Results for 'Mathematical Theory of Computation'

1000+ found
Order:
  1.  53
    Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  92
    The Mathematical Theory of Categories in Biology and the Concept of Natural Equivalence in Robert Rosen.Franck Varenne - 2013 - Revue d'Histoire des Sciences 66 (1):167-197.
    The aim of this paper is to describe and analyze the epistemological justification of a proposal initially made by the biomathematician Robert Rosen in 1958. In this theoretical proposal, Rosen suggests using the mathematical concept of “category” and the correlative concept of “natural equivalence” in mathematical modeling applied to living beings. Our questions are the following: According to Rosen, to what extent does the mathematical notion of category give access to more “natural” formalisms in the modeling of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  90
    Cognitive Computation Sans Representation.Paul Schweizer - 2017 - In Thomas Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics,. Cham, Switzerland: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value.John Corcoran - 1971 - Journal of Structural Learning 3 (2):1-16.
    1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a concern (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  86
    1983 Review in Mathematical Reviews 83e:03005 Of: Cocchiarella, Nino “The Development of the Theory of Logical Types and the Notion of a Logical Subject in Russell's Early Philosophy: Bertrand Russell's Early Philosophy, Part I”. Synthese 45 (1980), No. 1, 71-115.John Corcoran - 1983 - MATHEMATICAL REVIEWS 83:03005.
    CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
    Download  
     
    Export citation  
     
    Bookmark  
  6. David Wolpert on Impossibility, Incompleteness, the Liar Paradox, the Limits of Computation, a Non-Quantum Mechanical Uncertainty Principle and the Universe as Computer—the Ultimate Theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the (...), and even independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility,incompleteness, the limits of computation,and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things,a non-quantum mechanical uncertainty principle and a proof of monotheism. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  47
    Review Of: Garciadiego, A., "Emergence Of...Paradoxes...Set Theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Towards a Theory of Singular Thought About Abstract Mathematical Objects.James E. Davies - 2019 - Synthese 196 (10):4113-4136.
    This essay uses a mental files theory of singular thought—a theory saying that singular thought about and reference to a particular object requires possession of a mental store of information taken to be about that object—to explain how we could have such thoughts about abstract mathematical objects. After showing why we should want an explanation of this I argue that none of three main contemporary mental files theories of singular thought—acquaintance theory, semantic instrumentalism, and semantic cognitivism—can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. A Mathematical Theory of Truth and an Application to the Regress Problem.S. Heikkilä - forthcoming - Nonlinear Studies 22 (2).
    In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight norms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10.  62
    A Theory of Truth for a Class of Mathematical Languages and an Application.S. Heikkilä - manuscript
    In this paprer a class of so called mathematically acceptable (shortly MA) languages is introduced First-order formal languages containing natural numbers and numerals belong to that class. MA languages which are contained in a given fully interpreted MA language augmented by a monadic predicate are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of these languages. MTT makes them fully interpreted MA languages which posses their own truth predicates, yielding consequences to philosophy of mathematics. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Two Concepts of "Form" and the so-Called Computational Theory of Mind.John-Michael Kuczynski - 2006 - Philosophical Psychology 19 (6):795-821.
    According to the computational theory of mind , to think is to compute. But what is meant by the word 'compute'? The generally given answer is this: Every case of computing is a case of manipulating symbols, but not vice versa - a manipulation of symbols must be driven exclusively by the formal properties of those symbols if it is qualify as a computation. In this paper, I will present the following argument. Words like 'form' and 'formal' are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Single-Tape and Multi-Tape Turing Machines Through the Lens of the Grossone Methodology.Yaroslav Sergeyev & Alfredo Garro - 2013 - Journal of Supercomputing 65 (2):645-663.
    The paper investigates how the mathematical languages used to describe and to observe automatic computations influence the accuracy of the obtained results. In particular, we focus our attention on Single and Multi-tape Turing machines which are described and observed through the lens of a new mathematical language which is strongly based on three methodological ideas borrowed from Physics and applied to Mathematics, namely: the distinction between the object (we speak here about a mathematical object) of an observation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  32
    Wolpert, Chaitin and Wittgenstein on Impossibility, Incompleteness, the Liar Paradox, Theism, the Limits of Computation, a Non-Quantum Mechanical Uncertainty Principle and the Universe as Computer—the Ultimate Theorem in Turing Machine Theory (Revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization -- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  75
    Computation in Physical Systems: A Normative Mapping Account.Paul Schweizer - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    The relationship between abstract formal procedures and the activities of actual physical systems has proved to be surprisingly subtle and controversial, and there are a number of competing accounts of when a physical system can be properly said to implement a mathematical formalism and hence perform a computation. I defend an account wherein computational descriptions of physical systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore, the criteria of utility and success vary according to our diverse (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. The General Theory of Second Best Is More General Than You Think.David Wiens - forthcoming - Philosophers' Imprint.
    Lipsey and Lancaster's ``general theory of second best'' is widely thought to have significant implications for applied theorizing about the institutions and policies that most effectively implement abstract normative principles. It is also widely thought to have little significance for theorizing about which abstract normative principles we ought to implement. Contrary to this conventional wisdom, I show how the second best theorem can be extended to myriad domains beyond applied normative theorizing, and in particular to more abstract theorizing about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. A Unified Theory of Mind-Brain Relationship: Is It Possible?Belbase Shashidhar - 2013 - Open Journal of Philosophy 3 (4):443.
    The mind-body relationship has vexed philosophers of mind for quite a long time. Different theories of mind have offered different points of view about the interaction between the two, but none of them seem free of ambiguities and questions. This paper attempts to use a mathematical model for mind-body relationship. The model may generate some questions to think about this relationship from the viewpoint of operator theory.
    Download  
     
    Export citation  
     
    Bookmark  
  18. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientae 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. In this paper, I claim that mechanistic accounts of computation should allow for a broad variation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Philosophy and Theory of Artificial Intelligence.Vincent C. Müller (ed.) - 2013 - Springer.
    [Müller, Vincent C. (ed.), (2013), Philosophy and theory of artificial intelligence (SAPERE, 5; Berlin: Springer). 429 pp. ] --- Can we make machines that think and act like humans or other natural intelligent agents? The answer to this question depends on how we see ourselves and how we see the machines in question. Classical AI and cognitive science had claimed that cognition is computation, and can thus be reproduced on other computing machines, possibly surpassing the abilities of human (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Category Theory and Set Theory as Theories About Complementary Types of Universals.David P. Ellerman - 2017 - Logic and Logical Philosophy 26 (2):1-18.
    Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u_{F}={x|F(x)} for a property F() could never be self-predicative in the sense of u_{F}∈u_{F}. But the (...) theory of categories, dating from the mid-twentieth century, includes a theory of always-self-predicative universals--which can be seen as forming the "other bookend" to the never-self-predicative universals of set theory. The self-predicative universals of category theory show that the problem in the antinomies was not self-predication per se, but negated self-predication. They also provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato's Theory of Forms as well as for the idea of a "concrete universal" in Hegel and similar ideas of paradigmatic exemplars in ordinary thought. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Kant on Mathematical Construction and Quantity of Matter.Jennifer McRobert - manuscript
    Kant's special metaphysics is intended to provide the a priori foundation for Newtonian science, which is to be achieved by exhibiting the a priori content of Newtonian concepts and laws. Kant envisions a two-step mathematical construction of the dynamical concept of matter involving a geometrical construction of matter’s bulk and a symbolic construction of matter’s density. Since Newton himself defines quantity of matter in terms of bulk and density, there is no reason why we shouldn’t interpret Kant’s Dynamics as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  25
    Syntactic Characterizations of First-Order Structures in Mathematical Fuzzy Logic.Guillermo Badia, Pilar Dellunde, Vicent Costa & Carles Noguera - forthcoming - Soft Computing.
    This paper is a contribution to graded model theory, in the context of mathematical fuzzy logic. We study characterizations of classes of graded structures in terms of the syntactic form of their first-order axiomatization. We focus on classes given by universal and universal-existential sentences. In particular, we prove two amalgamation results using the technique of diagrams in the setting of structures valued on a finite MTL-algebra, from which analogues of the Łoś–Tarski and the Chang–Łoś–Suszko preservation theorems follow.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Philosophy and Theory of Artificial Intelligence 2017.Vincent Müller (ed.) - 2017 - Berlin: Springer.
    This book reports on the results of the third edition of the premier conference in the field of philosophy of artificial intelligence, PT-AI 2017, held on November 4 - 5, 2017 at the University of Leeds, UK. It covers: advanced knowledge on key AI concepts, including complexity, computation, creativity, embodiment, representation and superintelligence; cutting-edge ethical issues, such as the AI impact on human dignity and society, responsibilities and rights of machines, as well as AI threats to humanity and AI (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  21
    On the Theory of Labels-Tokens.Urszula Wybraniec-Skardowska - 1981 - Bulletin of the Section of Logic 10 (1):30-33.
    This note is based on a lecture delivered at the Conference on the Scien- tic Research of the Mathematical Center of Opole, Turawa, May 10-11th, 1980. A somewhat extended version will be published in the Proceedings of the Conference. At the same time it is an abstract of a part of a planned larger paper, which will involve the theory of label-tokens. The theory is included into the author's monograph in Polish "Teorie Językow Syntaktycznie Kategorialnych", PWN, Warszawa-Wrocław (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Retrieving the Mathematical Mission of the Continuum Concept From the Transfinitely Reductionist Debris of Cantor’s Paradise. Extended Abstract.Edward G. Belaga - forthcoming - International Journal of Pure and Applied Mathematics.
    What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  27. Aristotle and Modern Mathematical Theories of the Continuum.Anne Newstead - 2001 - In Demetra Sfendoni-Mentzou & James Brown (eds.), Aristotle and Contemporary Philosophy of Science. Peter Lang.
    This paper is on Aristotle's conception of the continuum. It is argued that although Aristotle did not have the modern conception of real numbers, his account of the continuum does mirror the topology of the real number continuum in modern mathematics especially as seen in the work of Georg Cantor. Some differences are noted, particularly as regards Aristotle's conception of number and the modern conception of real numbers. The issue of whether Aristotle had the notion of open versus closed intervals (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  28.  97
    Is Mathematics the Theory of Instantiated Structural Universals?Iulian D. Toader - 2013 - Transylvanian Review 22:132-142.
    The paper argues against defending realism about numbers on the basis of realism about instantiated structural universals. After presenting Armstrong’s theory of structural properties as instantiated universals and Lewis’s devastating criticism of it, I argue that several responses to this criticism are unsuccessful, and that one possible construal of structural universals via non-well-founded sets should be resisted by the mathematical realist.
    Download  
     
    Export citation  
     
    Bookmark  
  29. On the Mathematical Representation of Spacetime.Joseph Cosgrove - 2011 - New Yearbook for Phenomenology and Phenomenological Philosophy 11:154-186.
    This essay is a contribution to the historical phenomenology of science, taking as its point of departure Husserl’s later philosophy of science and Jacob Klein’s seminal work on the emergence of the symbolic conception of number in European mathematics during the late sixteenth and seventeenth centuries. Sinceneither Husserl nor Klein applied their ideas to actual theories of modern mathematical physics, this essay attempts to do so through a case study of the conceptof “spacetime.” In §1, I sketch Klein’s account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  80
    Wolpert, Chaitin and Wittgenstein on Impossibility, Incompleteness, the Limits of Computation, Theism and the Universe as Computer-the Ultimate Turing Theorem.Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization Michael Starks 3rd Ed. (2017).
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the (...), and even independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility, incompleteness, the limits of computation,and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things,a non- quantum mechanical uncertainty principle and a proof of monotheism. There are obvious connections to the classic work of Chaitin, Solomonoff, Komolgarov and Wittgenstein and to the notion that no program (and thus no device) can generate a sequence (or device) with greater complexity than it possesses. One might say this body of work implies atheism since there cannot be any entity more complex than the physical universe and from the Wittgensteinian viewpoint, ‘more complex’ is meaningless (has no conditions of satisfaction, i.e., truth-maker or test). Even a ‘God’ (i.e., a ‘device’ with limitless time/space and energy) cannot determine whether a given ‘number’ is ‘random’ nor can find a certain way to show that a given ‘formula’, ‘theorem’ or ‘sentence’ or ‘device’ (all these being complex language games) is part of a particular ‘system’. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my article The Logical Structure of Philosophy, Psychology, Mind and Language as Revealed in Wittgenstein and Searle 59p(2016). For all my articles on Wittgenstein and Searle see my e-book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Wittgenstein and Searle 367p (2016). Those interested in all my writings in their most recent versions may consult my e-book Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2016’ 662p (2016). -/- All of my papers and books have now been published in revised versions both in ebooks and in printed books. -/- Talking Monkeys: Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B071HVC7YP. -/- The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle--Articles and Reviews 2006-2016 (2017) https://www.amazon.com/dp/B071P1RP1B. -/- Suicidal Utopian Delusions in the 21st century: Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B0711R5LGX . (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  31.  52
    Computational Logic. Vol. 1: Classical Deductive Computing with Classical Logic.Luis M. Augusto - 2018 - London: College Publications.
    This is the first of a two-volume work combining two fundamental components of contemporary computing into classical deductive computing, a powerful form of computation, highly adequate for programming and automated theorem proving, which, in turn, have fundamental applications in areas of high complexity and/or high security such as mathematical proof, software specification and verification, and expert systems. Deductive computation is concerned with truth-preservation: This is the essence of the satisfiability problem, or SAT, the central computational problem in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32.  83
    Mathematical Models of Abstract Systems: Knowing Abstract Geometric Forms.Jean-Pierre Marquis - 2013 - Annales de la Faculté des Sciences de Toulouse 22 (5):969-1016.
    Scientists use models to know the world. It i susually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, namely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Mathematical Aspects of Similarity and Quasi-Analysis - Order, Topology, and Sheaves.Thomas Mormann - manuscript
    The concept of similarity has had a rather mixed reputation in philosophy and the sciences. On the one hand, philosophers such as Goodman and Quine emphasized the „logically repugnant“ and „insidious“ character of the concept of similarity that allegedly renders it inaccessible for a proper logical analysis. On the other hand, a philosopher such as Carnap assigned a central role to similarity in his constitutional theory. Moreover, the importance and perhaps even indispensibility of the concept of similarity for many (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Plato's Theory of Recollection.Norman Gulley - 1954 - Classical Quarterly 4 (3-4):194-.
    This book is an attempt "to give a systematic account of the development of plato's theory of knowledge" (page vii). thus it focuses on the dialogues in which epistemological issues come to the fore. these dialogues are "meno", "phaedo", "symposium", "republic", "cratylus", "theastetus", "phaedrus", "timaeus", "sophist", "politicus", "philebus", and "laws". issues discusssed include the theory of recollection, perception, the difference between belief and knowledge, and mathematical knowledge. (staff).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  35. Maimon’s Theory of Differentials As The Elements of Intuitions.Simon Duffy - 2014 - International Journal of Philosophical Studies 22 (2):1-20.
    Maimon’s theory of the differential has proved to be a rather enigmatic aspect of his philosophy. By drawing upon mathematical developments that had occurred earlier in the century and that, by virtue of the arguments presented in the Essay and comments elsewhere in his writing, I suggest Maimon would have been aware of, what I propose to offer in this paper is a study of the differential and the role that it plays in the Essay on Transcendental Philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. The Role of Epistemological Models in Veronese's and Bettazzi's Theory of Magnitudes.Paola Cantù - 2010 - In M. D'Agostino, G. Giorello, F. Laudisa, T. Pievani & C. Sinigaglia (eds.), New Essays in Logic and Philosophy of Science. College Publications.
    The philosophy of mathematics has been accused of paying insufficient attention to mathematical practice: one way to cope with the problem, the one we will follow in this paper on extensive magnitudes, is to combine the `history of ideas' and the `philosophy of models' in a logical and epistemological perspective. The history of ideas allows the reconstruction of the theory of extensive magnitudes as a theory of ordered algebraic structures; the philosophy of models allows an investigation into (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  37. A Theory of Biological Pattern Formation.Alfred Gierer & Hans Meinhardt - 1972 - Kybernetik, Continued as Biological Cybernetics 12 (1):30 - 39.
    The paper addresses the formation of striking patterns within originally near-homogenous tissue, the process prototypical for embryology, and represented in particularly purist form by cut sections of hydra regenerating, by internal reorganisation of the pre-existing tissue, a complete animal with head and foot. The essential requirements are autocatalytic, self-enhancing activation, combined with inhibitory or depletion effects of wider range – “lateral inhibition”. Not only de-novo-pattern formation, but also well known, striking features of developmental regulation such as induction, inhibition, and proportion (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  38. Review Of: Hodesdon, K. “Mathematica Representation: Playing a Role”. Philosophical Studies (2014) 168:769–782. Mathematical Reviews. MR 3176431.John Corcoran - 2015 - MATHEMATICAL REVIEWS 2015:3176431.
    This 4-page review-essay—which is entirely reportorial and philosophically neutral as are my other contributions to MATHEMATICAL REVIEWS—starts with a short introduction to the philosophy known as mathematical structuralism. The history of structuralism traces back to George Boole (1815–1864). By reference to a recent article various feature of structuralism are discussed with special attention to ambiguity and other terminological issues. The review-essay includes a description of the recent article. The article’s 4-sentence summary is quoted in full and then analyzed. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. A Theory of Concepts and Concepts Possession.George Bealer - 1998 - Philosophical Issues 9:261-301.
    The paper begins with an argument against eliminativism with respect to the propositional attitudes. There follows an argument that concepts are sui generis ante rem entities. A nonreductionist view of concepts and propositions is then sketched. This provides the background for a theory of concept possession, which forms the bulk of the paper. The central idea is that concept possession is to be analyzed in terms of a certain kind of pattern of reliability in one’s intuitions regarding the behavior (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  41. Computational Mechanisms and Models of Computation.Marcin Miłkowski - 2014 - Philosophia Scientiæ 18:215-228.
    In most accounts of realization of computational processes by physical mechanisms, it is presupposed that there is one-to-one correspondence between the causally active states of the physical process and the states of the computation. Yet such proposals either stipulate that only one model of computation is implemented, or they do not reflect upon the variety of models that could be implemented physically. -/- In this paper, I claim that mechanistic accounts of computation should allow for a broad (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Set Theory, Topology, and the Possibility of Junky Worlds.Thomas Mormann - 2014 - Notre Dame Journal of Formal Logic 55 (1): 79 - 90.
    A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of junky (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. A Mathematical Model of Aristotle’s Syllogistic.John Corcoran - 1973 - Archiv für Geschichte der Philosophie 55 (2):191-219.
    In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  44. The Analytic Versus Representational Theory of Measurement: A Philosophy of Science Perspective.Zoltan Domotor & Vadim Batitsky - 2008 - Measurement Science Review 8 (6):129-146.
    In this paper we motivate and develop the analytic theory of measurement, in which autonomously specified algebras of quantities (together with the resources of mathematical analysis) are used as a unified mathematical framework for modeling (a) the time-dependent behavior of natural systems, (b) interactions between natural systems and measuring instruments, (c) error and uncertainty in measurement, and (d) the formal propositional language for describing and reasoning about measurement results. We also discuss how a celebrated theorem in analysis, (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  45. A Generalization of Shannon's Information Theory.Chenguang Lu - 1999 - Int. J. Of General Systems 28 (6):453-490.
    A generalized information theory is proposed as a natural extension of Shannon's information theory. It proposes that information comes from forecasts. The more precise and the more unexpected a forecast is, the more information it conveys. If subjective forecast always conforms with objective facts then the generalized information measure will be equivalent to Shannon's information measure. The generalized communication model is consistent with K. R. Popper's model of knowledge evolution. The mathematical foundations of the new information (...), the generalized communication model , information measures for semantic information and sensory information, and the coding meanings of generalized entropy and generalized mutual information are introduced. Assessments and optimizations of pattern recognition, predictions, and detection with the generalized information criterion are discussed. For economization of communication, a revised version of rate-distortion theory: rate-of-keeping-precision theory, which is a theory for datum compression and also a theory for matching an objective channels with the subjective understanding of information receivers, is proposed. Applications include stock market forecasting and video image presentation. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Conceptual Atomism and the Computational Theory of Mind: A Defense of Content-Internalism and Semantic Externalism.John-Michael Kuczynski - 2007 - John Benjamins & Co.
    Contemporary philosophy and theoretical psychology are dominated by an acceptance of content-externalism: the view that the contents of one's mental states are constitutively, as opposed to causally, dependent on facts about the external world. In the present work, it is shown that content-externalism involves a failure to distinguish between semantics and pre-semantics---between, on the one hand, the literal meanings of expressions and, on the other hand, the information that one must exploit in order to ascertain their literal meanings. It is (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  47. A Review Of:“Information Theory, Evolution and the Origin of Life as a Digital Message How Life Resembles a Computer” Second Edition. Hubert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 Pages, Index; Hardcover, US $60.00; ISBN: 0-521-80293-8. [REVIEW]Attila Grandpierre - 2006 - World Futures 62 (5):401-403.
    Information Theory, Evolution and The Origin ofLife: The Origin and Evolution of Life as a Digital Message: How Life Resembles a Computer, Second Edition. Hu- bert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 pages, index; hardcover, US $60.00; ISBN: 0-521-80293-8. The reason that there are principles of biology that cannot be derived from the laws of physics and chemistry lies simply in the fact that the genetic information content of the genome for constructing even the simplest organisms is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Generation of Biological Patterns and Form: Some Physical, Mathematical and Logical Aspects.Alfred Gierer - 1981 - Progress in Biophysics and Molecular Biology 37 (1):1-48.
    While many different mechanisms contribute to the generation of spatial order in biological development, the formation of morphogenetic fields which in turn direct cell responses giving rise to pattern and form are of major importance and essential for embryogenesis and regeneration. Most likely the fields represent concentration patterns of substances produced by molecular kinetics. Short range autocatalytic activation in conjunction with longer range “lateral” inhibition or depletion effects is capable of generating such patterns (Gierer and Meinhardt, 1972). Non-linear reactions are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. Schaffner’s Model of Theory Reduction: Critique and Reconstruction.Rasmus Grønfeldt Winther - 2009 - Philosophy of Science 76 (2):119-142.
    Schaffner’s model of theory reduction has played an important role in philosophy of science and philosophy of biology. Here, the model is found to be problematic because of an internal tension. Indeed, standard antireductionist external criticisms concerning reduction functions and laws in biology do not provide a full picture of the limits of Schaffner’s model. However, despite the internal tension, his model usefully highlights the importance of regulative ideals associated with the search for derivational, and embedding, deductive relations among (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  50. Theory and Philosophy of AI (Minds and Machines, 22/2 - Special Volume).Vincent C. Müller (ed.) - 2012 - Springer.
    Invited papers from PT-AI 2011. - Vincent C. Müller: Introduction: Theory and Philosophy of Artificial Intelligence - Nick Bostrom: The Superintelligent Will: Motivation and Instrumental Rationality in Advanced Artificial Agents - Hubert L. Dreyfus: A History of First Step Fallacies - Antoni Gomila, David Travieso and Lorena Lobo: Wherein is Human Cognition Systematic - J. Kevin O'Regan: How to Build a Robot that Is Conscious and Feels - Oron Shagrir: Computation, Implementation, Cognition.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000