Results for 'complexity , information theory , mathematics fundament, caos , contingency , computing complexity'

951 found
Order:
  1. Irreversibility and Complexity.Lapin Yair - manuscript
    Complexity is a relatively new field of study that is still heavily influenced by philosophy. However, with the advent of modern computing, it has become easier to conduct thorough investigations of complex systems using computational simulations. Despite significant progress, there remain certain characteristics of complex systems that are difficult to comprehend. To better understand these features, information can be applied using simple models of complex systems. The concepts of Shannon's information theory, Kolgomorov complexity, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. A Review of:“Information Theory, Evolution and the Origin of Life as a Digital Message How Life Resembles a Computer” Second Edition. Hubert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 pages, index; hardcover, US $60.00; ISBN: 0-521-80293-8. [REVIEW]Attila Grandpierre - 2006 - World Futures 62 (5):401-403.
    Information Theory, Evolution and The Origin ofLife: The Origin and Evolution of Life as a Digital Message: How Life Resembles a Computer, Second Edition. Hu- bert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 pages, index; hardcover, US $60.00; ISBN: 0-521-80293-8. The reason that there are principles of biology that cannot be derived from the laws of physics and chemistry lies simply in the fact that the genetic information content of the genome for constructing even the simplest (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods from (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  4. Computers will not acquire general intelligence, but may still rule the world.Ragnar Fjelland - 2024 - Cosmos+Taxis 12 (5+6):58-68.
    Jobst Langrebe’s and Barry Smith’s book Why Machines Will Never Rule the World argues that artificial general intelligence (AGI) will never be realized. Drawing on theories of complexity they argue that it is not only technically, but mathematically impossible to realize AGI. The book is the result of cooperation between a philosopher and a mathematician. In addition to a thorough treatment of mathematical modelling of complex systems the book addresses many fundamental philosophical questions. The authors show that philosophy is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  23
    The Nuances of Deprogramming Zeros.Parker Emmerson - 2024 - Journal of Liberated Mathematics.
    Description In this paper, we propose an advanced mathematical framework centered around the Energy Number Field (E), which fundamentally avoids the conventional concept of zero by introducing a neutral ele- ment, νE. Through this approach, we redefine core mathematical constructs, including limits, continuity, differentiation, integration, and series summation, ensuring they operate seamlessly within a zero-less paradigm. We address and redefine matrix operations, topology, metric spaces, and complex analysis, aligning them with the principles of E. Additionally, we explore non-mappable properties of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Erroneous concepts of prominent scientists: C. F. Weizsäcker, J. A. Wheeler, S. Wolfram, S. Lloyd, J. Schmidhuber, and M. Vopson, resulting from misunderstanding of information and complexity.Mariusz Stanowski - 2024 - Journal of Information Science 1:9.
    The common use of Shannon’s information, specified for the needs of telecommunications, gives rise to many misunderstandings outside of this context. (e.g. in conceptions of such well-known theorists as C.F. Weizsäcker and J. A. Wheeler). This article shows that the terms of the general definition of information meet the structural information, and Shannon’s information is a special case of it. Similarly, complexity is misunderstood today as exemplified by the concepts of reputable computer scientists, such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The Fundamental Tension in Integrated Information Theory 4.0’s Realist Idealism.Ignacio Cea - 2023 - Entropy 25 (10).
    Integrated Information Theory (IIT) is currently one of the most influential scientific theories of consciousness. Here, we focus specifically on a metaphysical aspect of the theory’s most recent version (IIT 4.0), what we may call its idealistic ontology, and its tension with a kind of realism about the external world that IIT also endorses. IIT 4.0 openly rejects the mainstream view that consciousness is generated by the brain, positing instead that consciousness is ontologically primary while the physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. A Contingency Interpretation of Information Theory as a Bridge between God’s Immanence and Transcendence.Philippe Gagnon - 2020 - In Michael Fuller, Dirk Evers, Anne L. C. Runehov, Knut-Willy Sæther & Bernard Michollet (eds.), Issues in Science and Theology: Nature – and Beyond. Springer. pp. 169-185.
    This paper investigates the degree to which information theory, and the derived uses that make it work as a metaphor of our age, can be helpful in thinking about God’s immanence and transcendance. We ask when it is possible to say that a consciousness has to be behind the information we encounter. If God is to be thought about as a communicator of information, we need to ask whether a communication system has to pre-exist to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Lightning in a Bottle: Complexity, Chaos, and Computation in Climate Science.Jon Lawhead - 2014 - Dissertation, Columbia University
    Climatology is a paradigmatic complex systems science. Understanding the global climate involves tackling problems in physics, chemistry, economics, and many other disciplines. I argue that complex systems like the global climate are characterized by certain dynamical features that explain how those systems change over time. A complex system's dynamics are shaped by the interaction of many different components operating at many different temporal and spatial scales. Examining the multidisciplinary and holistic methods of climatology can help us better understand the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Complex Organisation and Fundamental Physics.Brian D. Josephson - 2018 - Streaming Media Service, Cambridge University.
    The file on this site provides the slides for a lecture given in Hangzhou in May 2018, and the lecture itself is available at the URL beginning 'sms' in the set of links provided in connection with this item. -/- It is commonly assumed that regular physics underpins biology. Here it is proposed, in a synthesis of ideas by various authors, that in reality structures and mechanisms of a biological character underpin the world studied by physicists, in principle supplying detail (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. From Art to Information System.Miro Brada - 2021 - AGI Laboratory.
    This insight to art came from chess composition concentrating art in a very dense form. To identify and mathematically assess the uniqueness is the key applicable to other areas eg. computer programming. Maximization of uniqueness is minimization of entropy that coincides as well as goes beyond Information Theory (Shannon, 1948). The reusage of logic as a universal principle to minimize entropy, requires simplified architecture and abstraction. Any structures (e.g. plugins) duplicating or dividing functionality increase entropy and so unreliability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. A Fundamentally Irreversible World as an Opportunity towards a Consistent Understanding of Quantum and Cosmological Contexts.Tributsch Helmut Helmuttributsch@Aliceit - 2016 - Lournal of Modern Physics 7:1455-1482.
    In a preceding publication a fundamentally oriented and irreversible world was shown to be de- rivable from the important principle of least action. A consequence of such a paradigm change is avoidance of paradoxes within a “dynamic” quantum physics. This becomes essentially possible because fundamental irreversibility allows consideration of the “entropy” concept in elementary processes. For this reason, and for a compensation of entropy in the spread out energy of the wave, the duality of particle and wave has to be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Information, learning and falsification.David Balduzzi - 2011
    There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  18. On the Notions of Rulegenerating & Anticipatory Systems.Niels Ole Finnemann - 1997 - Online Publication on Conference Site - Which Does Not Exist Any More.
    Until the late 19th century scientists almost always assumed that the world could be described as a rule-based and hence deterministic system or as a set of such systems. The assumption is maintained in many 20th century theories although it has also been doubted because of the breakthrough of statistical theories in thermodynamics (Boltzmann and Gibbs) and other fields, unsolved questions in quantum mechanics as well as several theories forwarded within the social sciences. Until recently it has furthermore been assumed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Consciousness, Mathematics and Reality: A Unified Phenomenology.Igor Ševo - manuscript
    Every scientific theory is a simulacrum of reality, every written story a simulacrum of the canon, and every conceptualization of a subjective perspective a simulacrum of the consciousness behind it—but is there a shared essence to these simulacra? The pursuit of answering seemingly disparate fundamental questions across different disciplines may ultimately converge into a single solution: a single ontological answer underlying grand unified theory, hard problem of consciousness, and the foundation of mathematics. I provide a hypothesis, a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. The unsolvability of the mind-body problem liberates the will.Scheffel Jan - manuscript
    The mind-body problem is analyzed in a physicalist perspective. By combining the concepts of emergence and algorithmic information theory in a thought experiment employing a basic nonlinear process, it is argued that epistemically strongly emergent properties may develop in a physical system. A comparison with the significantly more complex neural network of the brain shows that also consciousness is epistemically emergent in a strong sense. Thus reductionist understanding of consciousness appears not possible; the mind-body problem does not have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. On the Fundamentality of Meaning.Brian D. Josephson - 2018 - In FQXi Essays on 'What Is Fundamental?'.
    The mainstream view of meaning is that it is emergent, not fundamental, but some have disputed this, asserting that there is a more fundamental level of reality than that addressed by current physical theories, and that matter and meaning are in some way entangled. In this regard there are intriguing parallels between the quantum and biological domains, suggesting that there may be a more fundamental level underlying both. I argue that the organisation of this fundamental level is already to a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Contextuality in the Integrated Information Theory.J. Acacio de Barros, Carlos Montemayor & Leonardo De Assis - 2017 - In J. A. de Barros, B. Coecke & E. Pothos (eds.), Quantum Interaction - 10th International Conference, QI2016. Lecture Notes on Computer Science. Springer International Publishing.
    Integrated Information Theory (IIT) is one of the most influential theories of consciousness, mainly due to its claim of mathematically formalizing consciousness in a measurable way. However, the theory, as it is formulated, does not account for contextual observations that are crucial for understanding consciousness. Here we put forth three possible difficulties for its current version, which could be interpreted as a trilemma. Either consciousness is contextual or not. If contextual, either IIT needs revisions to its axioms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Consciousness and the Collapse of the Wave Function.David J. Chalmers & Kelvin J. McQueen - 2022 - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press, Usa.
    Does consciousness collapse the quantum wave function? This idea was taken seriously by John von Neumann and Eugene Wigner but is now widely dismissed. We develop the idea by combining a mathematical theory of consciousness (integrated information theory) with an account of quantum collapse dynamics (continuous spontaneous localization). Simple versions of the theory are falsified by the quantum Zeno effect, but more complex versions remain compatible with empirical evidence. In principle, versions of the theory can (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  25. (1 other version)Artificial evil and the foundation of computer ethics.L. Floridi & J. Sanders - 2000 - Etica E Politica 2 (2).
    Moral reasoning traditionally distinguishes two types of evil: moral and natural. The standard view is that ME is the product of human agency and so includes phenomena such as war, torture and psychological cruelty; that NE is the product of nonhuman agency, and so includes natural disasters such as earthquakes, floods, disease and famine; and finally, that more complex cases are appropriately analysed as a combination of ME and NE. Recently, as a result of developments in autonomous agents in cyberspace, (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  26. The biosemiosis of prescriptive information.David L. Abel - 2009 - Semiotica 2009 (174):1-19.
    Exactly how do the sign/symbol/token systems of endo- and exo-biosemiosis differ from those of cognitive semiosis? Do the biological messages that integrate metabolism have conceptual meaning? Semantic information has two subsets: Descriptive and Prescriptive. Prescriptive information instructs or directly produces nontrivial function. In cognitive semiosis, prescriptive information requires anticipation and “choice with intent” at bona fide decision nodes. Prescriptive information either tells us what choices to make, or it is a recordation of wise choices already made. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Artificial Evil and the Foundation of Computer Ethics.Luciano Floridi & J. W. Sanders - 2001 - Springer Netherlands. Edited by Luciano Floridi & J. W. Sanders.
    Moral reasoning traditionally distinguishes two types of evil:moral (ME) and natural (NE). The standard view is that ME is the product of human agency and so includes phenomena such as war,torture and psychological cruelty; that NE is the product of nonhuman agency, and so includes natural disasters such as earthquakes, floods, disease and famine; and finally, that more complex cases are appropriately analysed as a combination of ME and NE. Recently, as a result of developments in autonomous agents in cyberspace, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  28. Information Reflection Theory Based on Information Theories, Analog Symbolism, and the Generalized Relativity Principle.Chenguang Lu - 2023 - Comput. Sci. Math. Forum 8 (1):45.
    Reflection Theory holds that our sensations reflect physical properties, whereas Empiricism believes that sense (data), presentations, and phenomena are the ultimate existence. Lenin adhered to Reflection Theory and criticized Helmholtz’s sensory symbolism for affirming the similarity between a sensation and a physical property. By using information and color vision theories, analyzing the ostensive definition with inverted qualia, and extending the relativity principle, this paper affirms the external world’s existence independent of personal sensations. Still, it denies the similarity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Strict Finitism's Unrequited Love for Computational Complexity.Noel Arteche - manuscript
    As a philosophy of mathematics, strict finitism has been traditionally concerned with the notion of feasibility, defended mostly by appealing to the physicality of mathematical practice. This has led the strict finitists to influence and be influenced by the field of computational complexity theory, under the widely held belief that this branch of mathematics is concerned with the study of what is “feasible in practice”. In this paper, I survey these ideas and contend that, contrary to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Cloud Computing and Big Data for Oil and Gas Industry Application in China.Yang Zhifeng, Feng Xuehui, Han Fei, Yuan Qi, Cao Zhen & Zhang Yidan - 2019 - Journal of Computers 1.
    The oil and gas industry is a complex data-driven industry with compute-intensive, data-intensive and business-intensive features. Cloud computing and big data have a broad application prospect in the oil and gas industry. This research aims to highlight the cloud computing and big data issues and challenges from the informatization in oil and gas industry. In this paper, the distributed cloud storage architecture and its applications for seismic data of oil and gas industry are focused on first. Then,cloud desktop (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A few little steps beyond Knuth’s Boolean Logic Table with Neutrosophic Logic: A Paradigm Shift in Uncertain Computation.Florentin Smarandache & Victor Christianto - 2023 - Prospects for Applied Mathematics and Data Analysis 2 (2):22-26.
    The present article delves into the extension of Knuth’s fundamental Boolean logic table to accommodate the complexities of indeterminate truth values through the integration of neutrosophic logic (Smarandache & Christianto, 2008). Neutrosophic logic, rooted in Florentin Smarandache’s groundbreaking work on Neutrosophic Logic (cf. Smarandache, 2005, and his other works), introduces an additional truth value, ‘indeterminate,’ enabling a more comprehensive framework to analyze uncertainties inherent in computational systems. By bridging the gap between traditional boolean operations and the indeterminacy present in various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. B-theory.Bakytzhan Oralbekov - manuscript
    Sir Roger Penrose and prof. Stuart Hameroff had substantiated a theory that a human brain performs quantum computations. Logically, a question comes what information does then the brain compute and what is the result of such a quantum computing? To answer this, it is tempting to exploit isomorphism between complex hermitian 2 × 2 matrices and R4, more specifically a real vector representation of qubit states. P Arrighi proposed that "qubit states may be viewed as spatio-temporal objects, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. WHERE DO NEW IDEAS COME FROM? HOW DO THEY EMERGE? - EPISTEMOLOGY AS COMPUTATION.Gordana Dodig-Crnkovic - 2007 - In Christian Calude (ed.), Randomness & Complexity, from Leibniz to Chaitin. World Scientific Pub Co. pp. 263-281.
    This essay presents arguments for the claim that in the best of all possible worlds (Leibniz) there are sources of unpredictability and creativity for us humans, even given a pancomputational stance. A suggested answer to Chaitin’s questions: “Where do new mathematical and biological ideas come from? How do they emerge?” is that they come from the world and emerge from basic physical (computational) laws. For humans as a tiny subset of the universe, a part of the new ideas comes as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35.  67
    Efficiency in Organism-Environment Information Exchanges: A Semantic Hierarchy of Logical Types Based on the Trial-and-Error Strategy Behind the Emergence of Knowledge.Mattia Berera - 2024 - Biosemiotics 17 (1):131-160.
    Based on Kolchinsky and Wolpert’s work on the semantics of autonomous agents, I propose an application of Mathematical Logic and Probability to model cognitive processes. In this work, I will follow Bateson’s insights on the hierarchy of learning in complex organisms and formalize his idea of applying Russell’s Type Theory. Following Weaver’s three levels for the communication problem, I link the Kolchinsky–Wolpert model to Bateson’s insights, and I reach a semantic and conceptual hierarchy in living systems as an explicative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Complex, Dynamic and Contingent Social Processes as Patterns of Decision-Making Events – Philosophical and Mathematical Foundations.Bruno da Rocha Braga - forthcoming - European Journal of Pragmatism and American Philosophy.
    This work presents a post-positivist research framework to explain any surprising fact in the evolutionary path of a complex, dynamic and contingent social phenomenon. Primarily, it reconciles the ontological and epistemological assumptions of Critical Realism with the principles of American Pragmatism. Then, the research approach is presented: theoretical propositions about a social structure are translated into a set of grammar rules that acknowledges a pattern of sequences of events of either individual action or social interaction between actors within a real (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. (1 other version)Information ethics: on the philosophical foundation of computer ethics.Luciano Floridi - 1999 - Ethics and Information Technology 1 (1):33–52.
    The essential difficulty about Computer Ethics' (CE) philosophical status is a methodological problem: standard ethical theories cannot easily be adapted to deal with CE-problems, which appear to strain their conceptual resources, and CE requires a conceptual foundation as an ethical theory. Information Ethics (IE), the philosophical foundational counterpart of CE, can be seen as a particular case of environmental ethics or ethics of the infosphere. What is good for an information entity and the infosphere in general? This (...)
    Download  
     
    Export citation  
     
    Bookmark   119 citations  
  38. W poszukiwaniu ontologicznych podstaw prawa. Arthura Kaufmanna teoria sprawiedliwości [In Search for Ontological Foundations of Law: Arthur Kaufmann’s Theory of Justice].Marek Piechowiak - 1992 - Instytut Nauk Prawnych PAN.
    Arthur Kaufmann is one of the most prominent figures among the contemporary philosophers of law in German speaking countries. For many years he was a director of the Institute of Philosophy of Law and Computer Sciences for Law at the University in Munich. Presently, he is a retired professor of this university. Rare in the contemporary legal thought, Arthur Kaufmann's philosophy of law is one with the highest ambitions — it aspires to pinpoint the ultimate foundations of law by explicitly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. From the end of Unitary Science Projection to the Causally Complete Complexity Science: Extended Mathematics, Solved Problems, New Organisation and Superior Purposes.Andrei P. Kirilyuk - 2017 - In Theory of Everything, Ultimate Reality and the End of Humanity: Extended Sustainability by the Universal Science of Complexity. Beau Bassin: LAP LAMBERT Academic Publishing. pp. 199-209.
    The deep crisis in modern fundamental science development is ever more evident and openly recognised now even by mainstream, official science professionals and leaders. By no coincidence, it occurs in parallel to the world civilisation crisis and related global change processes, where the true power of unreduced scientific knowledge is just badly missing as the indispensable and unique tool for the emerging greater problem solution and further progress at a superior level of complex world dynamics. Here we reveal the mathematically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. (9 other versions)Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science.Plamen L. Simeonov, Edwin Brezina, Ron Cottam, Andreé C. Ehresmann, Arran Gare, Ted Goranson, Jaime Gomez-­‐Ramirez, Brian D. Josephson, Bruno Marchal, Koichiro Matsuno, Robert S. Root-­Bernstein, Otto E. Rössler, Stanley N. Salthe, Marcin Schroeder, Bill Seaman & Pridi Siregar - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andrée C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 328-427.
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Curious objects: How visual complexity guides attention and engagement.Zekun Sun & Chaz Firestone - 2021 - Cognitive Science: A Multidisciplinary Journal 45 (4):e12933.
    Some things look more complex than others. For example, a crenulate and richly organized leaf may seem more complex than a plain stone. What is the nature of this experience—and why do we have it in the first place? Here, we explore how object complexity serves as an efficiently extracted visual signal that the object merits further exploration. We algorithmically generated a library of geometric shapes and determined their complexity by computing the cumulative surprisal of their internal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  43. Computation on Information, Meaning and Representations. An Evolutionary Approach (World Scientific 2011).Christophe Menant - 2011 - In Gordana Dodig Crnkovic & Mark Burgin (eds.), Information and computation: Essays on scientific and philosophical understanding of foundations of information and computation. World Scientific. pp. 255-286.
    Understanding computation as “a process of the dynamic change of information” brings to look at the different types of computation and information. Computation of information does not exist alone by itself but is to be considered as part of a system that uses it for some given purpose. Information can be meaningless like a thunderstorm noise, it can be meaningful like an alert signal, or like the representation of a desired food. A thunderstorm noise participates to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  44. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Ontological theory for ontological engineering: Biomedical systems information integration.James M. Fielding, Jonathan Simon, Werner Ceusters & Barry Smith - 2004 - In Fielding James M., Simon Jonathan, Ceusters Werner & Smith Barry (eds.), Proceedings of the Ninth International Conference on the Principles of Knowledge Representation and Reasoning (KR2004), Whistler, BC, 2-5 June 2004. pp. 114–120.
    Software application ontologies have the potential to become the keystone in state-of-the-art information management techniques. It is expected that these ontologies will support the sort of reasoning power required to navigate large and complex terminologies correctly and efficiently. Yet, there is one problem in particular that continues to stand in our way. As these terminological structures increase in size and complexity, and the drive to integrate them inevitably swells, it is clear that the level of consistency required for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. Discrete and continuous: a fundamental dichotomy in mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. Nature, Science, Bayes 'Theorem, and the Whole of Reality‖.Moorad Alexanian - manuscript
    A fundamental problem in science is how to make logical inferences from scientific data. Mere data does not suffice since additional information is necessary to select a domain of models or hypotheses and thus determine the likelihood of each model or hypothesis. Thomas Bayes’ Theorem relates the data and prior information to posterior probabilities associated with differing models or hypotheses and thus is useful in identifying the roles played by the known data and the assumed prior information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. A metalinguistic and computational approach to the problem of mathematical omniscience.Zeynep Soysal - 2022 - Philosophy and Phenomenological Research 106 (2):455-474.
    In this paper, I defend the metalinguistic solution to the problem of mathematical omniscience for the possible-worlds account of propositions by combining it with a computational model of knowledge and belief. The metalinguistic solution states that the objects of belief and ignorance in mathematics are relations between mathematical sentences and what they express. The most pressing problem for the metalinguistic strategy is that it still ascribes too much mathematical knowledge under the standard possible-worlds model of knowledge and belief on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  50. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 951