Quantum physicists have made many attempts to solve the quantum measurementproblem, but no solution seems to have received widespread acceptance. The time has come for a new approach. In Sense Perception and Reality: A Theory of Perceptual Relativity, Quantum Mechanics and the Observer Dependent Universe I suggest the quantum measurementproblem is caused by a failure to understand that each species has its own sensory world and that when we say the wave function collapses and (...) brings a particle into existence we mean the particle is brought into existence in the human sensory world by the combined operation of the human sensory apparatus, particle detectors and the experimental set up. This is similar to the Copenhagen Interpretation suggested by Niels Bohr and others, but the understanding that the collapse of the wave function brings a particle into existence in the human sensory world removes the need for a dividing line between the quantum world and the macro world. The same rules can apply to both worlds and the ideas stated in this paper considerably strengthen the Copenhagen Interpretation of quantum mechanics. (shrink)
The basic idea of quantum mechanics is that the property of any system can be in a state of superposition of various possibilities. This state of superposition is also known as wave function and it evolves linearly with time in a deterministic way in accordance with the Schrodinger equation. However, when a measurement is carried out on the system to determine the value of that property, the system instantaneously transforms to one of the eigen states and thus we get (...) only a single value as outcome of the measurement. Quantum measurementproblem seeks to find the cause and exact mechanism governing this transformation. In an attempt to solve the above problem, in this paper, we will first define what the wave function represents in real world and will identify the root cause behind the stochastic nature of events. Then, we will develop a model to explain the mechanism of collapse of the quantum mechanical wave function in response to a measurement. In the process of development of model, we will explain Schrodinger cat paradox and will show how Born’s rule for probability becomes a natural consequence of measurement process. (shrink)
According to orthodox quantum mechanics, state vectors change in two incompatible ways: "deterministically" in accordance with Schroedinger's time-dependent equation, and probabilistically if and only if a measurement is made. It is argued here that the problem of measurement arises because the precise mutually exclusive conditions for these two types of transitions to occur are not specified within orthodox quantum mechanics. Fundamentally, this is due to an inevitable ambiguity in the notion of "meawurement" itself. Hence, if the (...) class='Hi'>problem of measurement is to be resolved, a new, fully objective version of quantjm mechanics needs to be developed which does not incorporate the notion of measurement in its basic postuolates at all. (shrink)
In the last few decades the role played by models and modeling activities has become a central topic in the scientific enterprise. In particular, it has been highlighted both that the development of models constitutes a crucial step for understanding the world and that the developed models operate as mediators between theories and the world. Such perspective is exploited here to cope with the issue as to whether error-based and uncertainty-based modeling of measurement are incompatible, and thus alternative with (...) one another, as sometimes claimed nowadays. The crucial problem is whether assuming this standpoint implies definitely renouncing to maintain a role for truth and the related concepts, particularly accuracy, in measurement. It is argued here that the well known objections against true values in measurement, which would lead to refuse the concept of accuracy as non-operational, or to maintain it as only qualitative, derive from a not clear distinction between three distinct processes: the metrological characterization of measuring systems, their calibration, and finally measurement. Under the hypotheses that (1) the concept of true value is related to the model of a measurement process, (2) the concept of uncertainty is related to the connection between such model and the world, and (3) accuracy is a property of measuring systems (and not of measurement results) and uncertainty is a property of measurement results (and not of measuring systems), not only the compatibility but actually the conjoint need of error-based and uncertainty-based modeling emerges. (shrink)
There is a consistent and simple interpretation of the quantum theory of isolated systems. The interpretation suffers no measurementproblem and provides a quantum explanation of state reduction, which is usually postulated. Quantum entanglement plays an essential role in the construction of the interpretation.
This paper presents a new modified quantum mechanics, Critical Complexity Quantum Mechanics, which includes a new account of wavefunction collapse. This modified quantum mechanics is shown to arise naturally from a fully discrete physics, where all physical quantities are discrete rather than continuous. I compare this theory with the spontaneous collapse theories of Ghirardi, Rimini, Weber and Pearle and discuss some implications of these theories and CCQM for a realist view of the quantum realm.
Any realist interpretation of quantum theory must grapple with the measurementproblem and the status of state-vector collapse. In a no-collapse approach, measurement is typically modeled as a dynamical process involving decoherence. We describe how the minimal modal interpretation closes a gap in this dynamical description, leading to a complete and consistent resolution to the measurementproblem and an effective form of state collapse. Our interpretation also provides insight into the indivisible nature of measurement—the (...) fact that you can't stop a measurement part-way through and uncover the underlying 'ontic' dynamics of the system in question. Having discussed the hidden dynamics of a system's ontic state during measurement, we turn to more general forms of open-system dynamics and explore the extent to which the details of the underlying ontic behavior of a system can be described. We construct a space of ontic trajectories and describe obstructions to defining a probability measure on this space. (shrink)
In this paper, I argue for a distinction between two scales of coordination in scientific inquiry, through which I reassess Georg Simon Ohm’s work on conductivity and resistance. Firstly, I propose to distinguish between measurement coordination, which refers to the specific problem of how to justify the attribution of values to a quantity by using a certain measurement procedure, and general coordination, which refers to the broader issue of justifying the representation of an empirical regularity by means (...) of abstract mathematical tools. Secondly, I argue that the development of Ohm’s measurement practice between the first and the second experimental phase of his work involved the change of the measurement coordination on which he relied to express his empirical results. By showing how Ohm relied on different calibration assumptions and practices across the two phases, I demonstrate that the concurrent change of both Ohm’s experimental apparatus and the variable that Ohm measured should be viewed based on the different form of measurement coordination. Finally, I argue that Ohm’s assumption that tension is equally distributed in the circuit is best understood as part of the general coordination between Ohm’s law and the empirical regularity that it expresses, rather than measurement coordination. (shrink)
As for most measurement procedures in the course of their development, measures of consciousness face the problem of coordination, i.e., the problem of knowing whether a measurement procedure actually measures what it is intended to measure. I focus on the case of the Perceptual Awareness Scale to illustrate how ignoring this problem leads to ambiguous interpretations of subjective reports in consciousness science. In turn, I show that empirical results based on this measurement procedure might (...) be systematically misinterpreted. (shrink)
As we enter the 2020s, global poverty is still a grave and persistent problem. Alleviating and eradicating poverty within and across the world’s societies requires a thorough understanding of its nature and extent. Although economists still standardly measure absolute and relative poverty in monetary terms, a consensus is emerging that poverty is a socially relational problem involving deprivations in multiple dimensions, including health, standard of living, education and political participation. The anthology Dimensions of Poverty advances the interdisciplinary debate (...) on multidimensional poverty, and features contributions from leading international experts and early career researchers (including from the Global South). This introductory chapter gives an overview of formative debates, central concepts and key findings. While monetary poverty measures are still dominant in public and academic debate, their explanatory power has been drawn into question. We discuss relevant criticisms before outlining the normative concepts that can inform both multidimensional poverty and monetary measures, including basic capabilities, basic needs and social primary goods. Next, we introduce several influential multidimensional poverty indices, including the Human Development Index and the Multidimensional Poverty Index. The anthology shows in detail how such measures can be improved, from a variety of disciplinary perspectives. It shows that there are different methods of poverty research that require further investigation, including participatory studies, (value) surveys, public consensus building, the constitutional approach, and financial diaries. Finally, we show that there is an ongoing problem of epistemic asymmetries in global poverty research, and discuss responsibility for addressing poverty, including the responsibilities of academics. The remainder of the chapter is dedicated to a more detailed preview of the volume’s 20 contributions, which are assembled along the following five themes: (I) poverty as a social relation; (II) epistemic injustices in poverty research; (III) the social context of poverty; (IV) measuring multidimensional poverty; and (V) country cases. (shrink)
Ruetsche (1996) has argued that van Fraassen's (1991) Copenhagen Variant of the Modal Interpretation (CVMI) gives unsatisfactory accounts of measurement and of state preparation. I defend the CVMI against Ruetsche's first argument by using decoherence to show that the CVMI does not need to account for the measurement scenario which Ruetsche poses. I then show, however, that there is a problem concerning preparation, and the problem is more serious than the one Ruetsche focuses on. The CVMI (...) makes no substantive predictions for the everyday processes we take to be measurements. (shrink)
It is common to assume that the problem of induction arises only because of small sample sizes or unreliable data. In this paper, I argue that the piecemeal collection of data can also lead to underdetermination of theories by evidence, even if arbitrarily large amounts of completely reliable experimental and observational data are collected. Specifically, I focus on the construction of causal theories from the results of many studies (perhaps hundreds), including randomized controlled trials and observational studies, where the (...) studies focus on overlapping, but not identical, sets of variables. Two theorems reveal that, for any collection of variables V, there exist fundamentally different causal theories over V that cannot be distinguished unless all variables are simultaneously measured. Underdetermination can result from piecemeal measurement, regardless of the quantity and quality of the data. Moreover, I generalize these results to show that, a priori, it is impossible to choose a series of small (in terms of number of variables) observational studies that will be most informative with respect to the causal theory describing the variables under investigation. This final result suggests that scientific institutions may need to play a larger role in coordinating differing research programs during inquiry. (shrink)
The problem of measurement in economic models and the possibility of their quantum-mechanical description are considered. It is revealed that the apparent paradox of such a description is associated with a priori requirement of conformity of the model to all the alternatives of free choice of the observer. The measurement of the state of a trader on a stock exchange is formally defined as his responses to the proposals of sale at a fixed price. It is shown (...) that an analogue of Bell's inequalities for this measurement model is violated at the most general assumptions related to the strategy of the trader and requires a quantummechanical description of the dynamics of his condition. In the framework of the theory of weak continuous quantum measurements, the equation of stock price dynamics and the quantum-mechanical generalization of the F. Black and M. Scholes model for pricing options are obtained. The fundamental distinctions between the obtained model and the classical one are discussed. (shrink)
Scientists use visualisations of different kinds in a variety of ways in their scientific work. In the following article, we will take a closer look at the use of photographic pictures as scientific evidence. In accordance with Patrick Maynard’s thesis, photography will be regarded as a family of technologies serving different purposes in divergent contexts. One of these is its ability to detect certain phenomena. Nonetheless, with regard to the philosophical thesis of theory-ladenness of observation, we encounter certain reservations concerning (...) the status of photography and that of photographic pictures in the process of measurement in science. Accordingly, the aim of this paper is twofold: We will discuss suggested solutions both for the technological and for the psychological part of the problem of theory-ladenness appearing in the context of the use of photography in scientific observations. The essential proposal will be to follow Christian Suhm in his advice to make a distinction between theory-relativity and theory-ladenness. (shrink)
Given a subject so imbued with contention and conflicting theoretical stances, it is remarkable that automated instruments ever came to replace the human eye as sensitive arbiters of color specification. Yet, dramatic shifts in assumptions and practice did occur in the first half of the twentieth century. How and why was confidence transferred from careful observers to mechanized devices when the property being measured – color – had become so closely identified with human physiology and psychology? A fertile perspective on (...) the problem is via the history of science and technology, paying particular attention to social groups and disciplinary identity to determine how those factors affected their communities’ cognitive territory. There were both common and discordant threads motivating the various technical groups that took on the problems of measuring light and color from the late nineteenth century onwards, and leading them towards the development of appropriate instruments for themselves. The transition from visual to photoelectric methods could be portrayed as a natural evolution, replacing the eye by an alternative roviding more sensitivity and convenience – indeed, this is the conventional positivist view propounded by technical histories. However, the adoption of new measurement technologies seldom is simple, and frequently has a significant cultural component. Beneath this slide towards automation lay a raft of implicit assumptions about objectivity, the nature of the observer, the role of instruments, and the trade-offs between standardization and descriptive power. While espousing rational arguments for a physical detector of color, its proponents weighted their views with tacit considerations. The reassignment of trust from the eye to automated instruments was influenced as much by the historical context as by intellectual factors. I will argue that several distinct aspects were involved, which include the reductive view of color provided by the trichromatic theory; the impetus provided by its association with photometry; the expanding mood for a quantitative and objective approach to scientific observation; and, the pressures for commercial standardization. As suggested by these factors, there was another shift of authority at play: from one technical specialism to another. The regularization of color involved appropriation of the subject by a particular set of social interests: communities of physicists and engineers espousing a ‘physicalist’ interpretation, rather than psychologists and physiologists for whom color was conceived as a more complex phenomenon. Moreover, the sources for automated color measurement, and instrumentation for measuring color, were primarily from the industrial sphere rather than from academic science. To understand these shifts, then, this chapter explores differing views of the importance of observers, machines and automation. (shrink)
Recently we proposed “quantum language”, which was not only characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn of Descartes = Kant epistemology. And further we believe that quantum language is the only scientifically successful theory in dualistic idealism. If this turn is regarded as progress in the history of western philosophy (i.e., if “philosophical progress” is defined by “approaching to quantum language”), we should study the linguistic mind-body problem more than the epistemological (...) mind-body problem. In this paper, we show that to solve the mind-body problem and to propose “measurement axiom” in quantum language are equivalent. Since our approach is always within dualistic idealism, we believe that our linguistic answer is the only true solution to the mindbody problem. (shrink)
The universality assumption (“U”) that quantum wave states only evolve by linear or unitary dynamics has led to a variety of paradoxes in the foundations of physics. U is not directly supported by empirical evidence but is rather an inference from data obtained from microscopic systems. The inference of U conflicts with empirical observations of macroscopic systems, giving rise to the century-old measurementproblem and subjecting the inference of U to a higher standard of proof, the burden of (...) which lies with its proponents. This burden remains unmet because the intentional choice by scientists to perform interference experiments that only probe the microscopic realm disqualifies the resulting data from supporting an inference that wave states always evolve linearly in the macroscopic realm. Further, the nature of the physical world creates an asymptotic size limit above which interference experiments, and verification of U in the realm in which it causes the measurementproblem, seem impossible for all practical purposes if nevertheless possible in principle. This apparent natural limit serves as evidence against an inference of U, providing a further hurdle to the proponent’s currently unmet burden of proof. The measurementproblem should never have arisen because the inference of U is entirely unfounded, logically and empirically. (shrink)
The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...) believe, that we consider how space itself relates to reality, and how other so-called "spaces" used in physics relate to reality. In chapter 2, I compare space and space-time to other spaces used in physics, such as configuration space, phase space and Hilbert space. I support what is known as the "property view" of space, opposing both the traditional views of space and space-time, substantivalism and relationism. I argue that all these spaces are property spaces. After examining the relationships of these spaces to causality, I argue that configuration space has, due to its role in quantum mechanics, a special status in the microscopic world similar to the status of position space in the macroscopic world. In chapter 3, prespace itself is considered. One way of approaching this structure is through the comparison of the prespace structure with a computational system, in particular to a cellular automaton, in which space or space-time and all other physical quantities are broken down into discrete units. I suggest that one way open for a prespace metaphysics can be found if physics is made fully discrete in this way. I suggest as a heuristic principle that the physical laws of our world are such that the computational cost of implementing those laws on an arbitrary computational system is minimized, adapting a heuristic principle of this type proposed by Feynman. In chapter 4, some of the ideas of the previous chapters are applied in an examination of the physics and metaphysics of quantum theory. I first discuss the "measurementproblem" of quantum mechanics: this problem and its proposed solution are the primary subjects of chapter 4. It turns out that considering how quantum theory could be made fully discrete leads naturally to a suggestion of how standard linear quantum mechanics could be modified to give rise to a solution to the measurementproblem. The computational heuristic principle reinforces the same solution. I call the modified quantum mechanics Critical Complexity Quantum Mechanics (CCQM). I compare CCQM with some of the other proposed solutions to the measurementproblem, in particular the spontaneous localization model of Ghirardi, Rimini and Weber. Finally, in chapters 5 and 6, I argue that the measure of complexity of quantum mechanical states I introduce in CCQM also provides a new definition of entropy for quantum mechanics, and suggests a solution to the problem of providing an objective foundation for statistical mechanics, thermodynamics, and the arrow of time. (shrink)
This paper investigates the possibiity of developing a fully micro realistic version of elementary quantum mechanics. I argue that it is highly desirable to develop such a version of quantum mechanics, and that the failure of all current versions and interpretations of quantum mechanics to constitute micro realistic theories is at the root of many of the interpretative problems associated with quantum mechanics, in particular the problem of measurement. I put forward a propensity micro realistic version of quantum (...) mechanics, and suggest how it might be possible to discriminate, on expermental grounds, between this theory and other versions of quantum mechanics. (shrink)
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many (...) authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory. (shrink)
We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture (...) of states and Hilbert-space trajectories to the more realistic case of open quantum systems despite the generic development of entanglement. We provide independent justification for the partial-trace operation for density matrices, reformulate wave-function collapse in terms of an underlying interpolating dynamics, derive the Born rule from deeper principles, resolve several open questions regarding ontological stability and dynamics, address a number of familiar no-go theorems, and argue that our interpretation is ultimately compatible with Lorentz invariance. Along the way, we also investigate a number of unexplored features of quantum theory, including an interesting geometrical structure—which we call subsystem space—that we believe merits further study. We conclude with a summary, a list of criteria for future work on quantum foundations, and further research directions. We include an appendix that briefly reviews the traditional Copenhagen interpretation and the measurementproblem of quantum theory, as well as the instrumentalist approach and a collection of foundational theorems not otherwise discussed in the main text. (shrink)
A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...) and compare several realist interpretations of the wave function. They fall into three categories: ontological interpretations, nomological interpretations, and the sui generis interpretation. For simplicity, I will focus on non-relativistic quantum mechanics. (shrink)
The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...) and to the quantum measurementproblem. (shrink)
Consciousness is scientifically challenging to study because of its subjective aspect. This leads researchers to rely on report-based experimental paradigms in order to discover neural correlates of consciousness (NCCs). I argue that the reliance on reports has biased the search for NCCs, thus creating what I call 'methodological artefacts'. This paper has three main goals: first, describe the measurementproblem in consciousness science and argue that this problem led to the emergence of methodological artefacts. Second, provide a (...) critical assessment of the NCCs put forward by the global neuronal workspace theory. Third, provide the means of dissociating genuine NCCs from methodological artefacts. (shrink)
The paper investigates the epistemic conception of quantum states---the view that quantum states are not descriptions of quantum systems but rather reflect the assigning agents' epistemic relations to the systems. This idea, which can be found already in the works of Copenhagen adherents Heisenberg and Peierls, has received increasing attention in recent years because it promises an understanding of quantum theory in which neither the measurementproblem nor a conflict between quantum non-locality and relativity theory arises. Here it (...) is argued that the main challenge for proponents of this idea is to make sense of the notion of a state assignment being performed correctly without thereby acknowledging the notion of a true state of a quantum system---a state it is in. An account based on the epistemic conception of states is proposed that fulfills this requirement by interpreting the rules governing state assignment as constitutive rules in the sense of John Searle. (shrink)
Effects associated in quantum mechanics with a divisible probability wave are explained as physically real consequences of the equal but opposite reaction of the apparatus as a particle is measured. Taking as illustration a Mach-Zehnder interferometer operating by refraction, it is shown that this reaction must comprise a fluctuation in the reradiation field of complementary effect to the changes occurring in the photon as it is projected into one or other path. The evolution of this fluctuation through the experiment will (...) explain the alternative states of the particle discerned in self interference, while the maintenance of equilibrium in the face of such fluctuations becomes the source of the Born probabilities. In this scheme, the probability wave is a mathematical artifact, epistemic rather than ontic, and akin in this respect to the simplifying constructions of geometrical optics. (shrink)
The claim that the observation of a violation of a Bell inequality leads to an alleged alternative between nonlocality and non-realism is annoying because of the vagueness of the second term.
We analyze the possible implications of spacetime discreteness for the special and general relativity and quantum theory. It is argued that the existence of a minimum size of spacetime may explain the invariance of the speed of light in special relativity and Einstein’s equivalence principle in general relativity. Moreover, the discreteness of spacetime may also result in the collapse of the wave function in quantum mechanics, which may provide a possible solution to the quantum measurementproblem. These interesting (...) results might have some important implications for a complete theory of quantum gravity. (shrink)
The original proposal of H. H. Pattee (1971) of basing quantum theoretical measurement theory on the theory of the origin of life, and its far reaching consequences, is discussed in the light of a recently emerging biological paradigm of internal measurement. It is established that the "measurementproblem" of quantum physics can, in principle, be traced back to the internal material constraints of the biological organisms, where choice is a fundamental attribute of the self-measurement of (...) matter. In this light, which is shown to be a consequence of Pattee's original suggestion, it is proposed that biological evolution is a gradual liberation from the inert unity of "subject" and "object" of inanimate matter (as "natural law" and "initial conditions"), to a split biological existence of them and, as a consequence, the "message of evolution" is freedom, rather than complexity in itself. Some classical philosophical systems are brought into context to show that the epistemologies of several strictly philosophical systems of the social sciences are well acquainted with the problem and their solutions support our conclusions. (shrink)
We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problems of genuine biological autonomy: (1) if biological autonomy is not physical, where does it come from? (2) Is there a room for biological causes? And (3) how to obtain a workable model of biological teleology? It is shown here that the solution of all these three problems (...) is related to the quantum vacuum. We present a short review of how this basic aspect of the fundamentals of quantum theory, although it had not been addressed for nearly 100 years, actually it was suggested by Bohr, Heisenberg, and others. Realizing that the quantum mechanical measurementproblem associated with the “collapse” of the wave function is related, in the Copenhagen Interpretation of quantum mechanics, to a process between self-consciousness and the external physical environment, we are extending the issue for an explanation of the different processes occurring between living organisms and their internal environment. Definitions of genuine biological autonomy, biological aim, and biological spontaneity are presented. We propose to improve the popular two-stage model of decisions with a biological model suitable to obtain a deeper look at the nature of the mind-body problem. In the newly emerging picture biological autonomy emerges as a new, fundamental and inevitable element of the scientific worldview. (shrink)
Subjectivity or the problem of ‘qualia’ tends to make the accessibility and comprehension of psychological events intangible especially for scientific exploration. The issue becomes even more complicated but interesting when one turns towards mystical experiences. Such experiences are different from other psychological phenomena in the sense that they don’t occur to every one, so are difficult to comprehend even for their qualifications of existence. We conducted a qualitative study on one such experience of inner-light perception. This is a common (...) experience reported by meditators of all kinds. However, we chose to study this phenomenon in Vihangam Yoga practitioners because of frequent occurrence of this experience in them as well as their reports of having it for hours at a stretch. During this study, it was noted that it arose many questions there we need to answer not only to explain such phenomena but also for having a better understanding of philosophy of science. In the search for these answers, we proceeded towards another complicated branch of science, quantum mechanics. Our present work is about creating an interface between a unique subjective phenomenon and principles of philosophy as well as of quantum mechanics. We explore the constructs of physical and critical realisms and their coincidence, quantum information theory and the measurementproblem of Copenhagen interpretation and their possible applications in such an experience. In this endeavour, we also address the possibility that inner-light perception as experienced by Vihangam Yogis is a quantum event in brain. For this purpose, we specifically analyse the Zeilingers information concept and try to apply it to this phenomena. (shrink)
Shepard has supposed that the mind is stocked with innate knowledge of the world and that this knowledge figures prominently in the way we see the world. According to him, this internal knowledge is the legacy of a process of internalization; a process of natural selection over the evolutionary history of the species. Shepard has developed his proposal most fully in his analysis of the relation between kinematic geometry and the shape of the motion path in apparent motion displays. We (...) argue that Shepard has made a case for applying the principles of kinematic geometry to the perception of motion, but that he has not made the case for injecting these principles into the mind of the percipient. We offer a more modest interpretation of his important findings: that kinematic geometry may be a model of apparent motion. Inasmuch as our recommended interpretation does not lodge geometry in the mind of the percipient, the motivation of positing internalization, a process that moves kinematic geometry into the mind, is obviated. In our conclusion, we suggest that cognitive psychologists, in their embrace of internal mental universals and internalization may have been seduced by the siren call of metaphor. Key Words: apparent motion; imagery; internalization; inverse projection problem; kinematic geometry; measurement; metaphors of mind. (shrink)
The Bare Theory was offered by David Albert as a way of standing by the completeness of quantum mechanics in the face of the measurementproblem. This paper surveys objections to the Bare Theory that recur in the literature: what will here be called the oddity objection, the coherence objection, and the context-of-the-universe objection. Critics usually take the Bare Theory to have unacceptably bizarre consequences, but to be free from internal contradiction. Bizarre consequences need not be decisive against (...) the Bare Theory, but a further objection—dubbed here the calibration objection—has been underestimated. This paper argues that the Bare Theory is not only odd but also inconsistent. We can imagine a successor to the Bare Theory—the Stripped Theory—which avoids the objections and fulfills the original promise of the Bare Theory, but at the cost of amplifying the bizarre consequences. The Stripped Theory is either a stunning development in our understanding of the world or a reductio disproving the completeness of quantum mechanics. The Bare Theory The usual objections The calibration objection Beyond the Bare Theory. (shrink)
Bas van Fraassen endorses both common-sense realism — the view, roughly, that the ordinary macroscopic objects that we take to exist actually do exist — and constructive empiricism — the view, roughly, that the aim of science is truth about the observable world. But what happens if common-sense realism and science come into conflict? I argue that it is reasonable to think that they could come into conflict, by giving some motivation for a mental monist solution to the measurement (...)problem of quantum mechanics. I then consider whether, in a situation where science favors the mental monist interpretation, van Fraassen would want to give up common-sense realism or would want to give up science. (shrink)
Because an unmeasured quantum system consists of information — neither tangible existence nor its complete absence — no property can be assigned a definite value, only a range of likely values should it be measured. The instantaneous transition from information to matter upon measurement establishes a gradient between being and not-being. A quantum system enters a determinate state in a particular moment until this moment is past, at which point the system resumes its default state as an evolving superposition (...) of potential values of properties, neither strictly being nor not-being. Like a “self-organized” chemical system that derives energy from breaking down environmental gradients, a quantum system derives information from breaking down the ontological gradient. An organism is a body in the context of energy and a mind in the context of information. (shrink)
Spinoza distinguishes between causation that is external, as in A causing B where A is external to B, and causation that is internal, where C causes itself (causa sui), without any involvement of anything external to C. External causation is easy to understand, but self causation is not. This note explores an approach to self-causation based upon Gödelian undecidability and draws upon ideas from an earlier study of Gödel’s proof and the quantum measurementproblem (Zwick, 1978).
This paper connects the hard problem of consciousness to the interpretation of quantum mechanics. It shows that constitutive Russellian pan(proto)psychism (CRP) is compatible with Everett’s relative-state (RS) interpretation. Despite targeting different problems, CRP and RS are related, for they both establish symmetry between micro- and macrosystems, and both call for a deflationary account of Subject. The paper starts from formal arguments that demonstrate the incompatibility of CRP with alternative interpretations of quantum mechanics, followed by showing that RS entails Russellian (...) pan(proto)psychism. Therefore, CRP and RS are mutually supportive. It then provides a unified ontological picture by combining CRP and RS. The challenge faced by CRP, the combination problem, can be resolved by adopting a RS version of quantum mechanics. Technically, this is achieved by a co-consciousness relation capable of explaining the difference between first-person and third-person perspectives. The hierarchical structure of the relation removes any concern on the structural mismatch between the physical and the phenomenal. (shrink)
I argue that our direct experience and some physical facts do not go well with an understanding of perception as a mechanism producing a representation of a ''truly'' outer world. Instead, it is much more coherent to treat what is traditionally considered an image in this context as a closed structure equipped in its own ontology, replacing the ''truly'' outer one from the point of view of an agent possessing it. In such a framework, the notion of existence is taken (...) to be defined by consciousness in a way similar to qualia, making it subjective on the one hand, and reducing it to a tool on the other. This implies, in turn, that we need a form of mind-brain dualism; the best we can do in such circumstances about explaining consciousness as an epistemic device - a role intuitively imposing itself in a variety of situations - is to embed it in an abstract ontology merely serving the purpose of a ''true'' reality with the help of the mind-brain link. Obviously, the approach favors subjectivity as a foundation in the ontological sense. Objectivity is considered here only as a suitably understood product from an ''observer's'' point of view, although a functional and useful one. The paper is addressed to readers with interest in both the mind-body problem and ontological foundations of present-day physics, specifically quantum theory. The main conclusion can be absorbed without the quantum part, although it is a bit less convincing then. (shrink)
The assertion by Yu and Nikolic that the delayed choice quantum eraser experiment of Kim et al. empirically falsifies the consciousness-causes-collapse hypothesis of quantum mechanics is based on the unfounded and false assumption that the failure of a quantum wave function to collapse implies the appearance of a visible interference pattern.
In this article I defend that an underlying framework exists among those interpretations of quantum mechanics which crucially consider the measurementproblem as a central obstacle. I characterise that framework as the Received View on the realist interpretation of quantum mechanics. In particular, I analyse the extent to which two of the most relevant attempts at quantum mechanics, namely, many worlds interpretations and Bohmian mechanics, belong within the Received View. However, I claim that scientific realism in itself does (...) not entail commitment to such a view, and I propose to consider a form of realism that dissolves the measurementproblem. It is simply a stripped down version of realism. I derive the methodological questions in this form of realism, speculating that within it a novel realist interpretation of quantum mechanics could be conceived. (shrink)
We have recently started to understand that fundamental aspects of complex systems such as emergence, the measurementproblem, inherent uncertainty, complex causality in connection with unpredictable determinism, timeirreversibility and nonlocality all highlight the observer's participatory role in determining their workings. In addition, the principle of 'limited universality' in complex systems, which prompts us to search for the appropriate 'level of description in which unification and universality can be expected', looks like a version of Bohr's 'complementarity principle'. It is (...) more or less certain that the different levels of description possible of a complex whole actually partial objectifications are projected on to and even redefine its constituent parts. Thus it is interesting that these fundamental complexity issues don't just bear a formal resemblance to, but reveal a profound connection with, quantum mechanics. Indeed, they point to a common origin on a deeper level of description. (shrink)
Some issues heavily debated in perception sciences are presented: the explanatory gap and the experience measurementproblem. The experimental phenomenology is said to provide substantive contribution to settle controversy over the phenome- nological adequacy of perception theory and models. An interpretation of experi- mental phenomenology as explanation of the perceptual manifold, and definition of relation varieties to eventually map onto other perception sciences’ domains is sketched.
One of the most serious challenges (if not the most serious challenge) for interactive psycho-physical dualism (henceforth interactive dualism or ID) is the so-called ‘interaction problem’. It has two facets, one of which this article focuses on, namely the apparent tension between interactions of non-physical minds in the physical world and physical laws of nature. One family of approaches to alleviate or even dissolve this tension is based on a collapse solution (‘consciousness collapse/CC) of the measurementproblem (...) in quantum mechanics (QM). The idea is that the mind brings about the collapse of a superposed wave function onto one of its eigenstates. Thus, it is claimed, can the mind change the course of things without violating any law figuring in physical theory. I will first show that this hope is premature because energy and momentum are probably not conserved in collapse processes, and that even if this can be dealt with, the violations are either severe or produce further ontological problems. Second, I point out several conceptual difficulties for interactionist CC. I will also present solutions for those problems, but it will become clear that those solutions come at a high cost. Third, I shall briefly list some empirical problems which make life even harder for interactionist CC. I conclude with remarks about why no- collapse interpretations of QM don’t help either and what the present study has shown is the real issue for ID: namely to find a plausible integrative view of dualistic mental causation and laws of nature. (shrink)
In this dissertation, I present a novel account of the components that have a peculiar epistemic role in our scientific inquiries, since they contribute to establishing a form of coordination. The issue of coordination is a classic epistemic problem concerning how we justify our use of abstract conceptual tools to represent concrete phenomena. For instance, how could we get to represent universal gravitation as a mathematical formula or temperature by means of a numerical scale? This problem is particularly (...) pressing when justification for using these abstract tools comes, in part or entirely, from knowledge which is not independent from them, thus leading to threats of circularity. Achieving coordination between some abstract conceptual tools and the concrete phenomena that they are supposed to represent is usually a complex process, which involves several epistemic components. Some of these components eventually provide stable conditions for applying those abstract representations to concrete phenomena. It is in this sense of providing certain conditions of applicability that different philosophical traditions, as well as some contemporary reappraisals, view these components as constitutive or a priori. In this work, I present a new gradualist, contextualist, and relational approach to understand these constitutive components of scientific inquiry. It is gradualist inasmuch as the degree to which some component is constitutive depends on three quantifiable features: quasi-axiomaticity, generative potential, and empirical shielding. Since the quantification of these three features impinges on the history and practice of using these components in a scientific context, my approach is a contextualist one. Finally, my approach is relational in a double sense: first, it identifies ordinal relationships among epistemic components with respect to their constitutive character; second, these relationships are relative to a scientific framework of inquiry. After introducing my account and a classic example of constitutively a priori principles, i.e., Friedman’s (2001) analysis of Newtonian mechanics, I turn to my own case studies to demonstrate the advantages of my approach. Firstly, I discuss Okasha’s (2018) view of endogenization as a pervasive theoretical strategy in evolutionary biology and suggest that the constitutive character of the core Darwinian principles progressively increases with endogenization. Secondly, I apply a conceptual distinction between two varieties or scopes of coordination – general coordination and coordination in measurement – to Ohm’s work on electrical conductivity. This distinction allows me to pinpoint to what extent components along different dimensions (e.g., instrumentation, measurement, theorising, etc.) were constitutive of the forms of coordination which Ohm relied on. Thirdly, I discuss the epistemic function of the Hardy-Weinberg principle in the history and practice of population genetics. I assess this principle in terms of my account and identify approximation and stability as two components that are highly constitutive, in that they contribute to justifying its use in population genetics. Finally, applying my account to these case studies enables me to identify at least three qualitatively different types of constitutive components: domain-specific theoretical principles, material components, and domain-independent assumptions underlying reasoning abilities. In the light of my results, I draw some general conclusions on epistemic justification and scientific knowledge. (shrink)
Using “brute reason” I will show why there can be only one valid interpretation of probability. The valid interpretation turns out to be a further refinement of Popper’s Propensity interpretation of probability. Via some famous probability puzzles and new thought experiments I will show how all other interpretations of probability fail, in particular the Bayesian interpretations, while these puzzles do not present any difficulties for the interpretation proposed here. In addition, the new interpretation casts doubt on some concepts often taken (...) as basic and unproblematic, like rationality, utility and expectation. This in turn has implications for decision theory, economic theory and the philosophy of physics. (shrink)
The Bohr Einstein debate on the meaning of quantum physics involved Einstein inventing a series of thought experiments to challenge the Copenhagen Interpretation of quantum physics. Einstein disliked many aspects of the Copenhagen Interpretation especially its idea of an observer dependent universe. Bohr was able to answer all Einstein’s objections to the Copenhagen Interpretation and so is usually considered as winning the debate. However the debate has continued into the present time as many scientists have been unable to accept the (...) idea of an observer dependent universe and many alternatives to the Copenhagen Interpretation have been proposed. However none of the alternatives has won general acceptance because all have problems that make them implausible or impossible. (shrink)
In this article we have tried basically to lay out an outline of possible overlap between the metaphysical standpoints of the Madhyamik Buddhism with the so called Copenhagen interpretation of quantum mechanics. We argued here that , both Madhyamik Buddhism as well as Copenhagen develop some common grounds of skepticism or cautionary notes against the classical intuitive Realist ideology committed to ontological priority of individual . So , though the presiding contexts of Madhyamik Buddhism and quantum mechanics are admittedly very (...) different , we can still judge the ontological merit/ implications of ‘the cautions’ on comparative grounds .. And we have argued on this basis here about the possibility to sculpt out some norms of justification for starting a meaningful Dialog between Buddhism and modern Physical science. (shrink)
The purpose of this book is to explain Quantum Bayesianism (‘QBism’) to “people without easy access to mathematical formulas and equations” (4-5). Qbism is an interpretation of quantum mechanics that “doesn’t meddle with the technical aspects of the theory [but instead] reinterprets the fundamental terms of the theory and gives them new meaning” (3). The most important motivation for QBism, enthusiastically stated on the book’s cover, is that QBism provides “a way past quantum theory’s paradoxes and puzzles” such that much (...) of the weirdness associated with quantum theory “dissolves under the lens of QBism”. (shrink)
The philosophy of mathematics has been accused of paying insufficient attention to mathematical practice: one way to cope with the problem, the one we will follow in this paper on extensive magnitudes, is to combine the `history of ideas' and the `philosophy of models' in a logical and epistemological perspective. The history of ideas allows the reconstruction of the theory of extensive magnitudes as a theory of ordered algebraic structures; the philosophy of models allows an investigation into the way (...) epistemology might affect relevant mathematical notions. The article takes two historical examples as a starting point for the investigation of the role of numerical models in the construction of a system of non-Archimedean magnitudes. A brief exposition of the theories developed by Giuseppe Veronese and by Rodolfo Bettazzi at the end of the 19th century will throw new light on the role played by magnitudes and numbers in the development of the concept of a non-Archimedean order. Different ways of introducing non-Archimedean models will be compared and the influence of epistemological models will be evaluated. Particular attention will be devoted to the comparison between the models that oriented Veronese's and Bettazzi's works and the mathematical theories they developed, but also to the analysis of the way epistemological beliefs affected the concepts of continuity and measurement. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.