Results for 'Neural machine translation'

949 found
Order:
  1. OPUS-CAT: A State-of-the-Art Neural Machine Translation Engine on Your Local Computer. [REVIEW]Yuri Balashov - 2021 - The ATA Chronicle.
    Neural machine translation (NMT) is one of the success stories of deep learning and artificial intelligence. Revolutionary innovations in the computational architectures made in 2015–2017 have led to dramatic improvements in the quality of machine translation (MT) and changed the field forever. Some professional translators welcome these changes with enthusiasm, others less so. But everyone has to deal with them. Historically, the relationship between human translation and MT has been uneasy and complicated, but an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. The Boundaries of Meaning: A Case Study in Neural Machine Translation.Yuri Balashov - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 66.
    The success of deep learning in natural language processing raises intriguing questions about the nature of linguistic meaning and ways in which it can be processed by natural and artificial systems. One such question has to do with subword segmentation algorithms widely employed in language modeling, machine translation, and other tasks since 2016. These algorithms often cut words into semantically opaque pieces, such as ‘period’, ‘on’, ‘t’, and ‘ist’ in ‘period|on|t|ist’. The system then represents the resulting segments in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. From what to how: an initial review of publicly available AI ethics tools, methods and research to translate principles into practices.Jessica Morley, Luciano Floridi, Libby Kinsey & Anat Elhalal - 2020 - Science and Engineering Ethics 26 (4):2141-2168.
    The debate about the ethical implications of Artificial Intelligence dates from the 1960s :741–742, 1960; Wiener in Cybernetics: or control and communication in the animal and the machine, MIT Press, New York, 1961). However, in recent years symbolic AI has been complemented and sometimes replaced by Neural Networks and Machine Learning techniques. This has vastly increased its potential utility and impact on society, with the consequence that the ethical debate has gone mainstream. Such a debate has primarily (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  4. The Discovery of the Artificial: Behavior, Mind and Machines Before and Beyond Cybernetics.Roberto Cordeschi - 2002 - Kluwer Academic Publishers.
    Since the second half of the XXth century, researchers in cybernetics and AI, neural nets and connectionism, Artificial Life and new robotics have endeavoured to build different machines that could simulate functions of living organisms, such as adaptation and development, problem solving and learning. In this book these research programs are discussed, particularly as regard the epistemological issues of the behaviour modelling. One of the main novelty of this book consists of the fact that certain projects involving the building (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  5. Artificial Intelligence: Machine Translation Accuracy in Translating French-Indonesian Culinary Texts.Hasyim Muhammad - 2021 - International Journal of Advanced Computer Science and Applications 12 (3):186-191.
    The use of machine translation as artificial intelligence (AI) keeps increasing and the world’s most popular a translation tool is Google Translate (GT). This tool is not merely used for the benefits of learning and obtaining information from foreign languages through translation but has also been used as a medium of interaction and communication in hospitals, airports and shopping centres. This paper aims to explore machine translation accuracy in translating French-Indonesian culinary texts (recipes). The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Note on the complexities of simple things such as a timeline. On the notions text, e-text, hypertext, and origins of machine translation.Niels Ole Finnemann - 2021 - In Frode Hegland (ed.), The Future of Text, vol. 2. Liquid Text. pp. pp 149-156..
    The composition of a timeline depends on purpose, perspective, and scale – and of the very understanding of the word, the phenomenon referred to, and whether the focus is the idea or concept, an instance of an idea or a phenomenon, a process, or an event and so forth. The main function of timelines is to provide an overview over a long history, it is a kind of a mnemotechnic device or a particular kind of Knowledge Organization System (KOS).b The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Machine vs. Human Translation.Elona Limaj - 2014 - Journal of Turkish Studies 9 (Volume 9 Issue 6):783-783.
    The advantages and disadvantages of machine translation have been the subject of increasing debate among human translators lately because of the growing strides made in the last year by the newest major entrant in the field, Google Translate. The progress and potential of machine translation has been debated much through its history. But this debate actually began with the birth of machine translation itself. Behind this simple procedure lies a complex cognitive operation. To decode (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Data Mining the Brain to Decode the Mind.Daniel Weiskopf - 2020 - In Fabrizio Calzavarini & Marco Viola (eds.), Neural Mechanisms: New Challenges in the Philosophy of Neuroscience. Springer.
    In recent years, neuroscience has begun to transform itself into a “big data” enterprise with the importation of computational and statistical techniques from machine learning and informatics. In addition to their translational applications such as brain-computer interfaces and early diagnosis of neuropathology, these tools promise to advance new solutions to longstanding theoretical quandaries. Here I critically assess whether these promises will pay off, focusing on the application of multivariate pattern analysis (MVPA) to the problem of reverse inference. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models provide understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  10. The Cognitive Gap, Neural Darwinism & Linguistic Dualism —Russell, Husserl, Heidegger & Quine.Hermann G. W. Burchard - 2014 - Open Journal of Philosophy 4 (3):244-264.
    Guided by key insights of the four great philosophers mentioned in the title, here, in review of and expanding on our earlier work (Burchard, 2005, 2011), we present an exposition of the role played by language, & in the broader sense, λογοζ, the Logos, in how the CNS, the brain, is running the human being. Evolution by neural Darwinism has been forcing the linguistic nature of mind, enabling it to overcome & exploit the cognitive gap between an animal and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Predicting Heart Disease using Neural Networks.Ahmed Muhammad Haider Al-Sharif & Samy S. Abu-Naser - 2023 - International Journal of Academic Information Systems Research (IJAISR) 7 (9):40-46.
    Cardiovascular diseases, including heart disease, pose a significant global health challenge, contributing to a substantial burden on healthcare systems and individuals. Early detection and accurate prediction of heart disease are crucial for timely intervention and improved patient outcomes. This research explores the potential of neural networks in predicting heart disease using a dataset collected from Kaggle, consisting of 1025 samples with 14 distinct features. The study's primary objective is to develop an effective neural network model for binary classification, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Machine learning in scientific grant review: algorithmically predicting project efficiency in high energy physics.Vlasta Sikimić & Sandro Radovanović - 2022 - European Journal for Philosophy of Science 12 (3):1-21.
    As more objections have been raised against grant peer-review for being costly and time-consuming, the legitimate question arises whether machine learning algorithms could help assess the epistemic efficiency of the proposed projects. As a case study, we investigated whether project efficiency in high energy physics can be algorithmically predicted based on the data from the proposal. To analyze the potential of algorithmic prediction in HEP, we conducted a study on data about the structure and outcomes of HEP experiments with (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. The changing practices of proof in mathematics: Gilles Dowek: Computation, proof, machine. Cambridge: Cambridge University Press, 2015. Translation of Les Métamorphoses du calcul, Paris: Le Pommier, 2007. Translation from the French by Pierre Guillot and Marion Roman, $124.00HB, $40.99PB. [REVIEW]Andrew Arana - 2017 - Metascience 26 (1):131-135.
    Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
    Download  
     
    Export citation  
     
    Bookmark  
  14. Recurrent Neural Network Based Speech emotion detection using Deep Learning.P. Pavithra - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):65-77.
    In modern days, person-computer communication systems have gradually penetrated our lives. One of the crucial technologies in person-computer communication systems, Speech Emotion Recognition (SER) technology, permits machines to correctly recognize emotions and greater understand users' intent and human-computer interlinkage. The main objective of the SER is to improve the human-machine interface. It is also used to observe a person's psychological condition by lie detectors. Automatic Speech Emotion Recognition(SER) is vital in the person-computer interface, but SER has challenges for accurate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Knowledge Bases and Neural Network Synthesis.Todd R. Davies - 1991 - In Hozumi Tanaka (ed.), Artificial Intelligence in the Pacific Rim: Proceedings of the Pacific Rim International Conference on Artificial Intelligence. IOS Press. pp. 717-722.
    We describe and try to motivate our project to build systems using both a knowledge based and a neural network approach. These two approaches are used at different stages in the solution of a problem, instead of using knowledge bases exclusively on some problems, and neural nets exclusively on others. The knowledge base (KB) is defined first in a declarative, symbolic language that is easy to use. It is then compiled into an efficient neural network (NN) representation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Neural Chitchat.Barry Smith - 2021 - The Sherry Turkle Miracle.
    A constant theme in Sherry Turkle’s work is the idea that computers shape our social and psychological lives. This idea is of course in a sense trivial, as can be observed when walking down any city street and noting how many of the passers-by have their heads buried in screens. In The Second Self, however, Turkle makes a stronger claim to the effect that where people confront machines that seem to think this suggests a new way for us to think (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Translation Techniques.Marcia Ricci Pinheiro - 2015 - Communication and Language at Work 3 (4):121-144.
    In this paper, we discuss three translation techniques: literal, cultural, and artistic. Literal translation is a well-known technique, which means that it is quite easy to find sources on the topic. Cultural and artistic translation may be new terms. Whilst cultural translation focuses on matching contexts, artistic translation focuses on matching reactions. Because literal translation matches only words, it is not hard to find situations in which we should not use this technique. Because artistic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  60
    Intelligent Driver Drowsiness Detection System Using Optimized Machine Learning Models.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-405.
    : Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Artificial Qualia, Intentional Systems and Machine Consciousness.Robert James M. Boyles - 2012 - In Proceedings of the Research@DLSU Congress 2012: Science and Technology Conference. pp. 110a–110c.
    In the field of machine consciousness, it has been argued that in order to build human-like conscious machines, we must first have a computational model of qualia. To this end, some have proposed a framework that supports qualia in machines by implementing a model with three computational areas (i.e., the subconceptual, conceptual, and linguistic areas). These abstract mechanisms purportedly enable the assessment of artificial qualia. However, several critics of the machine consciousness project dispute this possibility. For instance, Searle, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. Unlocking Literary Insights: Predicting Book Ratings with Neural Networks.Mahmoud Harara & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):22-27.
    Abstract: This research delves into the utilization of Artificial Neural Networks (ANNs) as a powerful tool for predicting the overall ratings of books by leveraging a diverse set of attributes. To achieve this, we employ a comprehensive dataset sourced from Goodreads, enabling us to thoroughly examine the intricate connections between the different attributes of books and the ratings they receive from readers. In our investigation, we meticulously scrutinize how attributes such as genre, author, page count, publication year, and reader (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Adversarial Sampling for Fairness Testing in Deep Neural Network.Tosin Ige, William Marfo, Justin Tonkinson, Sikiru Adewale & Bolanle Hafiz Matti - 2023 - International Journal of Advanced Computer Science and Applications 14 (2).
    In this research, we focus on the usage of adversarial sampling to test for the fairness in the prediction of deep neural network model across different classes of image in a given dataset. While several framework had been proposed to ensure robustness of machine learning model against adversarial attack, some of which includes adversarial training algorithm. There is still the pitfall that adversarial training algorithm tends to cause disparity in accuracy and robustness among different group. Our research is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  22. Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, machine learning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. The Use of Machine Learning Methods for Image Classification in Medical Data.Destiny Agboro - forthcoming - International Journal of Ethics.
    Integrating medical imaging with computing technologies, such as Artificial Intelligence (AI) and its subsets: Machine learning (ML) and Deep Learning (DL) has advanced into an essential facet of present-day medicine, signaling a pivotal role in diagnostic decision-making and treatment plans (Huang et al., 2023). The significance of medical imaging is escalated by its sustained growth within the realm of modern healthcare (Varoquaux and Cheplygina, 2022). Nevertheless, the ever-increasing volume of medical images compared to the availability of imaging experts. Biomedical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Exploring Machine Learning Techniques for Coronary Heart Disease Prediction.Hisham Khdair - 2021 - International Journal of Advanced Computer Science and Applications 12 (5):28-36.
    Coronary Heart Disease (CHD) is one of the leading causes of death nowadays. Prediction of the disease at an early stage is crucial for many health care providers to protect their patients and save lives and costly hospitalization resources. The use of machine learning in the prediction of serious disease events using routine medical records has been successful in recent years. In this paper, a comparative analysis of different machine learning techniques that can accurately predict the occurrence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Why and how to construct an epistemic justification of machine learning?Petr Spelda & Vit Stritecky - 2024 - Synthese 204 (2):1-24.
    Consider a set of shuffled observations drawn from a fixed probability distribution over some instance domain. What enables learning of inductive generalizations which proceed from such a set of observations? The scenario is worthwhile because it epistemically characterizes most of machine learning. This kind of learning from observations is also inverse and ill-posed. What reduces the non-uniqueness of its result and, thus, its problematic epistemic justification, which stems from a one-to-many relation between the observations and many learnable generalizations? The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. L’intelligenza artificiale non dominerà il mondo (interview, with English translation).Pierangelo Soldavini & Barry Smith - 2024 - Il Sole di 24 Ore 2024.
    Artificial intelligence is man's attempt to use software to emulate the intelligence of human beings. But the complexity of the human neurological system formed in the course of evolution is impossible to replicate: "Human languages and societies are complex systems, indeed complex systems of many complex systems," so much so that their mathematical modeling is impossible. Barry Smith, philosopher and professor at the University at Buffalo. shows no uncertainty about this. His latest book written with Jobst Landgrebe, a mathematician and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Functional and Neural Mechanisms of Out-of-Body Experiences: Importance of Retinogeniculo-Cortical Oscillations.Jerath Ravinder, Shannon M. Cearley, Vernon A. Barnes & Mike Jensen - 2016 - World Journal of Neuroscience 6:287-302.
    Current research on the various forms of autoscopic phenomena addresses the clinical and neurological correlates of out-of-body experiences, autoscopic hallucinations,and heautoscopy. Yet most of this research is based on functional magnetic resonance imaging results and focuses predominantly on abnormal cortical activity. Previously we proposed that visual consciousness resulted from the dynamic retinogeniculo-cortical oscillations, such that the photoreceptors dynamically integrated with visual and other vision-associated cortices, and was theorized to be mapped out by photoreceptor discs and rich retinal networks which synchronized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Misbehaving Machines: The Emulated Brains of Transhumanist Dreams.Corry Shores - 2011 - Journal of Evolution and Technology 22 (1):10-22.
    Enhancement technologies may someday grant us capacities far beyond what we now consider humanly possible. Nick Bostrom and Anders Sandberg suggest that we might survive the deaths of our physical bodies by living as computer emulations.­­ In 2008, they issued a report, or “roadmap,” from a conference where experts in all relevant fields collaborated to determine the path to “whole brain emulation.” Advancing this technology could also aid philosophical research. Their “roadmap” defends certain philosophical assumptions required for this technology’s success, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Philosophy and Science, the Darwinian-Evolved Computational Brain, a Non-Recursive Super-Turing Machine & Our Inner-World-Producing Organ.Hermann G. W. Burchard - 2016 - Open Journal of Philosophy 6 (1):13-28.
    Recent advances in neuroscience lead to a wider realm for philosophy to include the science of the Darwinian-evolved computational brain, our inner world producing organ, a non-recursive super- Turing machine combining 100B synapsing-neuron DNA-computers based on the genetic code. The whole system is a logos machine offering a world map for global context, essential for our intentional grasp of opportunities. We start from the observable contrast between the chaotic universe vs. our orderly inner world, the noumenal cosmos. So (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  30. Medical Image Classification with Machine Learning Classifier.Destiny Agboro - forthcoming - Journal of Computer Science.
    In contemporary healthcare, medical image categorization is essential for illness prediction, diagnosis, and therapy planning. The emergence of digital imaging technology has led to a significant increase in research into the use of machine learning (ML) techniques for the categorization of images in medical data. We provide a thorough summary of recent developments in this area in this review, using knowledge from the most recent research and cutting-edge methods.We begin by discussing the unique challenges and opportunities associated with medical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  46
    Optimized Cloud Computing Solutions for Cardiovascular Disease Prediction Using Advanced Machine Learning.Kannan K. S. - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):465-480.
    The world's leading cause of morbidity and death is cardiovascular diseases (CVD), which makes early detection essential for successful treatments. This study investigates how optimization techniques can be used with machine learning (ML) algorithms to forecast cardiovascular illnesses more accurately. ML models can evaluate enormous datasets by utilizing data-driven techniques, finding trends and risk factors that conventional methods can miss. In order to increase prediction accuracy, this study focuses on adopting different machine learning algorithms, including Decision Trees, Random (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32.  52
    Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):350-359.
    Cardiovascular diseases (CVD) represent a significant cause of morbidity and mortality worldwide, necessitating early detection for effective intervention. This research explores the application of machine learning (ML) algorithms in predicting cardiovascular diseases with enhanced accuracy by integrating optimization techniques. By leveraging data-driven approaches, ML models can analyze vast datasets, identifying patterns and risk factors that traditional methods might overlook. This study focuses on implementing various ML algorithms, such as Decision Trees, Random Forest, Support Vector Machines, and Neural Networks, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33.  68
    OPTIMIZED CARDIOVASCULAR DISEASE PREDICTION USING MACHINE LEARNING ALGORITHMS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):350-359.
    Cardiovascular diseases (CVD) represent a significant cause of morbidity and mortality worldwide, necessitating early detection for effective intervention. This research explores the application of machine learning (ML) algorithms in predicting cardiovascular diseases with enhanced accuracy by integrating optimization techniques. By leveraging data-driven approaches, ML models can analyze vast datasets, identifying patterns and risk factors that traditional methods might overlook. This study focuses on implementing various ML algorithms, such as Decision Trees, Random Forest, Support Vector Machines, and Neural Networks, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The Language of Human-Machine Communication. Technology and Language.Daria Bylieva - 2020 - Technology and Language 1 (1):16-21.
    This essay for the inaugural issue of Technology and Language discusses the problem of finding an optimal form of human-machine communication. In the ongoing search for an alien mind, humanity seems to find it not in the infinities of space, but in its own environment. Changes in the language of human-machine interaction made it understandable not only to trained specialists but to every household. In the course of time, home appliances and devices have developed their language abilities even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Semantic Information G Theory and Logical Bayesian Inference for Machine Learning.Chenguang Lu - 2019 - Information 10 (8):261.
    An important problem with machine learning is that when label number n>2, it is very difficult to construct and optimize a group of learning functions, and we wish that optimized learning functions are still useful when prior distribution P(x) (where x is an instance) is changed. To resolve this problem, the semantic information G theory, Logical Bayesian Inference (LBI), and a group of Channel Matching (CM) algorithms together form a systematic solution. MultilabelMultilabel A semantic channel in the G theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Cyborg Life: The In-Between of Humans and Machines.Glen A. Mazis - 2008 - PhaenEx 3 (2):14-36.
    Cyborgs are ongoing becomings of a doubly “in-between” temporality of humans and machines. Materially made from components of both sorts of beings, cyborgs gain increasing function through an interweaving in which each alters the other, from the level of “neural plasticity” to software updates to emotional breakthroughs of which both are a part. One sort of temporal in-between is of the progressive unfolding of a deepening becoming as “not-one-not-two” and the other is a “doubling back” of time into itself (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Classification of plant Species Using Neural Network.Muhammad Ashraf Al-Azbaki, Mohammed S. Abu Nasser, Mohammed A. Hasaballah & Samy S. Abu-Naser - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (10):28-35.
    Abstract: In this study, we explore the possibility of classifying the plant species. We collected the plant species from Kaggle website. This dataset encompasses 544 samples, encompassing 136 distinct plant species. Recent advancements in machine learning, particularly Artificial Neural Networks (ANNs), offer promise in enhancing plant Species classification accuracy and efficiency. This research explores plant Species classification, harnessing neural networks' power. Utilizing a rich dataset from Kaggle, containing 544 entries, we develop and evaluate a neural network (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Analyzing the Relationship between Smoking and Drinking Patterns Using Neural Networks: A Comprehensive Feature-Based Approach.Ahmed Samir Abu Al-Hussein, Mona Ayman Abu Aisha, Iman Nahed Saeed Ahleel & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):18-25.
    This study employs a neural network to analyze the connection between smoking, drinking, and various health-related factors using a dataset of 5148 samples. Achieving an impressive 99.94% accuracy and an average training error of 0.0016, the model identifies influential factors such as serum aminotransferases, serum creatinine, sex, weight, and triglyceride levels. These findings enhance our understanding of lifestyle choices and their impact on health. This research underscores the potential of machine learning in studying complex health phenomena.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Animal Species Classification Using Just Neural Network.Donia Munther Agha - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (9):20-28.
    Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 micrometres to 33.6 metres. In this paper an Artificial Neural Network (ANN) model, was developed and tested to predict animal species. There are a number of features that influence the classification of animal species. Such as the existence of hair/ feather, if the animal gives birth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. PREDICTION OF EDUCATIONAL DATA USING DEEP CONVOLUTIONAL NEURAL NETWORK.K. Vijayalakshmi - 2022 - Journal of Science Technology and Research (JSTAR) 3 (1):93-111.
    : One of the most active study fields in natural language processing, web mining, and text mining is sentiment analysis. Big data is an important research component in education that is used to advance the value of education by watching students' performance and understanding their learning habits. Real-time student feedback will enable teachers and students to understand teaching and learning challenges in the most user-friendly manner for students. By linking learning analytics to grounded theory, the proposed Deep Convolutional Neural (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41.  71
    OPTIMIZED DRIVER DROWSINESS DETECTION USING MACHINE LEARNING TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):395-400.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. An Introduction to Artificial Psychology Application Fuzzy Set Theory and Deep Machine Learning in Psychological Research using R.Farahani Hojjatollah - 2023 - Springer Cham. Edited by Hojjatollah Farahani, Marija Blagojević, Parviz Azadfallah, Peter Watson, Forough Esrafilian & Sara Saljoughi.
    Artificial Psychology (AP) is a highly multidisciplinary field of study in psychology. AP tries to solve problems which occur when psychologists do research and need a robust analysis method. Conventional statistical approaches have deep rooted limitations. These approaches are excellent on paper but often fail to model the real world. Mind researchers have been trying to overcome this by simplifying the models being studied. This stance has not received much practical attention recently. Promoting and improving artificial intelligence helps mind researchers (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Machine Learning Application to Predict The Quality of Watermelon Using JustNN.Ibrahim M. Nasser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (10):1-8.
    In this paper, a predictive artificial neural network (ANN) model was developed and validated for the purpose of prediction whether a watermelon is good or bad, the model was developed using JUSTNN software environment. Prediction is done based on some watermelon attributes that are chosen to be input data to the ANN. Attributes like color, density, sugar rate, and some others. The model went through multiple learning-validation cycles until the error is zero, so the model is 100% percent accurate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Comparison of Neural Network Based Controllers for Nonlinear EMS Magnetic Levitation Train.Mustefa Jibril, Elias Alemayehu & Mesay Tadesse - 2020 - International Journal of Advance Research and Innovative Ideas in Education 6 (2):801-807.
    Magnetic levitation system is operated primarily based at the principle of magnetic attraction and repulsion to levitate the passengers and the train. However, magnetic levitation trains are rather nonlinear and open loop unstable which makes it hard to govern. In this paper, investigation, design and control of a nonlinear Maglev train based on NARMA-L2, model reference and predictive controllers. The response of the Maglev train with the proposed controllers for the precise role of a Magnetic levitation machine have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  56
    Advanced Driver Drowsiness Detection Model Using Optimized Machine Learning Algorithms.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):396-402.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46.  44
    Privacy and Machine Learning- Based Artificial Intelligence: Philosophical, Legal, and Technical Investigations.Haleh Asgarinia - 2024 - Dissertation, Department of Philisophy, University of Twente
    This dissertation consists of five chapters, each written as independent research papers that are unified by an overarching concern regarding information privacy and machine learning-based artificial intelligence (AI). This dissertation addresses the issues concerning privacy and AI by responding to the following three main research questions (RQs): RQ1. ‘How does an AI system affect privacy?’; RQ2. ‘How effectively does the General Data Protection Regulation (GDPR) assess and address privacy issues concerning both individuals and groups?’; and RQ3. ‘How can the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. What is a machine? Exploring the meaning of ‘artificial’ in ‘artificial intelligence’.Stefan Schulz & Janna Hastings - 2024 - Cosmos+Taxis 12 (5+6):37-41.
    Landgrebe and Smith provide an argument for the impossibility of Artificial General Intelligence based on the limits of simulating complex systems. However, their argument presupposes a very contemporary vision of artificial intelligence as a model trained on data to produce an algorithm executable in a modern digital computing system. The present contribution explores what it means to be artificial. Current artificial intelligence approaches on modern computing systems are not the only conceivable way in which artificial intelligence technology might be created. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  52
    The Skill of Translating Thought into Action: Framing The Problem.Wayne Christensen - 2020 - Review of Philosophy and Psychology 12 (3):547-573.
    The nature of the cognition-motor interface has been brought to prominence by Butterfill & Sinigaglia, who argue that the representations employed by the cognitive and motor systems should not be able to interact with each other. Here I argue that recent empirical evidence concerning the interface contradicts several of the assumptions incorporated in Butterfill & Sinigaglia’s account, and I seek to develop a theoretical picture that will allow us to explain the structure of the interface presented by this evidence. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Why Attention is Not Explanation: Surgical Intervention and Causal Reasoning about Neural Models.Christopher Grimsley, Elijah Mayfield & Julia Bursten - 2020 - Proceedings of the 12th Conference on Language Resources and Evaluation.
    As the demand for explainable deep learning grows in the evaluation of language technologies, the value of a principled grounding for those explanations grows as well. Here we study the state-of-the-art in explanation for neural models for natural-language processing (NLP) tasks from the viewpoint of philosophy of science. We focus on recent evaluation work that finds brittleness in explanations obtained through attention mechanisms.We harness philosophical accounts of explanation to suggest broader conclusions from these studies. From this analysis, we assert (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Climate Change temperature Prediction Using Just Neural Network.Saja Kh Abu Safiah & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (9):35-45.
    Climate change temperature prediction plays a crucial role in effective environmental planning. This study introduces an innovative approach that harnesses the power of Artificial Neural Networks (ANNs) within the Just Neural Network (JustNN) framework to enhance temperature forecasting in the context of climate change. By leveraging historical climate data, our model achieves exceptional accuracy, redefining the landscape of temperature prediction without intricate preprocessing. This model sets a new standard for precise temperature forecasting in the context of climate change. (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 949