Results for 'choice, freewill, freewill theorems, hidden variables in quantum mechanics'

922 found
Order:
  1. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Free Will in Human Behavior and Physics.Vasil Penchev - 2020 - Labor and Social Relations 30 (6):185-196.
    If the concept of “free will” is reduced to that of “choice” all physical world shares the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly a certain goal, and the choice is only the mean, by which the aim can be achieved or not by the one who determines the target. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The wave function as a true ensemble.Jonte Hance & Sabine Hossenfelder - 2022 - Proceedings of the Royal Society 478 (2262).
    In quantum mechanics, the wavefunction predicts probabilities of possible measurement outcomes, but not which individual outcome is realised in each run of an experiment. This suggests that it describes an ensemble of states with different values of a hidden variable. Here, we analyse this idea with reference to currently known theorems and experiments. We argue that the ψ-ontic/epistemic distinction fails to properly identify ensemble interpretations and propose a more useful definition. We then show that all local ψ-ensemble (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Two deductions: (1) from the totality to quantum information conservation; (2) from the latter to dark matter and dark energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to (...) contextuality. The relevant mathematical structure is Hilbert arithmetic in a wide sense, in the framework of which Hilbert arithmetic in a narrow sense and the qubit Hilbert space are dual to each other. A few cases involving set theory are possible: (1) only within the case “n=3” and implicitly, within any next level of “n” in Fermat’s equation; (2) the identification of the case “n=3” and the general case utilizing the axiom of choice rather than the axiom of induction. If the former is the case, the application of set theory and arithmetic can remain disjunctively divided: set theory, “locally”, within any level; and arithmetic, “globally”, to all levels. If the latter is the case, the proof is thoroughly within set theory. Thus, the relevance of Yablo’s paradox to the statement of Fermat’s last theorem is avoided in both cases. The idea of “arithmetic mechanics” is sketched: it might deduce the basic physical dimensions of mechanics (mass, time, distance) from the axioms of arithmetic after a relevant generalization, Furthermore, a future Part III of the paper is suggested: FLT by mediation of Hilbert arithmetic in a wide sense can be considered as another expression of Gleason’s theorem in quantum mechanics: the exclusions about (n = 1, 2) in both theorems as well as the validity for all the rest values of “n” can be unified after the theory of quantum information. The availability (respectively, non-availability) of solutions of Fermat’s equation can be proved as equivalent to the non-availability (respectively, availability) of a single probabilistic measure as to Gleason’s theorem. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  9. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is available. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum (...) proposes that all quantum systems be interpreted as dissipative ones and that the theorem be thus derstood. The conclusion is that the continual representation, by force or (gravitational) field between parts interacting by means of it, of a system is equivalent to their mutual entanglement if representation is discrete. Gravity (force field) and entanglement are two different, correspondingly continual and discrete, images of a single common essence. General relativity can be interpreted as a superluminal generalization of special relativity. The postulate exists of an alleged obligatory difference between a model and reality in science and philosophy. It can also be deduced by interpreting a corollary of the heorem. On the other hand, quantum mechanics, on the basis of this theorem and of V on Neumann's (1932), introduces the option that a model be entirely identified as the modeled reality and, therefore, that absolutely reality be recognized: this is a non-standard hypothesis in the epistemology of science. Thus, the true reality begins to be understood mathematically, i.e. in a Pythagorean manner, for its identification with its mathematical model. A few linked problems are highlighted: the role of the axiom of choice forcorrectly interpreting the theorem; whether the theorem can be considered an axiom; whether the theorem can be considered equivalent to the negation of the axiom. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Real Numbers are the Hidden Variables of Classical Mechanics.Nicolas Gisin - 2020 - Quantum Studies: Mathematics and Foundations 7:197–201.
    Do scientific theories limit human knowledge? In other words, are there physical variables hidden by essence forever? We argue for negative answers and illustrate our point on chaotic classical dynamical systems. We emphasize parallels with quantum theory and conclude that the common real numbers are, de facto, the hidden variables of classical physics. Consequently, real numbers should not be considered as ``physically real" and classical mechanics, like quantum physics, is indeterministic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  17. (1 other version)Quantum Occasionalism.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    Both transition and transformation link the ideal and material into a whole. Future is what “causes” the present, and the latter in turn is what “causes” the past. That kind of “reverse causality” needs free choice and free will in the present in order to be able to be realized unlike classical causality. A few properties feature the concept of “quantum occasionalism” as follows. Some hypothetical entity generates successively a series of well-ordered states. That hypothetical entity is called “coherent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Dark Matters and Hidden Variables of Unitary Science: How Neglected Complexity Generates Mysteries and Crises, from Quantum Mechanics and Cosmology to Genetics and Global Development Risks.Andrei P. Kirilyuk - manuscript
    The unreduced many-body interaction problem solution, absent in usual science framework, reveals a new quality of emerging multiple, equally real but mutually incompatible system configurations, or “realisations”, giving rise to the universal concept of dynamic complexity and chaoticity. Their imitation by a single, “average” realisation or trajectory in usual theory (corresponding to postulated “exact” or perturbative problem solutions) is a rough simplification of reality underlying all stagnating and emerging problems of conventional (unitary) science, often in the form of missing, or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. A conjecture concerning determinism, reduction, and measurement in quantum mechanics.Arthur Jabs - 2016 - Quantum Studies: Mathematics and Foundations 3 (4):279-292.
    Determinism is established in quantum mechanics by tracing the probabilities in the Born rules back to the absolute (overall) phase constants of the wave functions and recognizing these phase constants as pseudorandom numbers. The reduction process (collapse) is independent of measurement. It occurs when two wavepackets overlap in ordinary space and satisfy a certain criterion, which depends on the phase constants of both wavepackets. Reduction means contraction of the wavepackets to the place of overlap. The measurement apparatus fans (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. The Identity of Logic and the World in Terms of Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (21):1-4.
    One can construct a mapping between Hilbert space and the class of all logic if the latter is defined as the set of all well-orderings of some relevant set (or class). That mapping can be further interpreted as a mapping of all states of all quantum systems, on the one hand, and all logic, on the other hand. The collection of all states of all quantum systems is equivalent to the world (the universe) as a whole. Thus that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Quantum Mechanical EPRBA covariance and classical probability.Han Geurdes - manuscript
    Contrary to Bell’s theorem it is demonstrated that with the use of classical probability theory the quantum correlation can be approximated. Hence, one may not conclude from experiment that all local hidden variable theories are ruled out by a violation of inequality result.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in Physics 2022, and others. As (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. New Prospects for a Causally Local Formulation of Quantum Theory.Jacob A. Barandes - manuscript
    It is difficult to extract reliable criteria for causal locality from the limited ingredients found in textbook quantum theory. In the end, Bell humbly warned that his eponymous theorem was based on criteria that “should be viewed with the utmost suspicion.” Remarkably, by stepping outside the wave-function paradigm, one can reformulate quantum theory in terms of old-fashioned configuration spaces together with ‘unistochastic’ laws. These unistochastic laws take the form of directed conditional probabilities, which turn out to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Superdeterminism: a reappraisal.Giacomo Andreoletti & Louis Vervoort - 2022 - Synthese 200 (5):1-20.
    This paper addresses a particular interpretation of quantum mechanics, i.e. superdeterminism. In short, superdeterminism i) takes the world to be fundamentally deterministic, ii) postulates hidden variables, and iii) contra Bell, saves locality at the cost of violating the principle of statistical independence. Superdeterminism currently enjoys little support in the physics and philosophy communities. Many take it to posit the ubiquitous occurrence of hard-to-digest conspiratorial and coincidental events; others object that violating the principle of statistical independence implies (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. A Fuzzy Application of Techniques from Topological Supersymmetric Quantum Mechanics to Social Choice Theory: A New Insight on Flaws of Democracy.Wilfrid Wulf - forthcoming - Journal of Social Sciences and Humanities.
    We introduce a new theorem in social choice theory built on a path integral approach which will show that, under some reasonable conditions, there is a unique way to aggregate individual preferences based on fuzzy sets into a social preference based on probabilities, and that this way is invariant under any permutation of alternatives. We then apply this theorem to the case of democratic decision making with data of the behaviour and voting preferences of voting agents and show that there (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. The Argument from Locality for Many Worlds Quantum Mechanics.Alyssa Ney - forthcoming - Journal of Philosophy.
    One motivation for preferring the many worlds interpretation of quantum mechanics over realist rivals, such as collapse and hidden variables theories, is that the interpretation is able to preserve locality (in the sense of no action at a distance) in a way these other theories cannot. The primary goal of this paper is to make this argument for the many worlds interpretation precise, in a way that does not rely on controversial assumptions about the metaphysics of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. An Investigation on the Basic Conceptual Foundations of Quantum Mechanics by Using the Clifford Algebra.Elio Conte - 2011 - Advanced Studies in Theoretical Physics 5 (11):485-544.
    We review our approach to quantum mechanics adding also some new interesting results. We start by giving proof of two important theorems on the existence of the A(Si) and i,±1 N Clifford algebras. This last algebra gives proof of the von Neumann basic postulates on the quantum measurement explaining thus in an algebraic manner the wave function collapse postulated in standard quantum theory. In this manner we reach the objective to expose a self-consistent version of (...) mechanics. In detail we realize a bare bone skeleton of quantum mechanics recovering all the basic foundations of this theory on an algebraic framework. We give proof of the quantum like Heisenberg uncertainty relations using only the basic support of the Clifford algebra. In addition we demonstrate the well known phenomenon of quantum Mach Zender interference using the same algebraic framework, as well as we give algebraic proof of quantum collapse in some cases of physical interest by direct application of the theorem that we derive to elaborate the i,±1 N algebra. We also discuss the problem of time evolution of quantum systems as well as the changes in space location, in momentum and the linked invariance principles. We are also able to re-derive the basic wave function of standard quantum mechanics by using only the Clifford algebraic approach. In this manner we obtain a full exposition of standard quantum mechanics using only the basic axioms of Clifford algebra. We also discuss more advanced features of quantum mechanics. In detail, we give demonstration of the Kocken-Specher theorem, and also we give an algebraic formulation and explanation of the EPR paradox only using the Clifford algebra. By using the same approach we also derive Bell inequalities. Our formulation is strongly based on the use of idempotents that are contained in Clifford algebra. Their counterpart in quantum mechanics is represented by the projection operators that, as it is well known, are interpreted as logical statements, following the basic von Neumann results. Von Neumann realized a matrix logic on the basis of quantum mechanics. Using the Clifford algebra we are able to invert such result. According to the results previously obtained by Orlov in 1994, we are able to give proof that quantum mechanics derives from logic. We show that indeterminism and quantum interference have their origin in the logic. Therefore, it seems that we may conclude that quantum mechanics, as it appears when investigated by the Clifford algebra, is a two-faced theory in the sense that it looks from one side to “matter per se”, thus to objects but simultaneously also to conceptual entities. We advance the basic conclusion of the paper: There are stages of our reality in which we no more can separate the logic ( and thus cognition and thus conceptual entity) from the features of “matter per se”. In quantum mechanics the logic, and thus the cognition and thus the conceptual entity-cognitive performance, assume the same importance as the features of what is being described. We are at levels of reality in which the truths of logical statements about dynamic variables become dynamic variables themselves so that a profound link is established from its starting in this theory between physics and conceptual entities. Finally, in this approach there is not an absolute definition of logical truths. Transformations , and thus … “redefinitions”…. of truth values are permitted in such scheme as well as the well established invariance principles, clearly indicate . (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Representation and Invariance of Scientific Structures.Patrick Suppes - 2002 - CSLI Publications (distributed by Chicago University Press).
    An early, very preliminary edition of this book was circulated in 1962 under the title Set-theoretical Structures in Science. There are many reasons for maintaining that such structures play a role in the philosophy of science. Perhaps the best is that they provide the right setting for investigating problems of representation and invariance in any systematic part of science, past or present. Examples are easy to cite. Sophisticated analysis of the nature of representation in perception is to be found already (...)
    Download  
     
    Export citation  
     
    Bookmark   143 citations  
  35. Atomism in Quantum Mechanics and Information.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (12):1-11.
    The original conception of atomism suggests “atoms”, which cannot be divided more into composing parts. However, the name “atom” in physics is reserved for entities, which can be divided into electrons, protons, neutrons and other “elementary particles”, some of which are in turn compounded by other, “more elementary” ones. Instead of this, quantum mechanics is grounded on the actually indivisible quanta of action limited by the fundamental Planck constant. It resolves the problem of how both discrete and continuous (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Compatibilism in Quantum Mechanics: A New Perspective on Free Will and Determinism.Kaden McCullough - manuscript
    This paper presents a novel argument for compatibilism, the view that free will and determinism are compatible. Drawing on principles from quantum mechanics, specifically the Heisenberg uncertainty principle and the concept of superposition, the paper proposes an analogy between the behavior of particles at the quantum level and the choices made by free agents. It argues that just as particles exist in a field of possibilities until observed, actions exist in a field of possibilities until a decision (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Physical Entity as Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (35):1-15.
    Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. The Stochastic-Quantum Theorem.Jacob A. Barandes - manuscript
    This paper introduces several new classes of mathematical structures that have close connections with physics and with the theory of dynamical systems. The most general of these structures, called generalized stochastic systems, collectively encompass many important kinds of stochastic processes, including Markov chains and random dynamical systems. This paper then states and proves a new theorem that establishes a precise correspondence between any generalized stochastic system and a unitarily evolving quantum system. This theorem therefore leads to a new formulation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Quantum Complementarity: Both Duality and Opposition.Vasil Penchev - 2020 - Metaphysics eJournal (Elsevier: SSRN) 13 (13):1-6.
    Quantum complementarity is interpreted in terms of duality and opposition. Any two conjugates are considered both as dual and opposite. Thus quantum mechanics introduces a mathematical model of them in an exact and experimental science. It is based on the complex Hilbert space, which coincides with the dual one. The two dual Hilbert spaces model both duality and opposition to resolve unifying the quantum and smooth motions. The model involves necessarily infinity even in any finitely dimensional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Fundamentality and Levels in Everettian Quantum Mechanics.Alastair Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer.
    Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantum mechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to characterize a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  44. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  45. John von Neumann's 'Impossibility Proof' in a Historical Perspective.Louis Caruana - 1995 - Physis 32:109-124.
    John von Neumann's proof that quantum mechanics is logically incompatible with hidden varibales has been the object of extensive study both by physicists and by historians. The latter have concentrated mainly on the way the proof was interpreted, accepted and rejected between 1932, when it was published, and 1966, when J.S. Bell published the first explicit identification of the mistake it involved. What is proposed in this paper is an investigation into the origins of the proof rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Philosophical Problems of Quantum Ontology.Graeme Donald Robertson - 1976 - Dissertation, Cambridge
    What is a physical object according to the theory of quantum mechanics? The first answer to be considered is that given by Bohr in terms of the concept of complementarity. This interpretation is illustrated by way of an example, the two slit experiment, which highlights some of the associated problems of ontology. One such problem is the so-called problem of measurement or observation. Various interpretations of measurement in Quantum Theory, including those of Heisenberg, von Neumann, Everett and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Quantum Foundations of Free Will.Logan Carter - manuscript
    This paper is intended to persuade an uncommitted audience that free will is illusory. I examine free will through the lens of three interpretations of quantum theory: dynamical collapse theories, hidden variable theories, and many-worlds theories. Dynamical collapse theories, hereon called collapse theories, are the primary focus of this work since they are the most widely accepted in the current philosophy of physics climate. The core postulations and mechanics of the collapse theories are articulated. Accompanying these postulations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.
    The concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  50. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 922