Results for 'RIce's theorem'

995 found
Order:
  1. Erratum to “The Ricean Objection: An Analogue of Rice's Theorem for First-Order Theories” Logic Journal of the IGPL, 16: 585–590. [REVIEW]Igor Oliveira & Walter Carnielli - 2009 - Logic Journal of the IGPL 17 (6):803-804.
    This note clarifies an error in the proof of the main theorem of “The Ricean Objection: An Analogue of Rice’s Theorem for First-Order Theories”, Logic Journal of the IGPL, 16(6): 585–590(2008).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Arrow's Theorem in Judgment Aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  3. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2021 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Bell's Theorem Versus Local Realism in a Quaternionic Model of Physical Space.Joy Christian - 2019 - IEEE Access 7:133388-133409.
    In the context of EPR-Bohm type experiments and spin detections confined to spacelike hypersurfaces, a local, deterministic and realistic model within a Friedmann-Robertson-Walker spacetime with a constant spatial curvature (S^3 ) is presented that describes simultaneous measurements of the spins of two fermions emerging in a singlet state from the decay of a spinless boson. Exact agreement with the probabilistic predictions of quantum theory is achieved in the model without data rejection, remote contextuality, superdeterminism or backward causation. A singularity-free Clifford-algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  34
    Making Sense of Bell’s Theorem and Quantum Nonlocality.Stephen Boughn - 2017 - Foundations of Physics 47 (5):640-657.
    Bell’s theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell’s theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system. Einstein was repulsed by such “spooky action at a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  6. A Logic for Frege's Theorem.Richard Heck - 2011 - In Frege’s Theorem: An Introduction. Oxford University Press.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  7. Defining a Decidability Decider for the Halting Problem.Pete Olcott - manuscript
    When we understand that every potential halt decider must derive a formal mathematical proof from its inputs to its final states previously undiscovered semantic details emerge. -/- When-so-ever the potential halt decider cannot derive a formal proof from its input strings to its final states of Halts or Loops, undecidability has been decided. -/- The formal proof involves tracing the sequence of state transitions of the input TMD as syntactic logical consequence inference steps in the formal language of Turing Machine (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  90
    Generalized Löb’s Theorem. Strong Reflection Principles and Large Cardinal Axioms.Jaykov Foukzon - 2013 - Advances in Pure Mathematics (3):368-373.
    In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Self-Reference and Gödel's Theorem: A Husserlian Analysis. [REVIEW]Albert Johnstone - 2003 - Husserl Studies 19 (2):131-151.
    A Husserlian phenomenological approach to logic treats concepts in terms of their experiential meaning rather than in terms of reference, sets of individuals, and sentences. The present article applies such an approach in turn to the reasoning operative in various paradoxes: the simple Liar, the complex Liar paradoxes, the Grelling-type paradoxes, and Gödel’s Theorem. It finds that in each case a meaningless statement, one generated by circular definition, is treated as if were meaningful, and consequently as either true or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  86
    Elementary Canonical Formulae: Extending Sahlqvist’s Theorem.Valentin Goranko & Dimiter Vakarelov - 2006 - Annals of Pure and Applied Logic 141 (1):180-217.
    We generalize and extend the class of Sahlqvist formulae in arbitrary polyadic modal languages, to the class of so called inductive formulae. To introduce them we use a representation of modal polyadic languages in a combinatorial style and thus, in particular, develop what we believe to be a better syntactic approach to elementary canonical formulae altogether. By generalizing the method of minimal valuations à la Sahlqvist–van Benthem and the topological approach of Sambin and Vaccaro we prove that all inductive formulae (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  11. Composition as Identity and Plural Cantor's Theorem.Einar Duenger Bohn - 2016 - Logic and Logical Philosophy 25 (3).
    I argue that Composition as Identity blocks the plural version of Cantor's Theorem, and that therefore the plural version of Cantor's Theorem can no longer be uncritically appealed to. As an example, I show how this result blocks a recent argument by Hawthorne and Uzquiano.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic, part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Halting Problem Proof From Finite Strings to Final States.Pete Olcott - manuscript
    If there truly is a proof that shows that no universal halt decider exists on the basis that certain tuples: (H, Wm, W) are undecidable, then this very same proof (implemented as a Turing machine) could be used by H to reject some of its inputs. When-so-ever the hypothetical halt decider cannot derive a formal proof from its input strings and initial state to final states corresponding the mathematical logic functions of Halts(Wm, W) or Loops(Wm, W), halting undecidability has been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Bayes's Theorem[REVIEW]Massimo Pigliucci - 2005 - Quarterly Review of Biology 80 (1):93-95.
    About a British Academy collection of papers on Bayes' famous theorem.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  15. On the Depth of Szemeredi's Theorem.Andrew Arana - 2015 - Philosophia Mathematica 23 (2):163-176.
    Many mathematicians have cited depth as an important value in their research. However, there is no single widely accepted account of mathematical depth. This article is an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi's theorem, which says that each subset of the natural numbers that is sufficiently dense contains an arithmetical progression of arbitrary length. This theorem has been judged deep by many mathematicians, and so makes for a good case (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  37
    Frege's Theorem in Plural Logic.Simon Hewitt - manuscript
    We note that a plural version of logicism about arithmetic is suggested by the standard reading of Hume's Principle in terms of `the number of Fs/Gs'. We lay out the resources needed to prove a version of Frege's principle in plural, rather than second-order, logic. We sketch a proof of the theorem and comment philosophically on the result, which sits well with a metaphysics of natural numbers as plural properties.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  17.  16
    Bell's Theorem: A Bridge Between the Measurement and the Mind/Body Problems.Badis Ydri - manuscript
    In this essay a quantum-dualistic, perspectival and synchronistic interpretation of quantum mechanics is further developed in which the classical world-from-decoherence which is perceived (decoherence) and the perceived world-in-consciousness which is classical (collapse) are not necessarily identified. Thus, Quantum Reality or "{\it unus mundus}" is seen as both i) a physical non-perspectival causal Reality where the quantum-to-classical transition is operated by decoherence, and as ii) a quantum linear superposition of all classical psycho-physical perspectival Realities which are governed by synchronicity as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Why Arrow's Theorem Matters for Political Theory Even If Preference Cycles Never Occur.Sean Ingham - forthcoming - Public Choice.
    Riker (1982) famously argued that Arrow’s impossibility theorem undermined the logical foundations of “populism”, the view that in a democracy, laws and policies ought to express “the will of the people”. In response, his critics have questioned the use of Arrow’s theorem on the grounds that not all configurations of preferences are likely to occur in practice; the critics allege, in particular, that majority preference cycles, whose possibility the theorem exploits, rarely happen. In this essay, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. A Welfarist Version of Harsanyi's Theorem.Claude D'Aspremont & Philippe Mongin - 2008 - In M. Salles and J. Weymark M. Fleurbaey (ed.), Justice, Political Liberalism, and Utilitarianism. Cambridge University Press. pp. Ch. 11.
    This is a chapter of a collective volume of Rawls's and Harsanyi's theories of distributive justice. It focuses on Harsanyi's important Social Aggregation Theorem and technically reconstructs it as a theorem in welfarist social choice.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Torkel Franzén, Gödel's Theorem: An Incomplete Guide to its Use and Abuse. [REVIEW]R. Zach - 2005 - History and Philosophy of Logic 26 (4):369-371.
    On the heels of Franzén's fine technical exposition of Gödel's incompleteness theorems and related topics (Franzén 2004) comes this survey of the incompleteness theorems aimed at a general audience. Gödel's Theorem: An Incomplete Guide to its Use and Abuse is an extended and self-contained exposition of the incompleteness theorems and a discussion of what informal consequences can, and in particular cannot, be drawn from them.
    Download  
     
    Export citation  
     
    Bookmark  
  21.  47
    The Potential in Frege’s Theorem.Will Stafford - forthcoming - Review of Symbolic Logic:1-25.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Deflationism and Gödel’s Theorem – a Comment on Gauker.Panu Raatikainen - 2002 - Analysis 62 (1):85–87.
    In his recent article Christopher Gauker (2001) has presented a thoughtprovoking argument against deflationist theories of truth. More exactly, he attacks what he calls ‘T-schema deflationism’, that is, the claim that a theory of truth can simply take the form of certain instances of the T-schema.
    Download  
     
    Export citation  
     
    Bookmark  
  23.  21
    The Part of Fermat's Theorem.Run Jiang - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  24. Generalized Löb’s Theorem.Strong Reflection Principles and Large Cardinal Axioms. Consistency Results in Topology.Jaykov Foukzon - 2015 - Pure and Applied Mathematics Journal (Vol. 4, No. 1-1):1-5.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Fermat’s Last Theorem Proved by Induction (and Accompanied by a Philosophical Comment).Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (8):1-8.
    A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. The Premises of Condorcet’s Jury Theorem Are Not Simultaneously Justified.Franz Dietrich - 2008 - Episteme 5 (1):56-73.
    Condorcet's famous jury theorem reaches an optimistic conclusion on the correctness of majority decisions, based on two controversial premises about voters: they are competent and vote independently, in a technical sense. I carefully analyse these premises and show that: whether a premise is justi…ed depends on the notion of probability considered; none of the notions renders both premises simultaneously justi…ed. Under the perhaps most interesting notions, the independence assumption should be weakened.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  28. Gödel's Incompleteness Theorems, Free Will and Mathematical Thought.Solomon Feferman - 2011 - In Richard Swinburne (ed.), Free Will and Modern Science. Oup/British Academy.
    The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. Arrow’s Impossibility Theorem and the National Security State.S. M. Amadae - 2005 - Studies in History and Philosophy of Science Part A 36 (4):734-743.
    This paper critically engages Philip Mirowki's essay, "The scientific dimensions of social knowledge and their distant echoes in 20th-century American philosophy of science." It argues that although the cold war context of anti-democratic elitism best suited for making decisions about engaging in nuclear war may seem to be politically and ideologically motivated, in fact we need to carefully consider the arguments underlying the new rational choice based political philosophies of the post-WWII era typified by Arrow's impossibility theorem. A distrust (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark  
  31. On Interpreting Chaitin's Incompleteness Theorem.Panu Raatikainen - 1998 - Journal of Philosophical Logic 27 (6):569-586.
    The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  32. An Impossibility Theorem for Amalgamating Evidence.Jacob Stegenga - 2013 - Synthese 190 (12):2391-2411.
    Amalgamating evidence of different kinds for the same hypothesis into an overall confirmation is analogous, I argue, to amalgamating individuals’ preferences into a group preference. The latter faces well-known impossibility theorems, most famously “Arrow’s Theorem”. Once the analogy between amalgamating evidence and amalgamating preferences is tight, it is obvious that amalgamating evidence might face a theorem similar to Arrow’s. I prove that this is so, and end by discussing the plausibility of the axioms required for the theorem.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  33. Wittgenstein’s ‘Notorious Paragraph’ About the Gödel Theorem.Timm Lampert - 2006 - In Contributions of the Austrian Wittgenstein Societ. pp. 168-171.
    In §8 of Remarks on the Foundations of Mathematics (RFM), Appendix 3 Wittgenstein imagines what conclusions would have to be drawn if the Gödel formula P or ¬P would be derivable in PM. In this case, he says, one has to conclude that the interpretation of P as “P is unprovable” must be given up. This “notorious paragraph” has heated up a debate on whether the point Wittgenstein has to make is one of “great philosophical interest” revealing “remarkable insight” in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Condorcet’s jury theorem: General will and epistemic democracy.Miljan Vasić - 2018 - Theoria: Beograd 61 (4):147-170.
    My aim in this paper is to explain what Condorcet’s jury theorem is, and to examine its central assumptions, its significance to the epistemic theory of democracy and its connection with Rousseau’s theory of general will. In the first part of the paper I will analyze an epistemic theory of democracy and explain how its connection with Condorcet’s jury theorem is twofold: the theorem is at the same time a contributing historical source, and the model used by (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  35. Opinion Leaders, Independence, and Condorcet's Jury Theorem.David M. Estlund - 1994 - Theory and Decision 36 (2):131-162.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  36. On the Philosophical Relevance of Gödel's Incompleteness Theorems.Panu Raatikainen - 2005 - Revue Internationale de Philosophie 59 (4):513-534.
    A survey of more philosophical applications of Gödel's incompleteness results.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  37.  25
    Theoremizing Yablo's Paradox.Ahmad Karimi & Saeed Salehi - manuscript
    To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Does Gödel's Incompleteness Theorem Prove That Truth Transcends Proof?Joseph Vidal-Rosset - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics. Springer. pp. 51--73.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. A Representation Theorem for Frequently Irrational Agents.Edward Elliott - 2017 - Journal of Philosophical Logic 46 (5):467-506.
    The standard representation theorem for expected utility theory tells us that if a subject’s preferences conform to certain axioms, then she can be represented as maximising her expected utility given a particular set of credences and utilities—and, moreover, that having those credences and utilities is the only way that she could be maximising her expected utility. However, the kinds of agents these theorems seem apt to tell us anything about are highly idealised, being always probabilistically coherent with infinitely precise (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40.  13
    Application of "A Thing Exists If It's A Grouping" to Russell's Paradox and Godel's First Incompletness Theorem.Roger Granet - manuscript
    A resolution to the Russell Paradox is presented that is similar to Russell's “theory of types” method but is instead based on the definition of why a thing exists as described in previous work by this author. In that work, it was proposed that a thing exists if it is a grouping tying "stuff" together into a new unit whole. In tying stuff together, this grouping defines what is contained within the new existent entity. A corollary is that a thing, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Epistemic Democracy: Generalizing the Condorcet Jury Theorem.Christian List & Robert E. Goodin - 2001 - Journal of Political Philosophy 9 (3):277–306.
    This paper generalises the classical Condorcet jury theorem from majority voting over two options to plurality voting over multiple options. The paper further discusses the debate between epistemic and procedural democracy and situates its formal results in that debate. The paper finally compares a number of different social choice procedures for many-option choices in terms of their epistemic merits. An appendix explores the implications of some of the present mathematical results for the question of how probable majority cycles (as (...)
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  42. Does the Prisoner's Dilemma Refute the Coase Theorem?Enrique Guerra-Pujol & Orlando I. Martinez-Garcia - 2015 - The John Marshall Law School Law Review (Chicago) 47 (4):1289-1318.
    Two of the most important ideas in the philosophy of law are the “Coase Theorem” and the “Prisoner’s Dilemma.” In this paper, the authors explore the relation between these two influential models through a creative thought-experiment. Specifically, the paper presents a pure Coasean version of the Prisoner’s Dilemma, one in which property rights are well-defined and transactions costs are zero (i.e. the prisoners are allowed to openly communicate and bargain with each other), in order to test the truth value (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  42
    On a Surprising Oversight by John S. Bell in the Proof of His Famous Theorem.Joy Christian - unknown
    Bell inequalities are usually derived by assuming locality and realism, and therefore violations of the Bell-CHSH inequality are usually taken to imply violations of either locality or realism, or both. But, after reviewing an oversight by Bell, in the Corollary below we derive the Bell-CHSH inequality by assuming only that Bob can measure along vectors b and b' simultaneously while Alice measures along either a or a', and likewise Alice can measure along vectors a and a' simultaneously while Bob measures (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44.  21
    Georg Cantor’s Ordinals, Absolute Infinity & Transparent Proof of the Well-Ordering Theorem.Hermann G. W. Burchard - 2019 - Philosophy Study 9 (8).
    Georg Cantor's absolute infinity, the paradoxical Burali-Forti class Ω of all ordinals, is a monstrous non-entity for which being called a "class" is an undeserved dignity. This must be the ultimate vexation for mathematical philosophers who hold on to some residual sense of realism in set theory. By careful use of Ω, we can rescue Georg Cantor's 1899 "proof" sketch of the Well-Ordering Theorem––being generous, considering his declining health. We take the contrapositive of Cantor's suggestion and add Zermelo's choice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  83
    Do Goedel's Incompleteness Theorems Set Absolute Limits on the Ability of the Brain to Express and Communicate Mental Concepts Verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  46. Quantum No-Go Theorems and Consciousness.Danko D. Georgiev - 2013 - Axiomathes 23 (4):683-695.
    Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. General Dynamic Triviality Theorems.Jeffrey Sanford Russell & John Hawthorne - 2016 - Philosophical Review 125 (3):307-339.
    Famous results by David Lewis show that plausible-sounding constraints on the probabilities of conditionals or evaluative claims lead to unacceptable results, by standard probabilistic reasoning. Existing presentations of these results rely on stronger assumptions than they really need. When we strip these arguments down to a minimal core, we can see both how certain replies miss the mark, and also how to devise parallel arguments for other domains, including epistemic “might,” probability claims, claims about comparative value, and so on. A (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  48. Von Neumann's Methodology of Science: From Incompleteness Theorems to Later Foundational Reflections.Giambattista Formica - 2010 - Perspectives on Science 18 (4):480-499.
    In spite of the many efforts made to clarify von Neumann’s methodology of science, one crucial point seems to have been disregarded in recent literature: his closeness to Hilbert’s spirit. In this paper I shall claim that the scientific methodology adopted by von Neumann in his later foundational reflections originates in the attempt to revaluate Hilbert’s axiomatics in the light of Gödel’s incompleteness theorems. Indeed, axiomatics continues to be pursued by the Hungarian mathematician in the spirit of Hilbert’s school. I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. A Dutch Book Theorem for Quantificational Credences.Benjamin Lennertz - 2017 - Ergo: An Open Access Journal of Philosophy 4.
    In this paper, I present an argument for a rational norm involving a kind of credal attitude called a quantificational credence – the kind of attitude we can report by saying that Lucy thinks that each record in Schroeder’s collection is 5% likely to be scratched. I prove a result called a Dutch Book Theorem, which constitutes conditional support for the norm. Though Dutch Book Theorems exist for norms on ordinary and conditional credences, there is controversy about the epistemic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Solution of Einstein’s Causality Problem: The AHK Theorem.Peter M. Kaiser - manuscript
    'Chance' is defined as an event on the time scale withour any cause before it appears. That means, that cause and effect is identical. This is the only way to integrate chance into a consistent theory of causality. The identity of cause and effect is called AHK theorem (Aristotle-Hegel-Kaiser).
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 995