Results for 'automated theorem proving'

960 found
Order:
  1. Automated Theorem Proving and Its Prospects. [REVIEW]Desmond Fearnley-Sander - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2.
    REVIEW OF: Automated Development of Fundamental Mathematical Theories by Art Quaife. (1992: Kluwer Academic Publishers) 271pp. Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of elementary number theory; dozens of Euclidean geometry theorems; and Gödel's incompleteness theorems. It is an impressive achievement. To gauge its significance and to see what prospects it offers this review looks closely at the book and the proofs it presents.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Computational logic. Vol. 1: Classical deductive computing with classical logic. 2nd ed.Luis M. Augusto - 2022 - London: College Publications.
    This is the 3rd edition. Although a number of new technological applications require classical deductive computation with non-classical logics, many key technologies still do well—or exclusively, for that matter—with classical logic. In this first volume, we elaborate on classical deductive computing with classical logic. The objective of the main text is to provide the reader with a thorough elaboration on both classical computing – a.k.a. formal languages and automata theory – and classical deduction with the classical first-order predicate calculus with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. The ILLTP Library for Intuitionistic Linear Logic.Carlos Olarte, Valeria Correa Vaz De Paiva, Elaine Pimentel & Giselle Reis - manuscript
    Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's intuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding.Sven Delarivière & Bart Van Kerkhove - 2017 - In B. Sriraman (ed.), Humanizing Mathematics and its Philosophy. Birkhäuser. pp. 173-198.
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Automating Agential Reasoning: Proof-Calculi and Syntactic Decidability for STIT Logics.Tim Lyon & Kees van Berkel - 2019 - In M. Baldoni, M. Dastani, B. Liao, Y. Sakurai & R. Zalila Wenkstern (eds.), PRIMA 2019: Principles and Practice of Multi-Agent Systems. Springer. pp. 202-218.
    This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the single-agent case, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. A Case Study on Computational Hermeneutics: E. J. Lowe’s Modal Ontological Argument.David Fuenmayor & Christoph Benzmueller - manuscript
    Computers may help us to better understand (not just verify) arguments. In this article we defend this claim by showcasing the application of a new, computer-assisted interpretive method to an exemplary natural-language ar- gument with strong ties to metaphysics and religion: E. J. Lowe’s modern variant of St. Anselm’s ontological argument for the existence of God. Our new method, which we call computational hermeneutics, has been particularly conceived for use in interactive-automated proof assistants. It aims at shedding light on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Isabelle for Philosophers.Ben Blumson - manuscript
    This is an introduction to the Isabelle proof assistant aimed at philosophers and their students.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Making Theorem-Proving in Modal Logic Easy.Paul Needham - 2009 - In Lars-Göran Johansson, Jan Österberg & Rysiek Śliwiński (eds.), Logic, Ethics and All That Jazz: Essays in Honour of Jordan Howard Sobel. Uppsala: Dept. Of Philosophy, Uppsala University. pp. 187-202.
    A system for the modal logic K furnishes a simple mechanical process for proving theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  10. Fermat’s Last Theorem Proved by Induction (and Accompanied by a Philosophical Comment).Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (8):1-8.
    A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of n = 3 as well as the premises necessary for the formulation of the theorem itself. It involves a modification of Fermat’s approach of infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Does Gödel's Incompleteness Theorem Prove that Truth Transcends Proof?Joseph Vidal-Rosset - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 51--73.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Automating Leibniz’s Theory of Concepts.Paul Edward Oppenheimer, Jesse Alama & Edward N. Zalta - 2015 - In Felty Amy P. & Middeldorp Aart (eds.), Automated Deduction – CADE 25: Proceedings of the 25th International Conference on Automated Deduction (Lecture Notes in Artificial Intelligence: Volume 9195), Berlin: Springer. Springer. pp. 73-97.
    Our computational metaphysics group describes its use of automated reasoning tools to study Leibniz’s theory of concepts. We start with a reconstruction of Leibniz’s theory within the theory of abstract objects (henceforth ‘object theory’). Leibniz’s theory of concepts, under this reconstruction, has a non-modal algebra of concepts, a concept-containment theory of truth, and a modal metaphysics of complete individual concepts. We show how the object-theoretic reconstruction of these components of Leibniz’s theory can be represented for investigation by means of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Automating Leibniz's Theory of Concepts.Jesse Alama, Paul Edward Oppenheimer & Edward Zalta - 2015 - In Felty Amy P. & Middeldorp Aart (eds.), Automated Deduction – CADE 25: Proceedings of the 25th International Conference on Automated Deduction (Lecture Notes in Artificial Intelligence: Volume 9195), Berlin: Springer. Springer. pp. 73-97.
    Our computational metaphysics group describes its use of automated reasoning tools to study Leibniz’s theory of concepts. We start with a reconstruction of Leibniz’s theory within the theory of abstract objects (henceforth ‘object theory’). Leibniz’s theory of concepts, under this reconstruction, has a non-modal algebra of concepts, a concept-containment theory of truth, and a modal metaphysics of complete individual concepts. We show how the object-theoretic reconstruction of these components of Leibniz’s theory can be represented for investigation by means of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Deepening the Automated Search for Gödel's Proofs.Adam Conkey - unknown
    Gödel's incompleteness theorems establish the stunning result that mathematics cannot be fully formalized and, further, that any formal system containing a modicum of number or set theory cannot establish its own consistency. Wilfried Sieg and Clinton Field, in their paper Automated Search for Gödel's Proofs, presented automated proofs of Gödel's theorems at an abstract axiomatic level; they used an appropriate expansion of the strategic considerations that guide the search of the automated theorem prover AProS. The representability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. The Pioneering Proving Methods as Applied in the Warsaw School of Logic – Their Historical and Contemporary Significance.Urszula Wybraniec-Skardowska - 2024 - History and Philosophy of Logic 45 (2):124-141.
    Justification of theorems plays a vital role in any rational human activity. It is indispensable in science. The deductive method of justifying theorems is used in all sciences and it is the only method of justifying theorems in deductive disciplines. It is based on the notion of proof, thus it is a method of proving theorems. In the Warsaw School of Logic (WSL) – the famous branch of the Lvov-Warsaw School (LWS) – two types of the method: axiomatic deduction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem?Annie Selden - 2003 - Journal for Mathematics Education Research 34 (1):4-36.
    We report on an exploratory study of the way eight mid-level undergraduate mathematics majors read and reflected on four student-generated arguments purported to be proofs of a single theorem. The results suggest that mid-level undergraduates tend to focus on surface features of such arguments and that their ability to determine whether arguments are proofs is very limited -- perhaps more so than either they or their instructors recognize. We begin by discussing arguments (purported proofs) regarded as texts and validations (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  23. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Teaching proving by coordinating aspects of proofs with students' abilities.Annie Selden & John Selden - 2009 - In Despina A. Stylianou, Maria L. Blanton & Eric J. Knuth (eds.), Teaching and learning proof across the grades: a K-16 perspective. New York: Routledge. pp. 339--354.
    In this chapter we introduce concepts for analyzing proofs, and for analyzing undergraduate and beginning graduate mathematics students’ proving abilities. We discuss how coordination of these two analyses can be used to improve students’ ability to construct proofs. -/- For this purpose, we need a richer framework for keeping track of students’ progress than the everyday one used by mathematicians. We need to know more than that a particular student can, or cannot, prove theorems by induction or contradiction or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Theoremizing Yablo's Paradox.Ahmad Karimi & Saeed Salehi - manuscript
    To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. How to Prove Hume’s Law.Gillian Russell - 2021 - Journal of Philosophical Logic 51 (3):603-632.
    This paper proves a precisification of Hume’s Law—the thesis that one cannot get an ought from an is—as an instance of a more general theorem which establishes several other philosophically interesting, though less controversial, barriers to logical consequence.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. Arrow's theorem in judgment aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  29. An impossibility theorem for amalgamating evidence.Jacob Stegenga - 2013 - Synthese 190 (12):2391-2411.
    Amalgamating evidence of different kinds for the same hypothesis into an overall confirmation is analogous, I argue, to amalgamating individuals’ preferences into a group preference. The latter faces well-known impossibility theorems, most famously “Arrow’s Theorem”. Once the analogy between amalgamating evidence and amalgamating preferences is tight, it is obvious that amalgamating evidence might face a theorem similar to Arrow’s. I prove that this is so, and end by discussing the plausibility of the axioms required for the theorem.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  30. The Normalization Theorem for the First-Order Classical Natural Deduction with Disjunctive Syllogism.Seungrak Choi - 2021 - Korean Journal of Logic 2 (24):143-168.
    In the present paper, we prove the normalization theorem and the consistency of the first-order classical logic with disjunctive syllogism. First, we propose the natural deduction system SCD for classical propositional logic having rules for conjunction, implication, negation, and disjunction. The rules for disjunctive syllogism are regarded as the rules for disjunction. After we prove the normalization theorem and the consistency of SCD, we extend SCD to the system SPCD for the first-order classical logic with disjunctive syllogism. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. The Stochastic-Quantum Theorem.Jacob A. Barandes - manuscript
    This paper introduces several new classes of mathematical structures that have close connections with physics and with the theory of dynamical systems. The most general of these structures, called generalized stochastic systems, collectively encompass many important kinds of stochastic processes, including Markov chains and random dynamical systems. This paper then states and proves a new theorem that establishes a precise correspondence between any generalized stochastic system and a unitarily evolving quantum system. This theorem therefore leads to a new (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Coherence & Confirmation: The Epistemic Limitations of the Impossibility Theorems.Ted Poston - 2022 - Kriterion - Journal of Philosophy 36 (1):83-111.
    It is a widespread intuition that the coherence of independent reports provides a powerful reason to believe that the reports are true. Formal results by Huemer, M. 1997. “Probability and Coherence Justification.” Southern Journal of Philosophy 35: 463–72, Olsson, E. 2002. “What is the Problem of Coherence and Truth?” Journal of Philosophy XCIX : 246–72, Olsson, E. 2005. Against Coherence: Truth, Probability, and Justification. Oxford University Press., Bovens, L., and S. Hartmann. 2003. Bayesian Epistemology. Oxford University Press, prove that, under (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. A Dutch Book Theorem for Quantificational Credences.Benjamin Lennertz - 2017 - Ergo: An Open Access Journal of Philosophy 4.
    In this paper, I present an argument for a rational norm involving a kind of credal attitude called a quantificational credence – the kind of attitude we can report by saying that Lucy thinks that each record in Schroeder’s collection is 5% likely to be scratched. I prove a result called a Dutch Book Theorem, which constitutes conditional support for the norm. Though Dutch Book Theorems exist for norms on ordinary and conditional credences, there is controversy about the epistemic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Operationalizing the Ethics of Connected and Automated Vehicles. An Engineering Perspective.Fabio Fossa - 2022 - International Journal of Technoethics 13 (1):1-20.
    In response to the many social impacts of automated mobility, in September 2020 the European Commission published Ethics of Connected and Automated Vehicles, a report in which recommendations on road safety, privacy, fairness, explainability, and responsibility are drawn from a set of eight overarching principles. This paper presents the results of an interdisciplinary research where philosophers and engineers joined efforts to operationalize the guidelines advanced in the report. To this aim, we endorse a function-based working approach to support (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the limits of computation, theism and the universe as computer-the ultimate Turing Theorem.Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization Michael Starks 3rd Ed. (2017).
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Condorcet’s jury theorem: General will and epistemic democracy.Miljan Vasić - 2018 - Theoria: Beograd 61 (4):147-170.
    My aim in this paper is to explain what Condorcet’s jury theorem is, and to examine its central assumptions, its significance to the epistemic theory of democracy and its connection with Rousseau’s theory of general will. In the first part of the paper I will analyze an epistemic theory of democracy and explain how its connection with Condorcet’s jury theorem is twofold: the theorem is at the same time a contributing historical source, and the model used by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Proving Induction.Alexander Paseau - 2011 - Australasian Journal of Logic 10:1-17.
    The hard problem of induction is to argue without begging the question that inductive inference, applied properly in the proper circumstances, is conducive to truth. A recent theorem seems to show that the hard problem has a deductive solution. The theorem, provable in ZFC, states that a predictive function M exists with the following property: whatever world we live in, M ncorrectly predicts the world’s present state given its previous states at all times apart from a well-ordered subset. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number theory that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. David Wolpert on impossibility, incompleteness, the liar paradox, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Elementary canonical formulae: extending Sahlqvist’s theorem.Valentin Goranko & Dimiter Vakarelov - 2006 - Annals of Pure and Applied Logic 141 (1):180-217.
    We generalize and extend the class of Sahlqvist formulae in arbitrary polyadic modal languages, to the class of so called inductive formulae. To introduce them we use a representation of modal polyadic languages in a combinatorial style and thus, in particular, develop what we believe to be a better syntactic approach to elementary canonical formulae altogether. By generalizing the method of minimal valuations à la Sahlqvist–van Benthem and the topological approach of Sambin and Vaccaro we prove that all inductive formulae (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  43. A Completenesss Theorem for a 3-Valued Semantics for a First-order Language.Christopher Gauker - manuscript
    This document presents a Gentzen-style deductive calculus and proves that it is complete with respect to a 3-valued semantics for a language with quantifiers. The semantics resembles the strong Kleene semantics with respect to conjunction, disjunction and negation. The completeness proof for the sentential fragment fills in the details of a proof sketched in Arnon Avron (2003). The extension to quantifiers is original but uses standard techniques.
    Download  
     
    Export citation  
     
    Bookmark  
  44.  85
    A falsifiable statement Ψ of the form "∃f:N→N of unknown computability such that ..." which significantly strengthens a non-trivial mathematical theorem.Apoloniusz Tyszka - manuscript
    We present a new constructive proof of the following theorem: there exists a limit-computable function β_1:N→N which eventually dominates every computable function δ_1:N→N. We prove: (1) there exists a limit-computable function f:N→N of unknown computability which eventually dominates every function δ:N→N with a single-fold Diophantine representation, (2) statement (1) significantly strengthens a non-trivial mathematical theorem, (3) Martin Davis' conjecture on single-fold Diophantine representations disproves (1). We present both constructive and non-constructive proof of (1).
    Download  
     
    Export citation  
     
    Bookmark  
  45. On interpreting Chaitin's incompleteness theorem.Panu Raatikainen - 1998 - Journal of Philosophical Logic 27 (6):569-586.
    The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  46. Tarski Undefinability Theorem Terse Refutation.P. Olcott - manuscript
    Both Tarski and Gödel “prove” that provability can diverge from Truth. When we boil their claim down to its simplest possible essence it is really claiming that valid inference from true premises might not always derive a true consequence. This is obviously impossible.
    Download  
     
    Export citation  
     
    Bookmark  
  47. The relation between degrees of belief and binary beliefs: A general impossibility theorem.Franz Dietrich & Christian List - 2020 - In Igor Douven (ed.), Lotteries, Knowledge, and Rational Belief: Essays on the Lottery Paradox. New York, NY, USA: Cambridge University Press. pp. 223-54.
    Agents are often assumed to have degrees of belief (“credences”) and also binary beliefs (“beliefs simpliciter”). How are these related to each other? A much-discussed answer asserts that it is rational to believe a proposition if and only if one has a high enough degree of belief in it. But this answer runs into the “lottery paradox”: the set of believed propositions may violate the key rationality conditions of consistency and deductive closure. In earlier work, we showed that this problem (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Quantum theology, or: “Theologie als strenge Wissenschaft”.Vasil Penchev - 2024 - Metaphilosophy eJournal (Elsevier: SSRN) 16 (15):1-66.
    The main idea consists in researching the existence of certain characteristics of nature similar to human reasonability and purposeful actions, originating and rigorously inferable from the postulates of quantum mechanics as well as from those of special and general relativity. The pathway of the “free-will theorems” proved by Conway and Kochen in 2006 and 2009 is followed and pioneered further. Those natural reasonability and teleology are identified as a special subject called “God” and studyable by “quantum theology”, a scientific counterpart (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 960