Results for 'NLP, Intelligent Computing, Linguistics, Artificial Intelligence, Machine Learning.'

967 found
Order:
  1.  89
    INTELLIGENT COMPUTING APPLICATIONS IN LINGUISTICS.Mohit Gangwar - 2024 - Rabindra Bharati Patrika (6):113-119.
    The intersection of intelligent computing and linguistics has emerged as a vibrant field of study, offering innovative solutions and applications that transform how we understand and interact with language. This paper explores the diverse applications of intelligent computing in linguistics, encompassing natural language processing (NLP), computational linguistics, language modeling, speech recognition, and more. It delves into the underlying technologies, methodologies, and the impact of these advancements on various linguistic subfields. Through an extensive review of recent literature, case studies, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Disease Identification using Machine Learning and NLP.S. Akila - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):78-92.
    Artificial Intelligence (AI) technologies are now widely used in a variety of fields to aid with knowledge acquisition and decision-making. Health information systems, in particular, can gain the most from AI advantages. Recently, symptoms-based illness prediction research and manufacturing have grown in popularity in the healthcare business. Several scholars and organisations have expressed an interest in applying contemporary computational tools to analyse and create novel approaches for rapidly and accurately predicting illnesses. In this study, we present a paradigm for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Natural morphological computation as foundation of learning to learn in humans, other living organisms, and intelligent machines.Gordana Dodig-Crnkovic - 2020 - Philosophies 5 (3):17-32.
    The emerging contemporary natural philosophy provides a common ground for the integrative view of the natural, the artificial, and the human-social knowledge and practices. Learning process is central for acquiring, maintaining, and managing knowledge, both theoretical and practical. This paper explores the relationships between the present advances in understanding of learning in the sciences of the artificial, natural sciences, and philosophy. The question is, what at this stage of the development the inspiration from nature, specifically its computational models (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Human-Aided Artificial Intelligence: Or, How to Run Large Computations in Human Brains? Towards a Media Sociology of Machine Learning.Rainer Mühlhoff - 2019 - New Media and Society 1.
    Today, artificial intelligence, especially machine learning, is structurally dependent on human participation. Technologies such as Deep Learning (DL) leverage networked media infrastructures and human-machine interaction designs to harness users to provide training and verification data. The emergence of DL is therefore based on a fundamental socio-technological transformation of the relationship between humans and machines. Rather than simulating human intelligence, DL-based AIs capture human cognitive abilities, so they are hybrid human-machine apparatuses. From a perspective of media philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Artificial Intelligence: Machine Translation Accuracy in Translating French-Indonesian Culinary Texts.Hasyim Muhammad - 2021 - International Journal of Advanced Computer Science and Applications 12 (3):186-191.
    The use of machine translation as artificial intelligence (AI) keeps increasing and the world’s most popular a translation tool is Google Translate (GT). This tool is not merely used for the benefits of learning and obtaining information from foreign languages through translation but has also been used as a medium of interaction and communication in hospitals, airports and shopping centres. This paper aims to explore machine translation accuracy in translating French-Indonesian culinary texts (recipes). The samples of culinary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. AI Powered Anti-Cyber bullying system using Machine Learning Algorithm of Multinomial Naïve Bayes and Optimized Linear Support Vector Machine.Tosin Ige - 2022 - International Journal of Advanced Computer Science and Applications 13 (5):1 - 5.
    Unless and until our society recognizes cyber bullying for what it is, the suffering of thousands of silent victims will continue.” ~ Anna Maria Chavez. There had been series of research on cyber bullying which are unable to provide reliable solution to cyber bullying. In this research work, we were able to provide a permanent solution to this by developing a model capable of detecting and intercepting bullying incoming and outgoing messages with 92% accuracy. We also developed a chatbot automation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Autonomy and Machine Learning as Risk Factors at the Interface of Nuclear Weapons, Computers and People.S. M. Amadae & Shahar Avin - 2019 - In Vincent Boulanin (ed.), The Impact of Artificial Intelligence on Strategic Stability and Nuclear Risk: Euro-Atlantic Perspectives. Stockholm: SIPRI. pp. 105-118.
    This article assesses how autonomy and machine learning impact the existential risk of nuclear war. It situates the problem of cyber security, which proceeds by stealth, within the larger context of nuclear deterrence, which is effective when it functions with transparency and credibility. Cyber vulnerabilities poses new weaknesses to the strategic stability provided by nuclear deterrence. This article offers best practices for the use of computer and information technologies integrated into nuclear weapons systems. Focusing on nuclear command and control, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. A hybrid Automated Intelligent COVID-19 Classification System Based on Neutrosophic Logic and Machine Learning Techniques Using Chest X-ray Images.Ibrahim Yasser, Aya A. Abd El-Khalek, A. A. Salama, Abeer Twakol, Mohy-Eldin Abo-Elsoud & Fahmi Khalifa - forthcoming - In Ibrahim Yasser, Aya A. Abd El-Khalek, A. A. Salama, Abeer Twakol, Mohy-Eldin Abo-Elsoud & Fahmi Khalifa (eds.), Advances in Data Science and Intelligent Data Communication Technologies for COVID-19 Pandemic (DSIDC-COVID-19) ,Studies in Systems, Decision and Control.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Persons or datapoints?: Ethics, artificial intelligence, and the participatory turn in mental health research.Joshua August Skorburg, Kieran O'Doherty & Phoebe Friesen - 2024 - American Psychologist 79 (1):137-149.
    This article identifies and examines a tension in mental health researchers’ growing enthusiasm for the use of computational tools powered by advances in artificial intelligence and machine learning (AI/ML). Although there is increasing recognition of the value of participatory methods in science generally and in mental health research specifically, many AI/ML approaches, fueled by an ever-growing number of sensors collecting multimodal data, risk further distancing participants from research processes and rendering them as mere vectors or collections of data (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI studies (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Why Machines Will Never Rule the World: Artificial Intelligence without Fear.Jobst Landgrebe & Barry Smith - 2022 - Abingdon, England: Routledge.
    The book’s core argument is that an artificial intelligence that could equal or exceed human intelligence—sometimes called artificial general intelligence (AGI)—is for mathematical reasons impossible. It offers two specific reasons for this claim: Human intelligence is a capability of a complex dynamic system—the human brain and central nervous system. Systems of this sort cannot be modelled mathematically in a way that allows them to operate inside a computer. In supporting their claim, the authors, Jobst Landgrebe and Barry Smith, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12. (1 other version)Machine Learning and Irresponsible Inference: Morally Assessing the Training Data for Image Recognition Systems.Owen C. King - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 265-282.
    Just as humans can draw conclusions responsibly or irresponsibly, so too can computers. Machine learning systems that have been trained on data sets that include irresponsible judgments are likely to yield irresponsible predictions as outputs. In this paper I focus on a particular kind of inference a computer system might make: identification of the intentions with which a person acted on the basis of photographic evidence. Such inferences are liable to be morally objectionable, because of a way in which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  41
    Leveraging Machine Learning Algorithms for Medical Image Classification Introduction.Ugochukwu Llodinso - manuscript
    The use of machine learning to medical image classification has seen significant development and implementation in the last several years. Computers can learn to identify patterns, make predictions, and use data to inform their judgements; this capability is known as machine learning, a branch of Artificial intelligence (AI). Classifying images according to their contents allows us to do things like identify the type of sickness, organ, or tissue depicted. Medical picture classification and interpretation using machine learning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Use of Machine Learning Methods for Image Classification in Medical Data.Destiny Agboro - forthcoming - International Journal of Ethics.
    Integrating medical imaging with computing technologies, such as Artificial Intelligence (AI) and its subsets: Machine learning (ML) and Deep Learning (DL) has advanced into an essential facet of present-day medicine, signaling a pivotal role in diagnostic decision-making and treatment plans (Huang et al., 2023). The significance of medical imaging is escalated by its sustained growth within the realm of modern healthcare (Varoquaux and Cheplygina, 2022). Nevertheless, the ever-increasing volume of medical images compared to the availability of imaging experts. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. The Boundaries of Meaning: A Case Study in Neural Machine Translation.Yuri Balashov - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 66.
    The success of deep learning in natural language processing raises intriguing questions about the nature of linguistic meaning and ways in which it can be processed by natural and artificial systems. One such question has to do with subword segmentation algorithms widely employed in language modeling, machine translation, and other tasks since 2016. These algorithms often cut words into semantically opaque pieces, such as ‘period’, ‘on’, ‘t’, and ‘ist’ in ‘period|on|t|ist’. The system then represents the resulting segments in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Machine intelligence: a chimera.Mihai Nadin - 2019 - AI and Society 34 (2):215-242.
    The notion of computation has changed the world more than any previous expressions of knowledge. However, as know-how in its particular algorithmic embodiment, computation is closed to meaning. Therefore, computer-based data processing can only mimic life’s creative aspects, without being creative itself. AI’s current record of accomplishments shows that it automates tasks associated with intelligence, without being intelligent itself. Mistaking the abstract for the concrete has led to the religion of “everything is an output of computation”—even the humankind that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  17. Machines learning values.Steve Petersen - 2020 - In S. Matthew Liao (ed.), Ethics of Artificial Intelligence. Oxford University Press.
    Whether it would take one decade or several centuries, many agree that it is possible to create a *superintelligence*---an artificial intelligence with a godlike ability to achieve its goals. And many who have reflected carefully on this fact agree that our best hope for a "friendly" superintelligence is to design it to *learn* values like ours, since our values are too complex to program or hardwire explicitly. But the value learning approach to AI safety faces three particularly philosophical puzzles: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Philosophy and theory of artificial intelligence 2017.Vincent C. Müller (ed.) - 2017 - Berlin: Springer.
    This book reports on the results of the third edition of the premier conference in the field of philosophy of artificial intelligence, PT-AI 2017, held on November 4 - 5, 2017 at the University of Leeds, UK. It covers: advanced knowledge on key AI concepts, including complexity, computation, creativity, embodiment, representation and superintelligence; cutting-edge ethical issues, such as the AI impact on human dignity and society, responsibilities and rights of machines, as well as AI threats to humanity and AI (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. The emergence of “truth machines”?: Artificial intelligence approaches to lie detection.Jo Ann Oravec - 2022 - Ethics and Information Technology 24 (1):1-10.
    This article analyzes emerging artificial intelligence (AI)-enhanced lie detection systems from ethical and human resource (HR) management perspectives. I show how these AI enhancements transform lie detection, followed with analyses as to how the changes can lead to moral problems. Specifically, I examine how these applications of AI introduce human rights issues of fairness, mental privacy, and bias and outline the implications of these changes for HR management. The changes that AI is making to lie detection are altering the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Why Machines Will Never Rule the World: Artificial Intelligence without Fear by Jobst Landgrebe & Barry Smith (Book review). [REVIEW]Walid S. Saba - 2022 - Journal of Knowledge Structures and Systems 3 (4):38-41.
    Whether it was John Searle’s Chinese Room argument (Searle, 1980) or Roger Penrose’s argument of the non-computable nature of a mathematician’s insight – an argument that was based on Gödel’s Incompleteness theorem (Penrose, 1989), we have always had skeptics that questioned the possibility of realizing strong Artificial Intelligence (AI), or what has become known by Artificial General Intelligence (AGI). But this new book by Landgrebe and Smith (henceforth, L&S) is perhaps the strongest argument ever made against strong AI. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device.Sara Gerke, Boris Babic, Theodoros Evgeniou & I. Glenn Cohen - 2020 - Nature Digital Medicine 53 (3):1-4.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. There is no general AI.Jobst Landgrebe & Barry Smith - 2020 - arXiv.
    The goal of creating Artificial General Intelligence (AGI) – or in other words of creating Turing machines (modern computers) that can behave in a way that mimics human intelligence – has occupied AI researchers ever since the idea of AI was first proposed. One common theme in these discussions is the thesis that the ability of a machine to conduct convincing dialogues with human beings can serve as at least a sufficient criterion of AGI. We argue that this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Artificial Speech and Its Authors.Philip J. Nickel - 2013 - Minds and Machines 23 (4):489-502.
    Some of the systems used in natural language generation (NLG), a branch of applied computational linguistics, have the capacity to create or assemble somewhat original messages adapted to new contexts. In this paper, taking Bernard Williams’ account of assertion by machines as a starting point, I argue that NLG systems meet the criteria for being speech actants to a substantial degree. They are capable of authoring original messages, and can even simulate illocutionary force and speaker meaning. Background intelligence embedded in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  24. Big Data Analytics in Healthcare: Exploring the Role of Machine Learning in Predicting Patient Outcomes and Improving Healthcare Delivery.Federico Del Giorgio Solfa & Fernando Rogelio Simonato - 2023 - International Journal of Computations Information and Manufacturing (Ijcim) 3 (1):1-9.
    Healthcare professionals decide wisely about personalized medicine, treatment plans, and resource allocation by utilizing big data analytics and machine learning. To guarantee that algorithmic recommendations are impartial and fair, however, ethical issues relating to prejudice and data privacy must be taken into account. Big data analytics and machine learning have a great potential to disrupt healthcare, and as these technologies continue to evolve, new opportunities to reform healthcare and enhance patient outcomes may arise. In order to investigate the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  76
    Privacy and Machine Learning- Based Artificial Intelligence: Philosophical, Legal, and Technical Investigations.Haleh Asgarinia - 2024 - Dissertation, Department of Philisophy, University of Twente
    This dissertation consists of five chapters, each written as independent research papers that are unified by an overarching concern regarding information privacy and machine learning-based artificial intelligence (AI). This dissertation addresses the issues concerning privacy and AI by responding to the following three main research questions (RQs): RQ1. ‘How does an AI system affect privacy?’; RQ2. ‘How effectively does the General Data Protection Regulation (GDPR) assess and address privacy issues concerning both individuals and groups?’; and RQ3. ‘How can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. ARTIFICIAL INTELLIGENT BASED COMPUTATIONAL MODEL FOR DETECTING CHRONIC-KIDNEY DISEASE.K. Jothimani & S. Thangamani - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):15-27.
    Chronic kidney disease (CKD) is a global health problem with high morbidity and mortality rate, and it induces other diseases. There are no obvious incidental effects during the starting periods of CKD, patients routinely disregard to see the sickness. Early disclosure of CKD enables patients to seek helpful treatment to improve the development of this disease. AI models can effectively assist clinical with achieving this objective on account of their fast and exact affirmation execution. In this appraisal, proposed a Logistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27.  92
    The linguistic dead zone of value-aligned agency, natural and artificial.Travis LaCroix - 2024 - Philosophical Studies:1-23.
    The value alignment problem for artificial intelligence (AI) asks how we can ensure that the “values”—i.e., objective functions—of artificial systems are aligned with the values of humanity. In this paper, I argue that linguistic communication is a necessary condition for robust value alignment. I discuss the consequences that the truth of this claim would have for research programmes that attempt to ensure value alignment for AI systems—or, more loftily, those programmes that seek to design robustly beneficial or ethical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Posthumanist Phenomenology and Artificial Intelligence.Avery Rijos - unknown - Medium.
    This paper examines the ontological and epistemological implications of artificial intelligence (AI) through posthumanist philosophy, integrating the works of Deleuze, Foucault, and Haraway with contemporary computational methodologies. It introduces concepts such as negative augmentation, praxes of revealing, and desedimentation, while extending ideas like affirmative cartographies, ethics of alterity, and planes of immanence to critique anthropocentric assumptions about identity, cognition, and agency. By redefining AI systems as dynamic assemblages emerging through networks of interaction and co-creation, the paper challenges traditional dichotomies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Posthumanist Phenomenology and Artificial Intelligence.Avery Rijos - 2024 - Philosophy Papers (Philpapers).
    This paper examines the ontological and epistemological implications of artificial intelligence (AI) through posthumanist philosophy, integrating the works of Deleuze, Foucault, and Haraway with contemporary computational methodologies. It introduces concepts such as negative augmentation, praxes of revealing, and desedimentation, while extending ideas like affirmative cartographies, ethics of alterity, and planes of immanence to critique anthropocentric assumptions about identity, cognition, and agency. By redefining AI systems as dynamic assemblages emerging through networks of interaction and co-creation, the paper challenges traditional dichotomies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence.David Watson - 2019 - Minds and Machines 29 (3):417-440.
    Artificial intelligence has historically been conceptualized in anthropomorphic terms. Some algorithms deploy biomimetic designs in a deliberate attempt to effect a sort of digital isomorphism of the human brain. Others leverage more general learning strategies that happen to coincide with popular theories of cognitive science and social epistemology. In this paper, I challenge the anthropomorphic credentials of the neural network algorithm, whose similarities to human cognition I argue are vastly overstated and narrowly construed. I submit that three alternative supervised (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  31. The Pragmatic Turn in Explainable Artificial Intelligence.Andrés Páez - 2019 - Minds and Machines 29 (3):441-459.
    In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stakeholders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies will (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  32. (1 other version)Artificial virtuous agents: from theory to machine implementation.Jakob Stenseke - 2021 - AI and Society:1-20.
    Virtue ethics has many times been suggested as a promising recipe for the construction of artificial moral agents due to its emphasis on moral character and learning. However, given the complex nature of the theory, hardly any work has de facto attempted to implement the core tenets of virtue ethics in moral machines. The main goal of this paper is to demonstrate how virtue ethics can be taken all the way from theory to machine implementation. To achieve this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Will intelligent machines become moral patients?Parisa Moosavi - 2023 - Philosophy and Phenomenological Research 109 (1):95-116.
    This paper addresses a question about the moral status of Artificial Intelligence (AI): will AIs ever become moral patients? I argue that, while it is in principle possible for an intelligent machine to be a moral patient, there is no good reason to believe this will in fact happen. I start from the plausible assumption that traditional artifacts do not meet a minimal necessary condition of moral patiency: having a good of one's own. I then argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Diagnosis of Pneumonia Using Deep Learning.Alaa M. A. Barhoom & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (2):48-68.
    Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines or software that work and react like humans. Some of the activities computers with artificial intelligence are designed for include, Speech, recognition, Learning, Planning and Problem solving. Deep learning is a collection of algorithms used in machine learning, It is part of a broad family of methods used for machine learning that are based on learning representations of data. Deep (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  35. (1 other version)Turing on the Integration of Human and Machine Intelligence.Susan Sterrett - 2017 - In Alisa Bokulich & Juliet Floyd (eds.), Philosophical Explorations of the Legacy of Alan Turing. Springer Verlag. pp. 323-338.
    Philosophical discussion of Alan Turing’s writings on intelligence has mostly revolved around a single point made in a paper published in the journal Mind in 1950. This is unfortunate, for Turing’s reflections on machine (artificial) intelligence, human intelligence, and the relation between them were more extensive and sophisticated. They are seen to be extremely well-considered and sound in retrospect. Recently, IBM developed a question-answering computer (Watson) that could compete against humans on the game show Jeopardy! There are hopes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Introduction: Philosophy and Theory of Artificial Intelligence.Vincent C. Müller - 2012 - Minds and Machines 22 (2):67-69.
    The theory and philosophy of artificial intelligence has come to a crucial point where the agenda for the forthcoming years is in the air. This special volume of Minds and Machines presents leading invited papers from a conference on the “Philosophy and Theory of Artificial Intelligence” that was held in October 2011 in Thessaloniki. Artificial Intelligence is perhaps unique among engineering subjects in that it has raised very basic questions about the nature of computing, perception, reasoning, learning, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Levels of explicability for medical artificial intelligence: What do we normatively need and what can we technically reach?Frank Ursin, Felix Lindner, Timo Ropinski, Sabine Salloch & Cristian Timmermann - 2023 - Ethik in der Medizin 35 (2):173-199.
    Definition of the problem The umbrella term “explicability” refers to the reduction of opacity of artificial intelligence (AI) systems. These efforts are challenging for medical AI applications because higher accuracy often comes at the cost of increased opacity. This entails ethical tensions because physicians and patients desire to trace how results are produced without compromising the performance of AI systems. The centrality of explicability within the informed consent process for medical AI systems compels an ethical reflection on the trade-offs. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  38. Artificial Qualia, Intentional Systems and Machine Consciousness.Robert James M. Boyles - 2012 - In Proceedings of the Research@DLSU Congress 2012: Science and Technology Conference. pp. 110a–110c.
    In the field of machine consciousness, it has been argued that in order to build human-like conscious machines, we must first have a computational model of qualia. To this end, some have proposed a framework that supports qualia in machines by implementing a model with three computational areas (i.e., the subconceptual, conceptual, and linguistic areas). These abstract mechanisms purportedly enable the assessment of artificial qualia. However, several critics of the machine consciousness project dispute this possibility. For instance, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Detection and Mathematical Modeling of Anxiety Disorder Based on Socioeconomic Factors Using Machine Learning Techniques.Razan Ibrahim Alsuwailem & Surbhi Bhatia - 2022 - Human-Centric Computing and Information Sciences 12:52.
    The mental risk poses a high threat to the individuals, especially overseas demographic, including expatriates in comparison to the general Arab demographic. Since Arab countries are renowned for their multicultural environment with half of the population of students and faculties being international, this paper focuses on a comprehensive analysis of mental health problems such as depression, stress, anxiety, isolation, and other unfortunate conditions. The dataset is developed from a web-based survey. The detailed exploratory data analysis is conducted on the dataset (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Diagnosis of Blood Cells Using Deep Learning.Ahmed J. Khalil & Samy S. Abu-Naser - 2022 - Dissertation, University of Tehran
    In computer science, Artificial Intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. Computer science defines AI research as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals. Deep Learning is a new field of research. One of the branches of Artificial Intelligence Science deals with the creation of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  41. An Analysis of the Interaction Between Intelligent Software Agents and Human Users.Christopher Burr, Nello Cristianini & James Ladyman - 2018 - Minds and Machines 28 (4):735-774.
    Interactions between an intelligent software agent and a human user are ubiquitous in everyday situations such as access to information, entertainment, and purchases. In such interactions, the ISA mediates the user’s access to the content, or controls some other aspect of the user experience, and is not designed to be neutral about outcomes of user choices. Like human users, ISAs are driven by goals, make autonomous decisions, and can learn from experience. Using ideas from bounded rationality, we frame these (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  42. Classification of Real and Fake Human Faces Using Deep Learning.Fatima Maher Salman & Samy S. Abu-Naser - 2022 - International Journal of Academic Engineering Research (IJAER) 6 (3):1-14.
    Artificial intelligence (AI), deep learning, machine learning and neural networks represent extremely exciting and powerful machine learning-based techniques used to solve many real-world problems. Artificial intelligence is the branch of computer sciences that emphasizes the development of intelligent machines, thinking and working like humans. For example, recognition, problem-solving, learning, visual perception, decision-making and planning. Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  43. An Unconventional Look at AI: Why Today’s Machine Learning Systems are not Intelligent.Nancy Salay - 2020 - In LINKs: The Art of Linking, an Annual Transdisciplinary Review, Special Edition 1, Unconventional Computing. pp. 62-67.
    Machine learning systems (MLS) that model low-level processes are the cornerstones of current AI systems. These ‘indirect’ learners are good at classifying kinds that are distinguished solely by their manifest physical properties. But the more a kind is a function of spatio-temporally extended properties — words, situation-types, social norms — the less likely an MLS will be able to track it. Systems that can interact with objects at the individual level, on the other hand, and that can sustain this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. AI-Completeness: Using Deep Learning to Eliminate the Human Factor.Kristina Šekrst - 2020 - In Sandro Skansi (ed.), Guide to Deep Learning Basics. Springer. pp. 117-130.
    Computational complexity is a discipline of computer science and mathematics which classifies computational problems depending on their inherent difficulty, i.e. categorizes algorithms according to their performance, and relates these classes to each other. P problems are a class of computational problems that can be solved in polynomial time using a deterministic Turing machine while solutions to NP problems can be verified in polynomial time, but we still do not know whether they can be solved in polynomial time as well. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. On the computational complexity of ethics: moral tractability for minds and machines.Jakob Stenseke - 2024 - Artificial Intelligence Review 57 (105):90.
    Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Accelerating Artificial Intelligence: Exploring the Implications of Xenoaccelerationism and Accelerationism for AI and Machine Learning.Kaiola liu - 2023 - Dissertation, University of Hawaii
    This article analyzes the potential impacts of Xenoaccelerationism and Accelerationism on the development of artificial intelligence (AI) and machine learning (ML). It examines how these speculative philosophies, which advocate technological acceleration and integration of diverse knowledge, may shape priorities and approaches in AI research and development. The risks and benefits of aligning AI progress with accelerationist values are discussed.
    Download  
     
    Export citation  
     
    Bookmark  
  47. Algorithms for Ethical Decision-Making in the Clinic: A Proof of Concept.Lukas J. Meier, Alice Hein, Klaus Diepold & Alena Buyx - 2022 - American Journal of Bioethics 22 (7):4-20.
    Machine intelligence already helps medical staff with a number of tasks. Ethical decision-making, however, has not been handed over to computers. In this proof-of-concept study, we show how an algorithm based on Beauchamp and Childress’ prima-facie principles could be employed to advise on a range of moral dilemma situations that occur in medical institutions. We explain why we chose fuzzy cognitive maps to set up the advisory system and how we utilized machine learning to train it. We report (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  48. Computational Approaches to Concepts Representation: A Whirlwind Tour.Mattia Fumagalli, Riccardo Baratella, Marcello Frixione & Daniele Porello - forthcoming - Acta Analytica:1-32.
    The modelling of concepts, besides involving disciplines like philosophy of mind and psychology, is a fundamental and lively research problem in several artificial intelligence (AI) areas, such as knowledge representation, machine learning, and natural language processing. In this scenario, the most prominent proposed solutions adopt different (often incompatible) assumptions about the nature of such a notion. Each of these solutions has been developed to capture some specific features of concepts and support some specific (artificial) cognitive operations. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. The Discovery of the Artificial: Behavior, Mind and Machines Before and Beyond Cybernetics.Roberto Cordeschi - 2002 - Kluwer Academic Publishers.
    Since the second half of the XXth century, researchers in cybernetics and AI, neural nets and connectionism, Artificial Life and new robotics have endeavoured to build different machines that could simulate functions of living organisms, such as adaptation and development, problem solving and learning. In this book these research programs are discussed, particularly as regard the epistemological issues of the behaviour modelling. One of the main novelty of this book consists of the fact that certain projects involving the building (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  50. Mind and Machine: A Philosophical Examination of Matt Carter’s “Minds & Computers: An Introduction to the Philosophy of Artificial Intelligence”.R. L. Tripathi - 2024 - Open Access Journal of Data Science and Artificial Intelligence 2 (1):3.
    In his book “Minds and Computers: An Introduction to the Philosophy of Artificial Intelligence”, Matt Carter presents a comprehensive exploration of the philosophical questions surrounding artificial intelligence (AI). Carter argues that the development of AI is not merely a technological challenge but fundamentally a philosophical one. He delves into key issues like the nature of mental states, the limits of introspection, the implications of memory decay, and the functionalist framework that allows for the possibility of AI. Carter contrasts (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 967