolvimento embrionário e placentário, a inibição das contrações uterinas, bem como fazer com que a cérvix fique fechada. O principal hormônio natural desse grupo é a progesterona, mas existem uma grande quantidade de progestágenos sintéticos utilizados na medicina veterinária, tais como o acetato fluorogestona (FGA), o acetato de melengestrol (MGA), o altrenogest e o norgestomet. -/- Os estrógenos são os hormônios femininos responsáveis, entre outras funções, dos sinais do estro ou receptividade sexual nas fêmeas. A maior parte de seus efeitos estão no alcance da fertilização do ovócito. Os estrógenos, além de estimular a conduta sexual feminina, favorecem, entre outras coisas, a abertura da cérvix para permitir a passagem do espermatozoide, e as contrações uterinas para impulsionar o sêmen em direção aos ovidutos. O principal estrógeno natural é o estradiol 17β, outros membros naturais do grupo são a estrona, a equilina e a equilenina, esses dois últimos presentes exclusivamente em éguas gestantes. Também existem numerosos estrógenos sintéticos, tais como o valerato de estradiol, o benzoato de estradiol e o cipionato de estradiol. -/- Os andrógenos são hormônios masculinos. Possuem uma grande quantidade de efeitos encaminhados a alcançar o êxito reprodutivo do macho, como estimular a conduta sexual, estimular a produção de espermatozoides e estimular as secreções das glândulas sexuais acessórias. O andrógeno principal é a testosterona, outros andrógenos naturais incluem a androstenediona e a di-hidrotestosterona. Existe também inúmeros andrógenos sintéticos. -/- Os glicocorticoides ou corticosteroides possuem funções principalmente metabó-licas e de adaptação ao estresse. O principal corticosteroide na maioria das espécies é o cortisol, enquanto que nos ratos e outros roedores é a corticosterona. Na reprodução, os corticosteroides desempenham um papel relevante, em particular durante o parto e a lac-tação. -/- Os mineralocorticoides, como a aldotestosterona, se encarregam da regulação do balanço de líquidos e eletrólitos no organismo. -/- -/- Figura 3: subgrupos dos hormônios esteroides. Fonte: ZARCO, 2018. -/- -/- Os hormônios esteroides como grupos são hidrossolúveis, pelo qual podem atra-vessar livremente as membranas celulares, por essa razão utilizam receptores intracelula-res que se encontram no citoplasma da célula branca; também pode-se administrar por via oral, pela pele, e através das mucosas retal ou vaginal. São moléculas termoestáveis e não são digeridas no estômago, embora algumas possas sofrer modificações na pH ácido, alterando sua função. -/- -/- Aminas -/- São moléculas derivadas de um aminoácido que se modifica pela ação de enzimas específicas. Existem dois tipos de hormônios aminas: as catecolaminas e as indolaminas (figura 4). As catecolaminas derivam do aminoácido tirosina, e incluem a dopamina, a a-drenalina e a noradrenalina. As indolaminas derivam-se do triptofano, e incluem a seroto-nina e a melatonina. -/- As aminas são moléculas hidrossolúveis que não podem atravessar as membranas celulares e portanto atuam através de receptores membranais e segundos mensageiros intracelulares. -/- -/- Figura 4: classificação dos hormônios peptídicos. Fonte: ZARCO, 2018. -/- -/- Prostaglandinas -/- São substâncias derivadas do ácido araquidônico. A principal fonte desse ácido graxo são os fosfolipídios da membrana celular, a partir dos quais se podem liberar o ácido araquidônico mediante a ação da enzima fosfolipase A2. O ácido araquidônico se transforma em prostaglandina H mediante a ação da enzima ciclo-oxigenase (ou sintetase de prostaglandinas), que mais adiante se transforma em diferentes prostaglandinas especí-ficas pela ação de diversas enzimas. O tipo de prostaglandina produzido por cada célula dependerá do complemento de enzimas presentes. -/- A prostaglandina mais importante na reprodução é a PGF2α, a qual é responsável pela destruição do corpo lúteo na maioria das espécies; também provoca contrações uteri-nas, pelo qual é importante para o parto, e o transporte dos espermatozoides e a involução uterina depois do parto. Na prática veterinária a PGF2α natural (dinoprosr) ou seus seme-lhantes sintéticos (cloprostenol, luprostiol etc.) são utilizados para a sincronização do ciclo estral, para a indução do parto e para tratar diversas patologias. Outra prostaglandina com algumas ações relacionadas com a reprodução é a prostaglandina E2 (PGE2). -/- As prostaglandinas são substâncias anfipáticas (com propriedades hidrossolúveis e lipossolúveis), pelo qual podem atravessar as membranas celulares. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. -/- BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. -/- BECKER, Jill B. et al. (Ed.). Behavioral endocrinology. Mit Press, 2002. -/- BITTAR, Edward (Ed.). Reproductive endocrinology and biology. Elsevier, 1998. -/- BURNSTEIN, Kerry L. (Ed.). Steroid hormones and cell cycle regulation. Kluwer Academic Pub., 2002. -/- CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. -/- CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. -/- DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. -/- FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. -/- GILBERT, Scott F. Biologia del desarrollo. Ed. Médica Panamericana, 2005. -/- GORE, Andrea C. GnRH: the master molecule of reproduction. Springer Science & Business Media, 2002. -/- HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. -/- HERNÁNDEZ PARDO, Blanca. Endocrinología: Lo esencial de un vistazo. México: Panamericana, 2016. -/- HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. -/- ILLERA MARTIN, Mariano. Endocrinología veterinaria y fisiología de la reproducción. Madrid: COLIBAC, 1984. -/- JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. -/- MANDOKI, Juan José et al. Hormone multifunctionalities: a theory of endocrine signaling, command and control. Progress in biophysics and molecular biology, v. 86, n. 3, p. 353-377, 2004. -/- MANDOKI, Juan José et al. Reflections on the mode of functioning of endocrine systems. Archives of medical research, v. 41, n. 8, p. 653-657, 2010. -/- MCKINNON, Angus O. et al. (Ed.). Equine reproduction. Nova Jersey: John Wiley & Sons, 2011. -/- MELMED, Shlomo (Ed.). The pituitary. Londres: Academic press, 2010. -/- NORRIS, David O.; LOPEZ, Kristin H. (Ed.). Hormones and reproduction of vertebrates. Academic Press, 2010. -/- PARHAR, Ishwar S. (Ed.). Gonadotropin-releasing hormone: molecules and receptors. Elsevier, 2002. -/- PIMENTEL, C. A. Fisiologia e endocrinologia da reprodução da fêmea bovina. I Simpósio de Reprodução de Bovinos, Porto Alegre, RS, 2002. -/- PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. -/- RAMOS DUEÑAS, J. I. Endocrinología de la reproducción animal. 2018. -/- SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. -/- SANDERS, Stephan. Endocrine and reproductive systems. Elsevier Health Sciences, 2003. -/- SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. -/- SQUIRES, E. James. Applied animal endocrinology. Cambridge: Cabi, 2010. -/- YEN, Samuel SC; JAFFE, Robert B.; BARBIERI, Robert L. Endocrinología de la Reproducción. Fisiología, fisiopatología y manejo clínico. Madrid: Ed. Médica Panamericana, 2001. -/- ZARCO, L. Endocrinología. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. (shrink)
John Clarke of Hull, one of the eighteenth century's staunchest proponents of psychological egoism, defended that theory in his Foundation of Morality in Theory and Practice. He did so mainly by opposing the objections to egoism in the first two editions of Francis Hutcheson's Inquiry into Virtue. But Clarke also produced a challenging, direct argument for egoism which, regrettably, has received virtually no scholarly attention. In this paper I give it some of the attention it merits. In addition to (...) reconstructing it and addressing interpretive issues about it, I show that it withstands a tempting objection. I also show that although Clarke's argument ultimately fails, to study it is instructive. It illuminates, for example, Hutcheson's likely intentions in a passage relevant to egoism. (shrink)
Resemblances obtain not only between objects but between properties. Resemblances of the latter sort - in particular resemblances between quantitative properties - prove to be the downfall of a well-known theory of universals, namely the one presented by David Armstrong. This paper examines Armstrong's efforts to account for such resemblances within the framework of his theory and also explores several extensions of that theory. All of them fail.
Abstract: In chapter 15 of A Materialist Theory of the Mind, D.M.Armstrong offers an account of what he calls “the biological value of introspection”, namely, that “without information…about the current state of our minds, purposive trains mental activity would be impossible.” This paper examines and assesses Armstrong’s “Just-so story about introspective consciousness”—as W.G.Lycan later called it. One moral will be that appreciating this aspect of Armstrong’s view blurs the difference between his own perceptual model of introspection, and (...) the anti-perceptual models advanced by such critics as Sydney Shoemaker . (shrink)
Among the most animating debates in eighteenth-century British ethics was the debate over psychological egoism, the view that our most basic desires are self-interested. An important episode in that debate, less well known than it should be, was the exchange between Francis Hutcheson and John Clarke of Hull. In the early editions of his Inquiry into Virtue, Hutcheson argued ingeniously against psychological egoism; in his Foundation of Morality, Clarke argued ingeniously against Hutcheson’s arguments. Later, Hutcheson attempted new arguments against (...) psychological egoism, designed to overcome Clarke’s objections. This article examines the exchange between these philosophers. Its conclusion, influenced partly by Clarke, is that psychological egoism withstands Hutcheson’s arguments. This is not to belittle those arguments—indeed, they are among the most resourceful and plausible of their kind. The fact that egoism withstands them is thus not a mere negative result, but a stimulus to consider carefully the ways in which progress in this area may be possible. (shrink)
In this article I address a puzzle about one of Francis Hutcheson’s objections to psychological egoism. The puzzle concerns his premise that God receives no benefit from rewarding the virtuous. Why, in the early editions of his Inquiry Concerning Virtue, does Hutcheson leave this premise undefended? And why, in the later editions, does he continue to do so, knowing that in 1726 John Clarke of Hull had subjected the premise to plausible criticism, geared to the very audience for whom (...) Hutcheson’s objection to egoism was written? This puzzle is not negligible. Some might claim that Hutcheson ruins his objection by ignoring Clarke’s criticism. To answer the puzzle we must consider not only Hutcheson’s philosophy but also some theological assumptions of Hutcheson’s time. (shrink)
D. M. Armstrong famously claims that deterministic laws of nature are contingent relations between universals and that his account can also be straightforwardly extended to irreducibly probabilistic laws of nature. For the most part, philosophers have neglected to scrutinize Armstrong’s account of probabilistic laws. This is surprising precisely because his own claims about probabilistic laws make it unclear just what he takes them to be. We offer three interpretations of what Armstrong-style probabilistic laws are, and argue that (...) all three interpretations are incompatible either with some feature of Armstrong’s broader metaphysics or with essential features of his account of laws (or both). (shrink)
The title of this paper reflects the fact truthmaking is quite frequently considered to be expressive of realism. What this means, exactly, will become clearer in the course of our discussion, but since we are interested in Armstrong’s work on truthmaking in particular, it is natural to start from a brief discussion of how truthmaking and realism appear to be associated in his work. In this paper, special attention is given to the supposed link between truthmaking and realism, but (...) it is argued that this link should not be taken too seriously, as truthmaking turns out to be, to a large extent, ontologically neutral. Some consequences of this are studied. (shrink)
This presentation includes a complete bibliography of John Corcoran’s publications devoted at least in part to Aristotle’s logic. Sections I–IV list 20 articles, 43 abstracts, 3 books, and 10 reviews. It starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article that antedates Corcoran’s Aristotle’s studies and the Journal of Symbolic Logic article first reporting his original results; it ends with works published in 2015. A few of the items are annotated with endnotes connecting them (...) with other work. In addition, Section V “Discussions” is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 8 items published in the 1970s, 22 in the 1980s, 39 in the 1990s, 56 in the 2000s, and 65 in the current decade. The secondary bibliography is annotated with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. As is evident from the Acknowledgements sections, all of Corcoran’s publications benefited from correspondence with other scholars, most notably Timothy Smiley, Michael Scanlan, and Kevin Tracy. All of Corcoran’s Greek translations were done in consultation with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. REQUEST: Please send errors, omissions, and suggestions. I am especially interested in citations made in non-English publications. (shrink)
D. M. Armstrong rejects various ontologies that posit truths without truthmakers. But, lest proponents of such questionable ontologies postulate suspicious truthmakers in a bid to regain ontological respectability, Armstrong requires a plausible restriction on truthmaking that eliminates such ontologies. I discuss three different candidate restrictions: categorical, natural, and intrinsic difference-making. While the categorical and natural restrictions eliminate the questionable ontologies, they also eliminate Armstrong’s own ontology. The intrinsic difference-making restriction, on the other hand, fails to eliminate any (...) of them. Thus Armstrong lacks a principled reason for rejecting such ontologies. (shrink)
Provocatively, David Armstrong's properties are supposed to be both universals and spatio-temporal. What does this amount to? I consider four of Armstrong's views, in order of ascending plausibility: (1) the exemplification account, on which universals are exemplified by space-times; (2) the location account, on which universals are located at space-times; (3) the first constituent account, on which spatio-temporal relations are elements of what I call the form of time; and, the true view, (4) the second constituent account, on (...) which universals are spatio-temporal only 'derivatively' by being constituents of states of affairs which are so 'primarily'. The first two accounts are rejected because they entail that space-times must be substantival. In making plausible the second constituent account, I distinguish primitive and derivative spatio-temporality. Something is primitively spatio-temporal when it is at a space-time, or stands in spatio-temporal relations. Something is derivatively spatio-temporal when it is a constituent of something primitively spatio-temporal. (shrink)
This paper has two components. The first, longer component (sec. 1-6) is a critical exposition of Armstrong’s views about the metaphysics of mathematics, as they are presented in Truth and Truthmakers and Sketch for a Systematic Metaphysics. In particular, I discuss Armstrong’s views about the nature of the cardinal numbers, and his account of how modal truths are made true. In the second component of the paper (sec. 7), which is shorter and more tentative, I sketch an alternative (...) account of the metaphysics of mathematics. I suggest we insist that mathematical truths have physical truthmakers, without insisting that mathematical objects themselves are part of the physical world. (shrink)
Rolling Stones guitarist Keith Richards has argued that rock and roll happens from the neck down. In this contribution to The Rolling Stones and Philosophy, edited by Luke Dick and George Reisch, I draw on neuroscience to argue that, in the parlance of John Stuart Mill, rock and roll is both a higher and a lower pleasure.
In this article, I will focus on the notion of supervenience introduced and deployed by Armstrong. The aim is to settle the issue of whether it has any fruitful applications. My conclusions are negative. Armstrong gives to his notion of supervenience a major explanatory role of telling why one need not consider certain beings as a genuine ontic expansion, if one already assumes a certain meagre set of more basic entities. On closer inspection, however, Armstrong’s notion does (...) not clarify such intuitions any further. The legitimate uses of the notion for the above purpose turn out to be redundant: the concepts of identity and partial identity can be employed instead. (shrink)
Cyclist Lance Armstrong cheated his way to seven Tour de France . Such cheating is wrong because it harms society. To explain how that harm affects all of us, I use Aristotle's ideas of virtue ethics to argue that Armstrong, despite his charitable work, is not a virtuous person. Virtue is to some extent determined by society, so we need to be clear that Armstrong is not a person to emulate. A society which does not clearly disapprove (...) of vice is less than it might otherwise be because a good society is one that encourages virtue in its citizens. (shrink)
Since the last ice age, when ice enveloped most of the northern continents, the earth has warmed by about five degrees. Within a century, it is likely to warm by another four or five. This revolution in our climate will have immense and mostly harmful effects on the lives of people not yet born. We are inflicting this harm on our descendants by dumping greenhouse gases into the atmosphere. We can mitigate the harm a little by taking measures to control (...) our emissions of these gases, and to adapt to the changes by, for instance, building sea walls around coastlines threatened by rising sea levels. But these measures will be very expensive, and the costs will be born by us, the present generation, whereas the benefits will come to future generations. How much should we sacrifice for the sake of the future? Economists and philosophers have independently worked on the question of our responsibility to future generations. This book brings their work together and applies it to global warming. It suggests a programme for future research on the economic and ethical issues. The book is intended for economists, and for philosophers and other social scientists who have a little knowledge of economic methods. (shrink)
A scholarly edition of The Clarendon Edition of the Works of John Locke: Correspondence: Letters 3287-3648 by E. S. de Beer. The edition presents an authoritative text, together with an introduction, commentary notes, and scholarly apparatus.
JUNE 2015 UPDATE: A BIBLIOGRAPHY: JOHN CORCORAN’S PUBLICATIONS ON ARISTOTLE 1972–2015 By John Corcoran -/- This presentation includes a complete bibliography of John Corcoran’s publications relevant to his research on Aristotle’s logic. Sections I, II, III, and IV list 21 articles, 44 abstracts, 3 books, and 11 reviews. It starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article from Corcoran’s Philadelphia period that antedates his Aristotle studies and the Journal of Symbolic Logic (...) article from his Buffalo period first reporting his original results; it ends with works published in 2015. A few of the items are annotated as listed or with endnotes connecting them with other work and pointing out passages that in-retrospect are seen to be misleading and in a few places erroneous. In addition, Section V, “Discussions”, is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 8 items published in the 1970s, 23 in the 1980s, 42 in the 1990s, 56 in the 2000s, and 69 in the current decade. The secondary bibliography is also annotated as listed or with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. Section VI, “Alternatives”, lists recent works on Aristotle’s logic oblivious of Corcoran’s research and, more generally, of the Lukasiewicz-initiated tradition. As is evident from Section VII, “Acknowledgements”, Corcoran’s publications benefited from consultation with other scholars, most notably Timothy Smiley, Michael Scanlan, Roberto Torretti, and Kevin Tracy. All of Corcoran’s Greek translations were done in collaboration with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. -/- REQUEST: Please send errors, omissions, and suggestions. I am especially interested in citations made in non-English publications. Also, let me know of passages I should comment on. (shrink)
In a recent essay, Donald Dripps advanced what he calls a “commodification theory” of rape, offered as an alternative to understanding rape in terms of lack of consent. Under the “commodification theory,” rape is understood as the expropriation of sexual services, i.e., obtaining sex through “illegitimate” means. One aim of Dripps's effort was to show the inadequacy of consent approaches to understanding rape. Robin West, while accepting Dripps's critique of consent theories, criticizes Dripps's commodification approach. In its place, West suggests (...) a more phenomenological approach. The author argues that neither Dripps nor West offers convincing critiques of consent-based theories; the alternatives they offer presuppose the vitality of a consent-based approach to understanding rape; and that both Dripps and West consistently conflate more general moral and political issues with that of the nature of rape. (shrink)
In defending his interest-relative account of knowledge in Knowledge and Practical Interests (2005), Jason Stanley relies heavily on intuitions about several bank cases. We experimentally test the empirical claims that Stanley seems to make concerning our common-sense intuitions about these bank cases. Additionally, we test the empirical claims that Jonathan Schaffer seems to make in his critique of Stanley. We argue that our data impugn what both Stanley and Schaffer claim our intuitions about such cases are. To account for these (...) results, one must develop a better conception of the connection between a subject's interests and her body of knowledge than those offered by Stanley and Schaffer. (shrink)
Purpose This paper aims to formalize long-term trajectories of human civilization as a scientific and ethical field of study. The long-term trajectory of human civilization can be defined as the path that human civilization takes during the entire future time period in which human civilization could continue to exist. -/- Design/methodology/approach This paper focuses on four types of trajectories: status quo trajectories, in which human civilization persists in a state broadly similar to its current state into the distant future; catastrophe (...) trajectories, in which one or more events cause significant harm to human civilization; technological transformation trajectories, in which radical technological breakthroughs put human civilization on a fundamentally different course; and astronomical trajectories, in which human civilization expands beyond its home planet and into the accessible portions of the cosmos. -/- Findings Status quo trajectories appear unlikely to persist into the distant future, especially in light of long-term astronomical processes. Several catastrophe, technological transformation and astronomical trajectories appear possible. -/- Originality/value Some current actions may be able to affect the long-term trajectory. Whether these actions should be pursued depends on a mix of empirical and ethical factors. For some ethical frameworks, these actions may be especially important to pursue. (shrink)
We explicate and evaluate arguments both for and against the insanity defense itself, different versions of the insanity defense (M'Naghten, Model Penal Code, and Durham (or Product)), the Irresistible Impulse rule, and various reform proposals.
_Man's Responsibility for Nature_ is a book by John Passmore, a presumably able-bodied, presumably heterosexual, presumably a male white settler Australian philosopher, and his conception of Western history's ideas about human's (white man's) relationship to nature [not with] (predominately looking at USA, that is, colonial Turtle Island) and their (white man's, not white woman's unless you think white men can talk for the universal us?) place in it. Part 1 talks about the evolution of this conception beginning with the (...) idea that "Man is Despot", that is, relates to nature as if nature is another subject for use and exploitation. This self conception of man as the master of the world, demands he must dominate as manliness, as prescribed by Western religions. Chapter two considers changes to this man is despot conception, through expounding USA hegemonic luminaries who influence thoughts and decisions about the use, conservation, and exploitation of nature, as the beginnings of "Stewardship and Co-operation with nature", such as restricting the pillage of Turtle Island (North America) and for example establishing national parks, and the Sierra Club etc. Part Two describes four ecological problems as Passmore sees it: Pollution; Conservation; Preservation; Multiplication. i might continue when i've finished reading. :) But, in the meantime Part 3 reconsiders The Traditions, that is, Man as Despot, or Stewards to end with a final Chapter called Removing the Rubbish. Hmmm, curious? (shrink)
This paper explores some ways in which artificial intelligence (AI) could be used to improve human moral judgments in bioethics by avoiding some of the most common sources of error in moral judgment, including ignorance, confusion, and bias. It surveys three existing proposals for building human morality into AI: Top-down, bottom-up, and hybrid approaches. Then it proposes a multi-step, hybrid method, using the example of kidney allocations for transplants as a test case. The paper concludes with brief remarks about how (...) to handle several complications, respond to some objections, and extend this novel method to other important moral issues in bioethics and beyond. (shrink)
This paper concerns “human symbolic output,” or strings of characters produced by humans in our various symbolic systems; e.g., sentences in a natural language, mathematical propositions, and so on. One can form a set that consists of all of the strings of characters that have been produced by at least one human up to any given moment in human history. We argue that at any particular moment in human history, even at moments in the distant future, this set is finite. (...) But then, given fundamental results in recursion theory, the set will also be recursive, recursively enumerable, axiomatizable, and could be the output of a Turing machine. We then argue that it is impossible to produce a string of symbols that humans could possibly produce but no Turing machine could. Moreover, we show that any given string of symbols that we could produce could also be the output of a Turing machine. Our arguments have implications for Hilbert’s sixth problem and the possibility of axiomatizing particular sciences, they undermine at least two distinct arguments against the possibility of Artificial Intelligence, and they entail that expert systems that are the equals of human experts are possible, and so at least one of the goals of Artificial Intelligence can be realized, at least in principle. (shrink)
According to the Aristotelian Thesis, the conclusion of practical reasoning is an action. Critics argue against it by pointing to cases in which some interference or inability prevents the production of action, yet in which that interference or inability doesn’t impugn the success of an agent’s reasoning. Some of those critics suggest instead that practical reasoning concludes in an intention, while others suggest it concludes in a belief with normative content, such as a belief about what one has conclusive, or (...) sufficient, reason to do. In this paper, I argue that we should allow that practical reasoning could conclude in either an intention or a belief with normative content. I begin by developing an objection to the Aristotelian Thesis, showing how the objection will not also undermine the possibility of practical reasoning concluding in an intention or a belief. I then respond to an argument from Joseph Raz designed to exclude the possibility of intentions as conclusions of practical reasoning. Lastly, I show how the worry that belief isn’t sufficiently “practical” to qualify as a conclusion of practical reasoning is misplaced. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.