Results for 'W*-algebra'

332 found
Order:
  1. Generalizing the algebra of physical quantities.Mark Sharlow - manuscript
    In this paper, I define and study an abstract algebraic structure, the dimensive algebra, which embodies the most general features of the algebra of dimensional physical quantities. I prove some elementary results about dimensive algebras and suggest some directions for future work.
    Download  
     
    Export citation  
     
    Bookmark  
  2. The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  3. Phenomenology is art, not psychological or neural science.David A. Booth - 2003 - Behavioral and Brain Sciences 26 (4):408-409.
    It is tough to relate visual perception or other achievements to physiological processing in the central nervous system. The diagrammatic, algebraic, and verbal pictures of how sights seem to Lehar do not advance understanding of how we manage to see what is in the world. There are well-known conceptual reasons why no such purely introspective approach can be productive.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Relevance, relatedness and restricted set theory.Barry Smith - 1991 - In Georg Schurz (ed.), Advances in Scientific Philosophy. pp. 45-56.
    Relevance logic has become ontologically fertile. No longer is the idea of relevance restricted in its application to purely logical relations among propositions, for as Dunn has shown in his (1987), it is possible to extend the idea in such a way that we can distinguish also between relevant and irrelevant predications, as for example between “Reagan is tall” and “Reagan is such that Socrates is wise”. Dunn shows that we can exploit certain special properties of identity within the context (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  5. Linguistic Multidimensional Spaces.W. B. Vasantha Kandasamy, Ilanthenral K. & Florentin Smarandache - 2023
    This book extends the concept of linguistic coordinate geometry using linguistic planes or semi-linguistic planes. In the case of coordinate planes, we are always guaranteed of the distance between any two points in that plane. However, in the case of linguistic and semi-linguistic planes, we can not always determine the linguistic distance between any two points. This is the first limitation of linguistic planes and semi-linguistic planes.
    Download  
     
    Export citation  
     
    Bookmark  
  6. Special Subset Linguistic Topological Spaces.W. B. Vasantha Kandasamy, Ilanthenral K. & Florentin Smarandache - 2023 - Infinite Study.
    In this book, authors, for the first time, introduce the new notion of special subset linguistic topological spaces using linguistic square matrices. This book is organized into three chapters. Chapter One supplies the reader with the concept of ling set, ling variable, ling continuum, etc. Specific basic linguistic algebraic structures, like linguistic semigroup linguistic monoid, are introduced. Also, algebraic structures to linguistic square matrices are defined and described with examples. For the first time, non-commutative linguistic topological spaces are introduced. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Superbimatrices and Their Generalizations.W. B. Vasantha Kandasamy & Florentin Smarandache - 2009 - Slatina, Romania: CuArt.
    The systematic study of supermatrices and super linear algebra has been carried out in 2008. These new algebraic structures find their applications in fuzzy models, Leontief economic models and data-storage in computers.
    Download  
     
    Export citation  
     
    Bookmark  
  8.  74
    The Algebras of Lewis Counterfactuals.Giuliano Rosella & Sara Ugolini - manuscript
    The logico-algebraic study of Lewis's hierarchy of variably strict conditional logics has been essentially unexplored, hindering our understanding of their mathematical foundations, and the connections with other logical systems. This work aims to fill this gap by providing a comprehensive logico-algebraic analysis of Lewis's logics. We begin by introducing novel finite axiomatizations for varying strengths of Lewis's logics, distinguishing between global and local consequence relations on Lewisian sphere models. We then demonstrate that the global consequence relation is strongly algebraizable in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. (1 other version)Twist-Valued Models for Three-valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - 2021 - Logic and Logical Philosophy 30 (2):187-226.
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the axioms of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. On Algebra Relativisation.Chloé de Canson - forthcoming - Mind.
    Katie Steele and H. Orri Stefánsson argue that, to reflect an agent’s limited awareness, the algebra of propositions on which that agent’s credences are defined should be relativised to their awareness state. I argue that this produces insurmountable difficulties. But the project of relativising the agent’s algebra to reflect their partial perspective need not be abandoned: the algebra can be relativised, not to the agent’s awareness state, but to what we might call their subjective modality.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Pura Vida Neutrosophic Algebra.Ranulfo Paiva Barbosa & Florentin Smarandache - 2023 - Neutrosophic Systems with Applications 9.
    We introduce Pura Vida Neutrosophic Algebra, an algebraic structure consisting of neutrosophic numbers equipped with two binary operations namely addition and multiplication. The addition can be calculated sometimes with the function min and other times with the max function. The multiplication operation is the usual sum between numbers. Pura Vida Neutrosophic Algebra is an extension of both Tropical Algebra (also known as Min-Plus, or Min-Algebra) and Max-Plus Algebra (also known as Max-algebra). Tropical and Max-Plus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Recovery operators, paraconsistency and duality.Walter A. Carnielli, Marcelo E. Coniglio & Abilio Rodrigues Filho - 2020 - Logic Journal of the IGPL 28 (5):624-656.
    There are two foundational, but not fully developed, ideas in paraconsistency, namely, the duality between paraconsistent and intuitionistic paradigms, and the introduction of logical operators that express meta-logical notions in the object language. The aim of this paper is to show how these two ideas can be adequately accomplished by the Logics of Formal Inconsistency (LFIs) and by the Logics of Formal Undeterminedness (LFUs). LFIs recover the validity of the principle of explosion in a paraconsistent scenario, while LFUs recover the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Evitable iterates of the consistency operator.James Walsh - 2023 - Computability 12 (1):59--69.
    Why are natural theories pre-well-ordered by consistency strength? In previous work, an approach to this question was proposed. This approach was inspired by Martin's Conjecture, one of the most prominent conjectures in recursion theory. Fixing a reasonable subsystem $T$ of arithmetic, the goal was to classify the recursive functions that are monotone with respect to the Lindenbaum algebra of $T$. According to an optimistic conjecture, roughly, every such function must be equivalent to an iterate $\mathsf{Con}_T^\alpha$ of the consistency operator (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Paskian Algebra: A Discursive Approach to Conversational Multi-agent Systems.Thomas Manning - 2023 - Cybernetics and Human Knowing 30 (1-2):67-81.
    The purpose of this study is to compile a selection of the various formalisms found in conversation theory to introduce readers to Pask's discursive algebra. In this way, the text demonstrates how concept sharing and concept formation by means of the interaction of two participants may be formalized. The approach taken in this study is to examine the formal notation system used by Pask and demonstrate how such formalisms may be used to represent concept sharing and concept formation through (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. On Language Adequacy.Urszula Wybraniec-Skardowska - 2015 - Studies in Logic, Grammar and Rhetoric 40 (1):257-292.
    The paper concentrates on the problem of adequate reflection of fragments of reality via expressions of language and inter-subjective knowledge about these fragments, called here, in brief, language adequacy. This problem is formulated in several aspects, the most being: the compatibility of language syntax with its bi-level semantics: intensional and extensional. In this paper, various aspects of language adequacy find their logical explication on the ground of the formal-logical theory T of any categorial language L generated by the so-called classical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  16. NeutroAlgebra of Neutrosophic Triplets using {Zn, x}.W. B. Kandasamy, I. Kandasamy & Florentin Smarandache - 2020 - Neutrosophic Sets and Systems 38 (1):509-523.
    Smarandache in 2019 has generalized the algebraic structures to NeutroAlgebraic structures and AntiAlgebraic structures. In this paper, authors, for the first time, define the NeutroAlgebra of neutrosophic triplets group under usual+ and x, built using {Zn, x}, n a composite number, 5 < n < oo, which are not partial algebras. As idempotents in Zn alone are neutrals that contribute to neutrosophic triplets groups, we analyze them and build NeutroAlgebra of idempotents under usual + and x, which are not partial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - 2022 - Review of Symbolic Logic 15 (3):771-806.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. (1 other version)Modal Logic and Universal Algebra I: Modal Axiomatizations of Structures.Valentin Goranko & Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 265-292.
    We study the general problem of axiomatizing structures in the framework of modal logic and present a uniform method for complete axiomatization of the modal logics determined by a large family of classes of structures of any signature.
    Download  
     
    Export citation  
     
    Bookmark  
  19.  48
    Fuzzy R Systems and Algebraic Routley-Meyer Semantics.Eunsuk Yang - 2022 - Korean Journal of Logic 25 (3):313-332.
    Here algebraic Routley-Meyer semantics is addressed for two fuzzy versions of the logic of relevant implication R. To this end, two versions R t and R T of R and their fuzzy extensions FRt and FRT , respectively, are first discussed together with their algebraic semantics. Next algebraic Routley-Meyer semantics for these two fuzzy extensions is introduced. Finally, it is verified that these logics are sound and complete over the semantics.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Vagueness and Roughness.Bonikowski Zbigniew & Wybranie-Skardowska Urszula - 2008 - In Bonikowski Zbigniew & Wybranie-Skardowska Urszula (eds.), Transactions on Rough Sets IX. Lectures Notes and Computer Science 5290. Berlin-Heidelberg: pp. 1-13.
    The paper proposes a new formal approach to vagueness and vague sets taking inspirations from Pawlak’s rough set theory. Following a brief introduction to the problem of vagueness, an approach to conceptualization and representation of vague knowledge is presented from a number of different perspectives: those of logic, set theory, algebra, and computer science. The central notion of the vague set, in relation to the rough set, is defined as a family of sets approximated by the so called lower (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A Naturalized Theory for Thinking.Yihong Wang - 2018 - Journal of Human Cognition 2 (1):30-41.
    This article introduces the mathematical models of the thinking laws in the internal structure of consciousness, the spatial and temporal features of the thinking laws, and the phenomenon of resonance as a general feature of the cognitive process. The article will focus on the logical order and space-time existence of the thinking laws, by interrelating such mathematical concepts as Boolessche Algebra, Set theory, Crowd round of Abel, and ordinal number. Finally, the article discusses how thinking laws can a naturalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Neutrosophic quadruple algebraic hyperstructures.A. A. A. Agboola, B. Davvaz & Florentin Smarandache - 2017 - Annals of Fuzzy Mathematics and Informatics 14.
    The objective of this paper is to develop neutrosophic quadruple algebraic hyperstructures. Specifically, we develop neutrosophic quadruple semihypergroups, neutrosophic quadruple canonical hypergroups and neutrosophic quadruple hyperrings and we present elementary properties which characterize them.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Interval neutrosophic sets applied to ideals in BCK/BCI-algebras.Seok-Zun Song, Madad Khan, Florentin Smarandache & Young Bae Jun - 2017 - Neutrosophic Sets and Systems 18:16-26.
    In this article, we apply the notion of interval neutrosophic sets to ideal theory in BCK/BCI-algebras.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Introduction to the Symbolic Plithogenic Algebraic Structures (revisited).Florentin Smarandache - 2023 - Neutrosophic Sets and Systems 53.
    In this paper, we recall and study the new type of algebraic structures called Symbolic Plithogenic Algebraic Structures. Their operations are given under the Absorbance Law and the Prevalence Order.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  98
    Nilpotent Symplectic Alternating Algebras.Layla Hamad Elnil Mugbil Sorkatti - 2015 - Dissertation, University of Bath
    We develop a structure theory for nilpotent symplectic alternating algebras. -/- We then give a classification of all nilpotent symplectic alternating algebras of dimension up to 10 over any field F. The study reveals a new subclasses of powerful groups that we call powerfully nilpotent groups and powerfully soluble groups.
    Download  
     
    Export citation  
     
    Bookmark  
  26. On the Logics with Propositional Quantifiers Extending S5Π.Yifeng Ding - 2018 - In Guram Bezhanishvili, Giovanna D'Agostino, George Metcalfe & Thomas Studer (eds.), Advances in Modal Logic 12, proceedings of the 12th conference on "Advances in Modal Logic," held in Bern, Switzerland, August 27-31, 2018. pp. 219-235.
    Scroggs's theorem on the extensions of S5 is an early landmark in the modern mathematical studies of modal logics. From it, we know that the lattice of normal extensions of S5 is isomorphic to the inverse order of the natural numbers with infinity and that all extensions of S5 are in fact normal. In this paper, we consider extending Scroggs's theorem to modal logics with propositional quantifiers governed by the axioms and rules analogous to the usual ones for ordinary quantifiers. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Interpretation of Neutrosophic Soft cubic T-ideal in the Environment of PS-Algebra.Neha Andaleeb Khalid, Muhammad Saeed & Florentin Smarandache - 2023 - Neutrosophic Sets and Systems 58.
    This study provides an innovative approach to neutrosophic algebraic structures by introducing a new structure called Neutrosophic Soft Cubic T-ideal (NSCTID), which combines T-ideal (TID) and neutrosophic Soft Cubic Sets (NSCSs) within the framework of PS-Algebra. Within the already-existing neutrosophic cubic structures, the addition of soft sets with the characteristics of TID makes this structure more desirable. The theoretical development of the proposed structure includes the application of fundamental ideas as union, intersection, the Cartesian product, and homomorphism. We also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. A Clifford Algebraic Analysis and Explanation of Wave Function Reduction in Quantum Mechanics.Elio Conte - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  29. New Development of Neutrosophic Probability, Neutrosophic Statistics, Neutrosophic Algebraic Structures, and Neutrosophic Plithogenic Optimizations.Florentin Smarandache & Yanhui Guo - 2022 - Basel, Switzerland: MDPI.
    This volume presents state-of-the-art papers on new topics related to neutrosophic theories, such as neutrosophic algebraic structures, neutrosophic triplet algebraic structures, neutrosophic extended triplet algebraic structures, neutrosophic algebraic hyperstructures, neutrosophic triplet algebraic hyperstructures, neutrosophic n-ary algebraic structures, neutrosophic n-ary algebraic hyperstructures, refined neutrosophic algebraic structures, refined neutrosophic algebraic hyperstructures, quadruple neutrosophic algebraic structures, refined quadruple neutrosophic algebraic structures, neutrosophic image processing, neutrosophic image classification, neutrosophic computer vision, neutrosophic machine learning, neutrosophic artificial intelligence, neutrosophic data analytics, neutrosophic deep learning, and neutrosophic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. O papel da abstração na instanciação da álgebra nas Regulae ad Directionem Ingenii.Érico Andrade - 2011 - Analytica (Rio) 15 (1):145-172.
    In this essay I will defend three points, the first being that Descartes- unlike the aristotelian traditon- maintained that abstraction is not a operation in which the intellect builds the mathematical object resorting to sensible ob- jects. Secondly I will demonstrate that, according to cartesian philosophy, the faculty of understanding has the ability to instatiate- within the process of abstraction- mathematical symbols that represent the relation between quantities, whether magnitude or multitude.And finally I will advocate that the lack of onthological (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Level Theory, Part 3: A Boolean Algebra of Sets Arranged in Well-Ordered Levels.Tim Button - 2022 - Bulletin of Symbolic Logic 28 (1):1-26.
    On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal numbers; and a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Improving Algebraic Thinking Skill, Beliefs And Attitude For Mathematics Throught Learning Cycle Based On Beliefs.Widodo Winarso & Toheri - 2017 - Munich University Library.
    In the recent years, problem-solving become a central topic that discussed by educators or researchers in mathematics education. it’s not only as the ability or as a method of teaching. but also, it is a little in reviewing about the components of the support to succeed in problem-solving, such as student's belief and attitude towards mathematics, algebraic thinking skills, resources and teaching materials. In this paper, examines the algebraic thinking skills as a foundation for problem-solving, and learning cycle as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. What Is the Sense in Logic and Philosophy of Language.Urszula Wybraniec-Skardowska - 2020 - Bulletin of the Section of Logic 49 (2):185-211.
    In the paper, various notions of the logical semiotic sense of linguistic expressions – namely, syntactic and semantic, intensional and extensional – are considered and formalised on the basis of a formal-logical conception of any language L characterised categorially in the spirit of certain Husserl's ideas of pure grammar, Leśniewski-Ajdukiewicz's theory of syntactic/semantic categories and, in accordance with Frege's ontological canons, Bocheński's and some of Suszko's ideas of language adequacy of expressions of L. The adequacy ensures their unambiguous syntactic and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Linguistic Semilinear Algebras and Linguistic Semivector Spaces.W. B. Vasantha Kandasamy, K. Ilanthenral & Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    Algebraic structures on linguistic sets associated with a linguistic variable are introduced. The linguistics with single closed binary operations are only semigroups and monoids. We describe the new notion of linguistic semirings, linguistic semifields, linguistic semivector spaces and linguistic semilinear algebras defined over linguistic semifields. We also define algebraic structures on linguistic subsets of a linguistic set associated with a linguistic variable. We define the notion of linguistic subset semigroups, linguistic subset monoids and their respective substructures. We also define as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Super Linear Algebra.W. B. Vasantha Kandasamy & Florentin Smarandache - 2008 - Ann Arbor, MI, USA: ProQuest Information & Learning.
    In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader. These new class of super linear algebras which can be thought of as a set of linear algebras, following a stipulated condition, will find applications in several fields using computers. The authors feel (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Revisiting Constructive Mingle: Algebraic and Operational Semantics.Yale Weiss - 2022 - In Katalin Bimbo (ed.), Essays in Honor of J. Michael Dunn. College Publications. pp. 435-455.
    Among Dunn’s many important contributions to relevance logic was his work on the system RM (R-mingle). Although RM is an interesting system in its own right, it is widely considered to be too strong. In this chapter, I revisit a closely related system, RM0 (sometimes known as ‘constructive mingle’), which includes the mingle axiom while not degenerating in the way that RM itself does. My main interest will be in examining this logic from two related semantical perspectives. First, I give (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Algebraic Structures using Super Interval Matrices.W. B. Vasantha Kandasamy & Florentin Smarandache - 2011 - Columbus, OH, USA: Educational Publisher.
    In this book authors for the first time introduce the notion of super interval matrices using special intervals. The advantage of using super interval matrices is that one can build only one vector space using m × n interval matrices, but in case of super interval matrices we can have several such spaces depending on the partition on the interval matrix.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Clifford Algebra: A Case for Geometric and Ontological Unification.William Michael Kallfelz - 2009 - VDM Verlagsservicegesellschaft MbH.
    Robert Batterman’s ontological insights (2002, 2004, 2005) are apt: Nature abhors singularities. “So should we,” responds the physicist. However, the epistemic assessments of Batterman concerning the matter prove to be less clear, for in the same vein he write that singularities play an essential role in certain classes of physical theories referring to certain types of critical phenomena. I devise a procedure (“methodological fundamentalism”) which exhibits how singularities, at least in principle, may be avoided within the same classes of formalisms (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Finite axiomatizability of logics of distributive lattices with negation.Sérgio Marcelino & Umberto Rivieccio - forthcoming - Logic Journal of the IGPL.
    This paper focuses on order-preserving logics defined from varieties of distributive lattices with negation, and in particular on the problem of whether these can be axiomatized by means Hilbert-style calculi that are finite. On the negative side, we provide a syntactic condition on the equational presentation of a variety that entails failure of finite axiomatizability for the corresponding logic. An application of this result is that the logic of all distributive lattices with negation is not finitely axiomatizable; we likewise establish (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. (1 other version)Quantum Physics: an overview of a weird world: A primer on the conceptual foundations of quantum physics.Marco Masi - 2019 - Indy Edition.
    This is the first book in a two-volume series. The present volume introduces the basics of the conceptual foundations of quantum physics. It appeared first as a series of video lectures on the online learning platform Udemy.]There is probably no science that is as confusing as quantum theory. There's so much misleading information on the subject that for most people it is very difficult to separate science facts from pseudoscience. The goal of this book is to make you able to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. (2 other versions)On the logical origins of quantum mechanics demonstrated by using Clifford algebra.Elio Conte - 2011 - Electronic Journal of Theoretical Physics 8 (25):109-126.
    We review a rough scheme of quantum mechanics using the Clifford algebra. Following the steps previously published in a paper by another author [31], we demonstrate that quantum interference arises in a Clifford algebraic formulation of quantum mechanics. In 1932 J. von Neumann showed that projection operators and, in particular, quantum density matrices can be interpreted as logical statements. In accord with a previously obtained result by V. F Orlov , in this paper we invert von Neumann’s result. Instead (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Extensions of bundles of C*-algebras.Jer Steeger & Benjamin Feintzeig - 2021 - Reviews in Mathematical Physics 33 (8):2150025.
    Bundles of C*-algebras can be used to represent limits of physical theories whose algebraic structure depends on the value of a parameter. The primary example is the ℏ→0 limit of the C*-algebras of physical quantities in quantum theories, represented in the framework of strict deformation quantization. In this paper, we understand such limiting procedures in terms of the extension of a bundle of C*-algebras to some limiting value of a parameter. We prove existence and uniqueness results for such extensions. Moreover, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. Logic-Language-Ontology.Urszula B. Wybraniec-Skardowska - 2022 - Cham, Switzerland: Springer Nature, Birkhäuser, Studies in Universal Logic series.
    The book is a collection of papers and aims to unify the questions of syntax and semantics of language, which are included in logic, philosophy and ontology of language. The leading motif of the presented selection of works is the differentiation between linguistic tokens (material, concrete objects) and linguistic types (ideal, abstract objects) following two philosophical trends: nominalism (concretism) and Platonizing version of realism. The opening article under the title “The Dual Ontological Nature of Language Signs and the Problem of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Reconsideration of Quantum Foundations. Vaxjo University conference ,15-18 June –2009 : A Clifford Algebraic Analysis and Explanation of Wave Function Reduction in Quantum Mechanics. [REVIEW]Elio Conte - forthcoming - In Vaxio University -Sweeden (ed.), Proceedings Vaxjo Conference on Foundations of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  47. Logic and Sense.Urszula Wybraniec-Skardowska - 2016 - Philosophy Study 6 (9).
    In the paper, original formal-logical conception of syntactic and semantic: intensional and extensional senses of expressions of any language L is outlined. Syntax and bi-level intensional and extensional semantics of language L are characterized categorically: in the spirit of some Husserl’s ideas of pure grammar, Leśniewski-Ajukiewicz’s theory syntactic/semantic categories and in accordance with Frege’s ontological canons, Bocheński’s famous motto—syntax mirrors ontology and some ideas of Suszko: language should be a linguistic scheme of ontological reality and simultaneously a tool of its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. A Categorical Characterization of Accessible Domains.Patrick Walsh - 2019 - Dissertation, Carnegie Mellon University
    Inductively defined structures are ubiquitous in mathematics; their specification is unambiguous and their properties are powerful. All fields of mathematical logic feature these structures prominently: the formula of a language, the set of theorems, the natural numbers, the primitive recursive functions, the constructive number classes and segments of the cumulative hierarchy of sets. -/- This dissertation gives a mathematical characterization of a species of inductively defined structures, called accessible domains, which include all of the above examples except the set of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Frege, the complex numbers, and the identity of indiscernibles.Wenzel Christian Helmut - 2010 - Logique Et Analyse 53 (209):51-60.
    There are mathematical structures with elements that cannot be distinguished by the properties they have within that structure. For instance within the field of complex numbers the two square roots of −1, i and −i, have the same algebraic properties in that field. So how do we distinguish between them? Imbedding the complex numbers in a bigger structure, the quaternions, allows us to algebraically tell them apart. But a similar problem appears for this larger structure. There seems to be always (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. An Algebraic View of Super-Belnap Logics.Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio - 2017 - Studia Logica 105 (6):1051-1086.
    The Belnap–Dunn logic is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
1 — 50 / 332