This note clarifies an error in the proof of the main theorem of “The Ricean Objection: An Analogue of Rice’s Theorem for First-Order Theories”, Logic Journal of the IGPL, 16(6): 585–590(2008).
In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...) thereby provide a new proof of Arrow’s theorem, our main aim is to identify the analogue of Arrow’s theorem in judgment aggregation, to clarify the relation between judgment and preference aggregation, and to illustrate the generality of the judgment aggregation model. JEL Classi…cation: D70, D71.. (shrink)
In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
In the context of EPR-Bohm type experiments and spin detections confined to spacelike hypersurfaces, a local, deterministic and realistic model within a Friedmann-Robertson-Walker spacetime with a constant spatial curvature (S^3 ) is presented that describes simultaneous measurements of the spins of two fermions emerging in a singlet state from the decay of a spinless boson. Exact agreement with the probabilistic predictions of quantum theory is achieved in the model without data rejection, remote contextuality, superdeterminism or backward causation. A singularity-free Clifford-algebraic (...) representation of S^3 with vanishing spatial curvature and non-vanishing torsion is then employed to transform the model in a more elegant form. Several event-by-event numerical simulations of the model are presented, which confirm our analytical results with the accuracy of 4 parts in 10^4 . Possible implications of our results for practical applications such as quantum security protocols and quantum computing are briefly discussed. (shrink)
Bell’s theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell’s theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system. Einstein was repulsed by such “spooky action at a (...) distance” and was led to question whether quantum mechanics could provide a complete description of physical reality. In this paper I argue that quantum mechanics does not require spooky action at a distance of any kind and yet it is entirely reasonable to question the assumption that quantum mechanics can provide a complete description of physical reality. The magic of entangled quantum states has little to do with entanglement and everything to do with superposition, a property of all quantum systems and a foundational tenet of quantum mechanics. (shrink)
It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, (...) say, Delta-3-1 comprehension axioms are not logical truths. What I am going to suggest, however, is that there is a special case to be made on behalf of Pi-1-1 comprehension. Making the case involves investigating extensions of first-order logic that do not rely upon the presence of second-order quantifiers. A formal system for so-called "ancestral logic" is developed, and it is then extended to yield what I call "Arché logic". (shrink)
When we understand that every potential halt decider must derive a formal mathematical proof from its inputs to its final states previously undiscovered semantic details emerge. -/- When-so-ever the potential halt decider cannot derive a formal proof from its input strings to its final states of Halts or Loops, undecidability has been decided. -/- The formal proof involves tracing the sequence of state transitions of the input TMD as syntactic logical consequence inference steps in the formal language of Turing Machine (...) Descriptions. (shrink)
In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
A Husserlian phenomenological approach to logic treats concepts in terms of their experiential meaning rather than in terms of reference, sets of individuals, and sentences. The present article applies such an approach in turn to the reasoning operative in various paradoxes: the simple Liar, the complex Liar paradoxes, the Grelling-type paradoxes, and Gödel’s Theorem. It finds that in each case a meaningless statement, one generated by circular definition, is treated as if were meaningful, and consequently as either true or (...) false, although in fact it is neither. The situation is further complicated by the fact that the sentence used to express the meaningless statement is ambiguous, and may also be used to express a meaningful statement. The paradoxes result from a failure to distinguish between the two meanings the sentence may have. (shrink)
We generalize and extend the class of Sahlqvist formulae in arbitrary polyadic modal languages, to the class of so called inductive formulae. To introduce them we use a representation of modal polyadic languages in a combinatorial style and thus, in particular, develop what we believe to be a better syntactic approach to elementary canonical formulae altogether. By generalizing the method of minimal valuations à la Sahlqvist–van Benthem and the topological approach of Sambin and Vaccaro we prove that all inductive formulae (...) are elementary canonical and thus extend Sahlqvist’s theorem over them. In particular, we give a simple example of an inductive formula which is not frame-equivalent to any Sahlqvist formula. Then, after a deeper analysis of the inductive formulae as set-theoretic operators in descriptive and Kripke frames, we establish a somewhat stronger model-theoretic characterization of these formulae in terms of a suitable equivalence to syntactically simpler formulae in the extension of the language with reversive modalities. Lastly, we study and characterize the elementary canonical formulae in reversive languages with nominals, where the relevant notion of persistence is with respect to discrete frames. (shrink)
I argue that Composition as Identity blocks the plural version of Cantor's Theorem, and that therefore the plural version of Cantor's Theorem can no longer be uncritically appealed to. As an example, I show how this result blocks a recent argument by Hawthorne and Uzquiano.
Introduction to mathematical logic, part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
If there truly is a proof that shows that no universal halt decider exists on the basis that certain tuples: (H, Wm, W) are undecidable, then this very same proof (implemented as a Turing machine) could be used by H to reject some of its inputs. When-so-ever the hypothetical halt decider cannot derive a formal proof from its input strings and initial state to final states corresponding the mathematical logic functions of Halts(Wm, W) or Loops(Wm, W), halting undecidability has been (...) decided. (shrink)
Many mathematicians have cited depth as an important value in their research. However, there is no single widely accepted account of mathematical depth. This article is an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi's theorem, which says that each subset of the natural numbers that is sufficiently dense contains an arithmetical progression of arbitrary length. This theorem has been judged deep by many mathematicians, and so makes for a good case (...) on which to focus in analyzing mathematical depth. After introducing the theorem, four accounts of mathematical depth will be considered. (shrink)
We note that a plural version of logicism about arithmetic is suggested by the standard reading of Hume's Principle in terms of `the number of Fs/Gs'. We lay out the resources needed to prove a version of Frege's principle in plural, rather than second-order, logic. We sketch a proof of the theorem and comment philosophically on the result, which sits well with a metaphysics of natural numbers as plural properties.
In this essay a quantum-dualistic, perspectival and synchronistic interpretation of quantum mechanics is further developed in which the classical world-from-decoherence which is perceived (decoherence) and the perceived world-in-consciousness which is classical (collapse) are not necessarily identified. Thus, Quantum Reality or "{\it unus mundus}" is seen as both i) a physical non-perspectival causal Reality where the quantum-to-classical transition is operated by decoherence, and as ii) a quantum linear superposition of all classical psycho-physical perspectival Realities which are governed by synchronicity as well (...) as causality (corresponding to classical first-person observes who actually populate the world). This interpretation is termed the Nietzsche-Jung-Pauli interpretation and is a re-imagining of the Wigner-von Neumann interpretation which is also consistent with some reading of Bohr's quantum philosophy. (shrink)
Riker (1982) famously argued that Arrow’s impossibility theorem undermined the logical foundations of “populism”, the view that in a democracy, laws and policies ought to express “the will of the people”. In response, his critics have questioned the use of Arrow’s theorem on the grounds that not all configurations of preferences are likely to occur in practice; the critics allege, in particular, that majority preference cycles, whose possibility the theorem exploits, rarely happen. In this essay, I argue (...) that the critics’ rejoinder to Riker misses the mark even if its factual claim about preferences is correct: Arrow’s theorem and related results threaten the populist’s principle of democratic legitimacy even if majority preference cycles never occur. In this particular context, the assumption of an unrestricted domain is justified irrespective of the preferences citizens are likely to have. (shrink)
This is a chapter of a collective volume of Rawls's and Harsanyi's theories of distributive justice. It focuses on Harsanyi's important Social Aggregation Theorem and technically reconstructs it as a theorem in welfarist social choice.
On the heels of Franzén's fine technical exposition of Gödel's incompleteness theorems and related topics (Franzén 2004) comes this survey of the incompleteness theorems aimed at a general audience. Gödel's Theorem: An Incomplete Guide to its Use and Abuse is an extended and self-contained exposition of the incompleteness theorems and a discussion of what informal consequences can, and in particular cannot, be drawn from them.
Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...) potential infinite one can interpret first-order Peano arithmetic, but not second-order Peano arithmetic. We conclude that in order for the logicist to weaken the metaphysically loaded claim of necessary actual infinities, they must also weaken the mathematics they recover. (shrink)
In his recent article Christopher Gauker (2001) has presented a thoughtprovoking argument against deﬂationist theories of truth. More exactly, he attacks what he calls ‘T-schema deﬂationism’, that is, the claim that a theory of truth can simply take the form of certain instances of the T-schema.
The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These (...) ontological issues are interesting in their own right. And if and only if in case ontological considerations make a strong case for something like (BLV) we have to trouble us with inconsistency and paraconsistency. These ontological issues also lead to a renewed methodological reflection what to assume or recognize as an axiom. (shrink)
A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of.
Condorcet's famous jury theorem reaches an optimistic conclusion on the correctness of majority decisions, based on two controversial premises about voters: they are competent and vote independently, in a technical sense. I carefully analyse these premises and show that: whether a premise is justi…ed depends on the notion of probability considered; none of the notions renders both premises simultaneously justi…ed. Under the perhaps most interesting notions, the independence assumption should be weakened.
The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...) proposition is about the past, present or future. In particular, the argument goes, whatever one does or does not do in the future is determined in the present by the truth or falsity of the corresponding proposition. The second argument coming from logic is much more modern and appeals to Gödel's incompleteness theorems to make the case against determinism and in favour of free will, insofar as that applies to the mathematical potentialities of human beings. The claim more precisely is that as a consequence of the incompleteness theorems, those potentialities cannot be exactly circumscribed by the output of any computing machine even allowing unlimited time and space for its work. The chapter concludes with some new considerations that may be in favour of a partial mechanist account of the mathematical mind. (shrink)
This paper critically engages Philip Mirowki's essay, "The scientific dimensions of social knowledge and their distant echoes in 20th-century American philosophy of science." It argues that although the cold war context of anti-democratic elitism best suited for making decisions about engaging in nuclear war may seem to be politically and ideologically motivated, in fact we need to carefully consider the arguments underlying the new rational choice based political philosophies of the post-WWII era typified by Arrow's impossibility theorem. A distrust (...) of democratic decision-making principles may be developed by social scientists whose leanings may be toward the left or right side of the spectrum of political practices. (shrink)
Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good (...) measure of the strength of the theory. I exhibit certain strong counterexamples and establish conclusively that the received view is false. Moreover, I show that the limiting constants provided by the theorem do not in any way reflect the power of formalized theories, but that the values of these constants are actually determined by the chosen coding of Turing machines, and are thus quite accidental. (shrink)
Amalgamating evidence of different kinds for the same hypothesis into an overall confirmation is analogous, I argue, to amalgamating individuals’ preferences into a group preference. The latter faces well-known impossibility theorems, most famously “Arrow’s Theorem”. Once the analogy between amalgamating evidence and amalgamating preferences is tight, it is obvious that amalgamating evidence might face a theorem similar to Arrow’s. I prove that this is so, and end by discussing the plausibility of the axioms required for the theorem.
In §8 of Remarks on the Foundations of Mathematics (RFM), Appendix 3 Wittgenstein imagines what conclusions would have to be drawn if the Gödel formula P or ¬P would be derivable in PM. In this case, he says, one has to conclude that the interpretation of P as “P is unprovable” must be given up. This “notorious paragraph” has heated up a debate on whether the point Wittgenstein has to make is one of “great philosophical interest” revealing “remarkable insight” in (...) Gödel’s proof, as Floyd and Putnam suggest (Floyd (2000), Floyd (2001)), or whether this remark reveals Wittgenstein’s misunderstanding of Gödel’s proof as Rodych and Steiner argued for recently (Rodych (1999, 2002, 2003), Steiner (2001)). In the following the arguments of both interpretations will be sketched and some deficiencies will be identified. Afterwards a detailed reconstruction of Wittgenstein’s argument will be offered. It will be seen that Wittgenstein’s argumentation is meant to be a rejection of Gödel’s proof but that it cannot satisfy this pretension. (shrink)
My aim in this paper is to explain what Condorcet’s jury theorem is, and to examine its central assumptions, its significance to the epistemic theory of democracy and its connection with Rousseau’s theory of general will. In the first part of the paper I will analyze an epistemic theory of democracy and explain how its connection with Condorcet’s jury theorem is twofold: the theorem is at the same time a contributing historical source, and the model used by (...) the authors to this day. In the second part I will specify the purposes of the theorem itself, and examine its underlying assumptions. Third part will be about an interpretation of Rousseau’s theory, which is given by Grofman and Feld relying on Condorcet’s jury theorem, and about criticisms of such interpretation. In the fourth, and last, part I will focus on one particular assumption of Condorcet’s theorem, which proves to be especially problematic if we would like to apply the theorem under real-life conditions; namely, the assumption that voters choose between two options only. (shrink)
To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these (...) versions of Yablo's paradox, we prove some theorems in LTL. This is the first time that Yablo's paradox(es) become new(ly discovered) theorems in mathematics and logic. (shrink)
The standard representation theorem for expected utility theory tells us that if a subject’s preferences conform to certain axioms, then she can be represented as maximising her expected utility given a particular set of credences and utilities—and, moreover, that having those credences and utilities is the only way that she could be maximising her expected utility. However, the kinds of agents these theorems seem apt to tell us anything about are highly idealised, being always probabilistically coherent with infinitely precise (...) degrees of belief and full knowledge of all a priori truths. Ordinary subjects do not look very rational when compared to the kinds of agents usually talked about in decision theory. In this paper, I will develop an expected utility representation theorem aimed at the representation of those who are neither probabilistically coherent, logically omniscient, nor expected utility maximisers across the board—that is, agents who are frequently irrational. The agents in question may be deductively fallible, have incoherent credences, limited representational capacities, and fail to maximise expected utility for all but a limited class of gambles. (shrink)
A resolution to the Russell Paradox is presented that is similar to Russell's “theory of types” method but is instead based on the definition of why a thing exists as described in previous work by this author. In that work, it was proposed that a thing exists if it is a grouping tying "stuff" together into a new unit whole. In tying stuff together, this grouping defines what is contained within the new existent entity. A corollary is that a thing, (...) such as a set, does not exist until after the stuff is tied together, or said another way, until what is contained within is completely defined. A second corollary is that after a grouping defining what is contained within is present and the thing exists, if one then alters what is tied together (e.g., alters what is contained within), the first existent entity is destroyed and a different existent entity is created. A third corollary is that a thing exists only where and when its grouping exists. Based on this, the Russell Paradox's set R of all sets that aren't members of themselves does not even exist until after the list of the elements it contains (e.g. the list of all sets that aren't members of themselves) is defined. Once this list of elements is completely defined, R then springs into existence. Therefore, because it doesn't exist until after its list of elements is defined, R obviously can't be in this list of elements and, thus, cannot be a member of itself; so, the paradox is resolved. This same type of reasoning is then applied to Godel's first Incompleteness Theorem. Briefly, while writing a Godel Sentence, one makes reference to a future, not yet completed and not yet existent sentence, G, that claims its unprovability. However, only once the sentence is finished does it become a new unit whole and existent entity called sentence G. If one then goes back in and replaces the reference to the future sentence with the future sentence itself, a totally different sentence, G1, is created. This new sentence G1 does not assert its unprovability. An objection might be that all the possibly infinite number of possible G-type sentences or their corresponding Godel numbers already exist somehow, so one doesn't have to worry about references to future sentences and springing into existence. But, if so, where do they exist? If they exist in a Platonic realm, where is this realm? If they exist pre-formed in the mind, this would seem to require a possibly infinite-sized brain to hold all these sentences. This is not the case. What does exist in the mind is the system for creating G-type sentences and their corresponding numbers. This mental system for making a G-type sentence is not the same as the G-type sentence itself just as an assembly line is not the same as a finished car. In conclusion, a new resolution of the Russell Paradox and some issues with proofs of Godel's First Incompleteness Theorem are described. (shrink)
This paper generalises the classical Condorcet jury theorem from majority voting over two options to plurality voting over multiple options. The paper further discusses the debate between epistemic and procedural democracy and situates its formal results in that debate. The paper finally compares a number of different social choice procedures for many-option choices in terms of their epistemic merits. An appendix explores the implications of some of the present mathematical results for the question of how probable majority cycles (as (...) in Condorcet's paradox) are in large electorates. (shrink)
Two of the most important ideas in the philosophy of law are the “Coase Theorem” and the “Prisoner’s Dilemma.” In this paper, the authors explore the relation between these two influential models through a creative thought-experiment. Specifically, the paper presents a pure Coasean version of the Prisoner’s Dilemma, one in which property rights are well-defined and transactions costs are zero (i.e. the prisoners are allowed to openly communicate and bargain with each other), in order to test the truth value (...) of the Coase Theorem. In addition, the paper explores what effect (a) uncertainty, (b) exponential discounting, (c) and elasticity have on the behavior of the prisoners in the Coasean version of the dilemma. Lastly, the paper considers the role of the prosecutor (and third-parties generally) in the Prisoner’s Dilemma and closes with some parting thoughts about the complexity of the dilemma. The authors then conclude by identifying the conditions under which the Prisoner’s Dilemma refutes the Coase Theorem. (shrink)
Bell inequalities are usually derived by assuming locality and realism, and therefore violations of the Bell-CHSH inequality are usually taken to imply violations of either locality or realism, or both. But, after reviewing an oversight by Bell, in the Corollary below we derive the Bell-CHSH inequality by assuming only that Bob can measure along vectors b and b' simultaneously while Alice measures along either a or a', and likewise Alice can measure along vectors a and a' simultaneously while Bob measures (...) along either b or b', without assuming locality. The violations of the Bell-CHSH inequality therefore only mean impossibility of measuring along b and b' simultaneously. (shrink)
Georg Cantor's absolute infinity, the paradoxical Burali-Forti class Ω of all ordinals, is a monstrous non-entity for which being called a "class" is an undeserved dignity. This must be the ultimate vexation for mathematical philosophers who hold on to some residual sense of realism in set theory. By careful use of Ω, we can rescue Georg Cantor's 1899 "proof" sketch of the Well-Ordering Theorem––being generous, considering his declining health. We take the contrapositive of Cantor's suggestion and add Zermelo's choice (...) function. This results in a concise and uncomplicated proof of the Well-Ordering Theorem. (shrink)
Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...) verifiably. We consider a constructive interpretation of classical, Tarskian, truth, and of Goedel's reasoning, under which any formal system of Peano Arithmetic---classically accepted as the foundation of all our mathematical Languages---is verifiably complete in the above sense. We show how some paradoxical concepts of Quantum mechanics can, then, be expressed, and interpreted, naturally under a constructive definition of mathematical truth. (shrink)
Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard Hilbert (...) space formalism of quantum mechanics. In this essay, we first show that identification of mind states with quantum states within the brain is biologically feasible, and then elaborating on the mathematical proofs of two quantum mechanical no-go theorems, we explain why quantum theory might have profound implications for the scientific understanding of one's mental states, self identity, beliefs and free will. (shrink)
Famous results by David Lewis show that plausible-sounding constraints on the probabilities of conditionals or evaluative claims lead to unacceptable results, by standard probabilistic reasoning. Existing presentations of these results rely on stronger assumptions than they really need. When we strip these arguments down to a minimal core, we can see both how certain replies miss the mark, and also how to devise parallel arguments for other domains, including epistemic “might,” probability claims, claims about comparative value, and so on. A (...) popular reply to Lewis's results is to claim that conditional claims, or claims about subjective value, lack truth conditions. For this strategy to have a chance of success, it needs to give up basic structural principles about how epistemic states can be updated—in a way that is strikingly parallel to the commitments of the project of dynamic semantics. (shrink)
In spite of the many efforts made to clarify von Neumann’s methodology of science, one crucial point seems to have been disregarded in recent literature: his closeness to Hilbert’s spirit. In this paper I shall claim that the scientific methodology adopted by von Neumann in his later foundational reflections originates in the attempt to revaluate Hilbert’s axiomatics in the light of Gödel’s incompleteness theorems. Indeed, axiomatics continues to be pursued by the Hungarian mathematician in the spirit of Hilbert’s school. I (...) shall argue this point by examining four basic ideas embraced by von Neumann in his foundational considerations: a) the conservative attitude to assume in mathematics; b) the role that mathematics and the axiomatic approach have to play in all that is science; c) the notion of success as an alternative methodological criterion to follow in scientific research; d) the empirical and, at the same time, abstract nature of mathematical thought. Once these four basic ideas have been accepted, Hilbert’s spirit in von Neumann’s methodology of science will become clear. (shrink)
In this paper, I present an argument for a rational norm involving a kind of credal attitude called a quantificational credence – the kind of attitude we can report by saying that Lucy thinks that each record in Schroeder’s collection is 5% likely to be scratched. I prove a result called a Dutch Book Theorem, which constitutes conditional support for the norm. Though Dutch Book Theorems exist for norms on ordinary and conditional credences, there is controversy about the epistemic (...) significance of these results. So, my conclusion is that if Dutch Book Theorems do, in general, support norms on credal states, then we have support for the suggested norm on quantificational credences. Providing conditional support for this norm gives us a fuller picture of the normative landscape of credal states. (shrink)
'Chance' is defined as an event on the time scale withour any cause before it appears. That means, that cause and effect is identical. This is the only way to integrate chance into a consistent theory of causality. The identity of cause and effect is called AHK theorem (Aristotle-Hegel-Kaiser).
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.