Results for 'Mathematical Thingking, '

949 found
Order:
  1. Mathematical Thinking Undefended on The Level of The Semester for Professional Mathematics Teacher Candidates. Toheri & Widodo Winarso - 2017 - Munich University Library.
    Mathematical thinking skills are very important in mathematics, both to learn math or as learning goals. Thinking skills can be seen from the description given answers in solving mathematical problems faced. Mathematical thinking skills can be seen from the types, levels, and process. Proportionally questions given to students at universities in Indonesia (semester I, III, V, and VII). These questions are a matter of description that belong to the higher-level thinking. Students choose 5 of 8 given problem. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Hội thảo các vấn đề kinh tế, tài chính và ứng dụng toán học, 27-28/2/2009.Vietnam Mathematical Society - 2009 - Vms Conference 2009.
    Nền kinh tế nước ta đang chuyển biến mạnh mẽ từ nền kinh tế bao cấp sang kinh tế thị trường, nhất là từ khi nước ta gia nhập WTO. Đảng và chính phủ đã đề ra rất nhiều các chính sách để cải tiến các thể chế quản lý nền kinh tế và tài chính. Thị trường chứng khoán Việt Nam đã ra đời và đang đóng một vai trò quan trọng trong việc huy động vốn phục vụ cho (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Mathematics, Narratives and Life: Reconciling Science and the Humanities.Arran Gare - 2024 - Cosmos and History 20 (1):133-155.
    The triumph of scientific materialism in the Seventeenth Century not only bifurcated nature into matter and mind and primary and secondary qualities, as Alfred North Whitehead pointed out in Science and the Modern World. It divided science and the humanities. The core of science is the effort to comprehend the cosmos through mathematics. The core of the humanities is the effort to comprehend history and human nature through narratives. The life sciences can be seen as the zone in which the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of (...) theorems can cover at most one mathematical universe. Indispensability arguments may thus lose their central role in the debate about mathematical ontology. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Mathematics, core of the past and hope of the future.James Franklin - 2018 - In Catherine A. Runcie & David Brooks (eds.), Reclaiming Education: Renewing Schools and Universities in Contemporary Western Society. Edwin H. Lowe Publishing. pp. 149-162.
    Mathematics has always been a core part of western education, from the medieval quadrivium to the large amount of arithmetic and algebra still compulsory in high schools. It is an essential part. Its commitment to exactitude and to rigid demonstration balances humanist subjects devoted to appreciation and rhetoric as well as giving the lie to postmodernist insinuations that all “truths” are subject to political negotiation. In recent decades, the character of mathematics has changed – or rather broadened: it has become (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Mathematics and metaphysics: The history of the Polish philosophy of mathematics from the Romantic era.Paweł Jan Polak - 2021 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 71:45-74.
    The Polish philosophy of mathematics in the 19th century is not a well-researched topic. For this period, only five philosophers are usually mentioned, namely Jan Śniadecki, Józef Maria Hoene-Wroński, Henryk Struve, Samuel Dickstein, and Edward Stamm. This limited and incomplete perspective does not allow us to develop a well-balanced picture of the Polish philosophy of mathematics and gauge its influence on 19th- and 20th-century Polish philosophy in general. To somewhat complete our picture of the history of the Polish philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. MATHEMATICAL PROBLEM SOLVING SKILLS AND ACADEMIC SELF-EFFICACYAS CORRELATES OF PRE-SERVICE NCE MATHEMATICS TEACHERS’ PERFORMANCE IN SOUTH-EAST, NIGERIA.Ebele Chinelo Okigbo & Olubu Ojo Ayegbusi - 2024 - Ijo - International Journal of Educational Research 7 (5):1-13.
    The study ascertained mathematical problem-solving skills and self-efficacy as correlates of Pre-service NCE Mathematics Teachers’ Performance in South-East, Nigeria. Seven research questions guided the study while seven hypotheses were tested at 0.05 level of significance. Correlation research design was used for the study. The population of the study was 197 pre-service NCE Mathematics teachers in South-East, Nigeria. All the population of 197 was studied as sample because, it is small and manageable. Mathematics Problem-Solving Skill Test (MPSST) and Pre-Service Teachers’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Mathematical Justification without Proof.Silvia De Toffoli - forthcoming - In Giovanni Merlo, Giacomo Melis & Crispin Wright (eds.), Self-knowledge and Knowledge A Priori. Oxford University Press.
    According to a widely held view in the philosophy of mathematics, direct inferential justification for mathematical propositions (that are not axioms) requires proof. I challenge this view while accepting that mathematical justification requires arguments that are put forward as proofs. I argue that certain fallacious putative proofs considered by the relevant subjects to be correct can confer mathematical justification. But mathematical justification doesn’t come for cheap: not just any argument will do. I suggest that to successfully (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Mathematical Modelling and Contrastive Explanation.Adam Morton - 1990 - Canadian Journal of Philosophy 20 (Supplement):251-270.
    Mathematical models provide explanations of limited power of specific aspects of phenomena. One way of articulating their limits here, without denying their essential powers, is in terms of contrastive explanation.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  12. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  80
    Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  15. Mathematical Needs of Laura Vicuña Learners.Jupeth Pentang, Ronalyn M. Bautista, Aylene D. Pizaña & Susana P. Egger - 2020 - WPU Graduate Journal 5 (1):78-81.
    An inquiry on the training needs in Mathematics was conducted to Laura Vicuña Center - Palawan (LVC-P) learners. Specifically, this aimed to determine their level of performance in numbers, measurement, geometry, algebra, and statistics, identify the difficulties they encountered in solving word problems and enumerate topics where they needed coaching. -/- To identify specific training needs, the study employed a descriptive research design where 36 participants were sampled purposively. The data were gathered through a problem set test and focus group (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  16. Mathematics, Morality, and Self‐Effacement.Jack Woods - 2016 - Noûs 52 (1):47-68.
    I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  17. Mature Intuition and Mathematical Understanding.William D'Alessandro & Irma Stevens - forthcoming - Journal of Mathematical Behavior.
    Mathematicians often describe the importance of well-developed intuition to productive research and successful learning. But neither education researchers nor philosophers interested in epistemic dimensions of mathematical practice have yet given the topic the sustained attention it deserves. The trouble is partly that intuition in the relevant sense lacks a usefully clear characterization, so we begin by offering one: mature intuition, we say, is the capacity for fast, fluent, reliable and insightful inference with respect to some subject matter. We illustrate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  19. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) (...) truths are not truths about the external world but specifications (formulations) of mathematical conceptions; (iii) mathematics is first and foremost our imagined tool by which, with certain assumptions about its applicability, we explore nature and synthesize our rational cognition of it. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  22. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. When mathematics touches physics: Henri Poincaré on probability.Jacintho Del Vecchio Junior - manuscript
    Probability plays a crucial role regarding the understanding of the relationship which exists between mathematics and physics. It will be the point of departure of this brief reflection concerning this subject, as well as about the placement of Poincaré’s thought in the scenario offered by some contemporary perspectives.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. A Mathematical Model of Dignāga’s Hetu-cakra.Aditya Kumar Jha - 2020 - Journal of the Indian Council of Philosophical Research 37 (3):471-479.
    A reasoned argument or tarka is essential for a wholesome vāda that aims at establishing the truth. A strong tarka constitutes of a number of elements including an anumāna based on a valid hetu. Several scholars, such as Dharmakīrti, Vasubandhu and Dignāga, have worked on theories for the establishment of a valid hetu to distinguish it from an invalid one. This paper aims to interpret Dignāga’s hetu-cakra, called the wheel of grounds, from a modern philosophical perspective by deconstructing it into (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Supreme Mathematics: The Five Percenter Model of Divine Self-Realization and Its Commonalities to Interpretations of the Pythagorean Tetractys in Western Esotericism.Martin A. M. Gansinger - 2023 - Interdisciplinary Journal for Religion and Transformation in Contemporary Society 1 (1):1-22.
    This contribution aims to explore the historical predecessors of the Five Percenter model of self-realization, as popularized by Hip Hop artists such as Supreme Team, Rakim Allah, Brand Nubian, Wu-Tang Clan, or Sunz of Man. As compared to frequent considerations of the phenomenon as a creative mythological background for a socio-political struggle, Five Percenter teachings shall be discussed as contemporary interpretations of historical models of self-realization in various philosophical, religious, and esoteric systems. By putting the coded system of the tenfold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science (NA):1-19.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Mathematics and conceptual analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  29. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Mathematical necessity and reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  31. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  32. A Mathematical Definition of the Present and its Duration.Paul Merriam - manuscript
    We give a mathematical definition of the present or 'what is real' and its duration on McTaggart's A-series future/present/past. This is applicable to at least one conception of the block-world, the growing-block, and presentism.
    Download  
     
    Export citation  
     
    Bookmark  
  33. The directionality of distinctively mathematical explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  34. Mathematical cognition and enculturation: introduction to the Synthese special issue.Markus Pantsar - 2020 - Synthese 197 (9):3647-3655.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  35. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Mathematical thought in the light of Matte Blanco’s work.Giuseppe Iurato - 2013 - Philosophy of Mathematics Education Journal 27:1-9.
    Taking into account some basic epistemological considerations on psychoanalysis by Ignacio Matte Blanco, it is possible to deduce some first simple remarks on certain logical aspects of schizophrenic reasoning. Further remarks on mathematical thought are also made in the light of what established, taking into account the comparison with the schizophrenia pattern.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  37. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  38. Naturalising Mathematics? A Wittgensteinian Perspective.Jan Stam, Martin Stokhof & Michiel Van Lambalgen - 2022 - Philosophies 7 (4):85.
    There is a noticeable gap between results of cognitive neuroscientific research into basic mathematical abilities and philosophical and empirical investigations of mathematics as a distinct intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing with this discrepancy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Rejecting Mathematical Realism while Accepting Interactive Realism.Seungbae Park - 2018 - Analysis and Metaphysics 17:7-21.
    Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Deep Disagreement in Mathematics.Andrew Aberdein - 2023 - Global Philosophy 33 (1):1-27.
    Disagreements that resist rational resolution, often termed “deep disagreements”, have been the focus of much work in epistemology and informal logic. In this paper, I argue that they also deserve the attention of philosophers of mathematics. I link the question of whether there can be deep disagreements in mathematics to a more familiar debate over whether there can be revolutions in mathematics. I propose an affirmative answer to both questions, using the controversy over Shinichi Mochizuki’s work on the abc conjecture (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  43. Mathematical Artifacts Have Politics: The Journey from Examples to Embedded Ethics.Dennis Müller & Maurice Chiodo - manuscript
    We extend Langdon Winner's idea that artifacts have politics into the realm of mathematics. To do so, we first provide a list of examples showing the existence of mathematical artifacts that have politics. In the second step, we provide an argument that shows that all mathematical artifacts have politics. We conclude by showing the implications for embedding ethics into mathematical curricula. We show how acknowledging that mathematical artifacts have politics can help mathematicians design better exercises for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. PARENTAL INVOLVEMENT IN LEARNING MATHEMATICS OF STUDENTS IN RELATION TO ATTITUDE AND ACADEMIC PERFORMANCE.Joel Lachica Iii - 2024 - Psychology and Education: A Multidisciplinary Journal 23 (3):351-368.
    This study investigated the parental involvement in learning Mathematics of students in relation to attitude and academic performance. The respondents of this study were the three-hundred fifty-six grade 9 students at 9 secondary schools in the Division of Bago City. Results showed that most of the respondents were female, belonged to income range Php 12,082 and below, their parents attained high school level, and had other works aside from being mentioned in the option of occupation. Level of parental involvement when (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. PERCEPTIONS OF MATHEMATICS’ STUDENT TEACHERS IN THE IMPLEMENTATION OF GAMIFICATION IN SECONDARY SCHOOL AT NASUGBU, BATANGAS.Angel Joie G. Feleo, Jowenie A. Mangarin & Mary Ann N. Cahayon - 2024 - Get International Research Journal 2 (2):22-46.
    This study delved into the perceptions of Mathematics’ student teachers regarding the implementation of gamification in secondary schools at Nasugbu, Batangas. This research investigates the rising global trend of implementing gamification in education, particularly in Mathematics teaching, to address contemporary learner needs by examining student teachers' use of gamified activities, their design factors, encountered challenges, and perceived benefits. Purposive sampling was utilized in a multiple-case study approach to select ten (10) secondary school Mathematics’ student teachers engaged in practice teaching in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Mathematical Gettier Cases and Their Implications.Neil Barton - manuscript
    Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  48. Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Mathematics Intelligent Tutoring System.Nour N. AbuEloun & Samy S. Abu Naser - 2017 - International Journal of Advanced Scientific Research 2 (1):11-16.
    In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An evaluation (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  50. MATHEMATICS PROFICIENCY LEVEL AMONG THE GRADE THREE PUPILS IN CAGAYAN DE ORO CITY DIVISION.Atriah Fascia Dy & Conniebel Nistal - 2024 - International Journal of Research Publications 147 (1):98-114.
    Mathematics is an important subject taught in primary and secondary schools that equips students with foundational knowledge and skills for organizing their lives. This study determined the Mathematics proficiency level among the Grade Three pupils in Cagayan de Oro City in School Year 2022-2023. Specifically, it sought to determine the respondents’ profile in terms of language used at home, study habits, parental involvement, and attitude towards Mathematics; find out the proficiency level in Mathematics; and determine the significant relationship between the (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 949