Results for 'mathematical formalism'

959 found
Order:
  1. Frege, Thomae, and Formalism: Shifting Perspectives.Richard Lawrence - 2023 - Journal for the History of Analytical Philosophy 11 (2):1-23.
    Mathematical formalism is the the view that numbers are "signs" and that arithmetic is like a game played with such signs. Frege's colleague Thomae defended formalism using an analogy with chess, and Frege's critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Logicism, Formalism, and Intuitionism.A. P. Bird - 2021 - Cantor's Paradise (00):00.
    This paper objectively defines the three main contemporary philosophies of mathematics: formalism, logicism, and intuitionism. Being the three leading scientists of each: Hilbert (formalist), Frege (logicist), and Poincaré (intuitionist).
    Download  
     
    Export citation  
     
    Bookmark  
  3. Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. The Formalist Picture of Cognition. Towards a Total Demystification.Karlis Podnieks - manuscript
    This paper represents a philosophical experiment inspired by the formalist philosophy of mathematics. In the formalist picture of cognition, the principal act of knowledge generation is represented as tentative postulation – as introduction of a new knowledge construct followed by exploration of the consequences that can be derived from it. Depending on the result, the new construct may be accepted as normative, rejected, modified etc. Languages and means of reasoning are generated and selected in a similar process. In the formalist (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Mathematical Nature of Reality, Plus Gravitation-Electromagnetism Unification, Derived from Revised Gravitational Tidal Forces and Mass-from-Gravity Concept.Rodney Bartlett - manuscript
    This article had its beginning with Einstein's 1919 paper "Do gravitational fields play an essential role in the structure of elementary particles?" Together with General Relativity's statement that gravity is not a pull but is a push caused by the curvature of space-time, a hypothesis for Earth's ocean tides was developed that does not solely depend on the Sun and Moon as Kepler and Newton believed. It also borrows from Galileo. The breakup of planets and asteroids by white dwarfs, neutron (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Non-mathematical Content by Mathematical Means.Sam Adam-Day - manuscript
    In this paper, I consider the use of mathematical results in philosophical arguments arriving at conclusions with non-mathematical content, with the view that in general such usage requires additional justification. As a cautionary example, I examine Kreisel’s arguments that the Continuum Hypothesis is determined by the axioms of Zermelo-Fraenkel set theory, and interpret Weston’s 1976 reply as showing that Kreisel fails to provide sufficient justification for the use of his main technical result. If we take the perspective that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Mathematical Nature of Gravity, Which General Relativity Says is Space-Time : Topology Unites With the Matrix, E=mc2, Advanced Waves, Wick Rotation, Dark Matter & Higher Dimensions.Rodney Bartlett - manuscript
    General Relativity says gravity is a push caused by space-time's curvature. Combining General Relativity with E=mc2 results in distances being totally deleted from space-time/gravity by future technology, and in expansion or contraction of the universe as a whole being eliminated. The road to these conclusions has branches shining light on supersymmetry and superconductivity. This push of gravitational waves may be directed from intergalactic space towards galaxy centres, helping to hold galaxies together and also creating supermassive black holes. Together with the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The "Unreasonable" Effectiveness of Mathematics: The Foundational Approach of the Theoretic Alternatives.Catalin Barboianu - 2015 - Revista de Filosofie 62 (1):58-71.
    The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. Despite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Mathematics as Make-Believe: A Constructive Empiricist Account.Sarah Elizabeth Hoffman - 1999 - Dissertation, University of Alberta (Canada)
    Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and rejected. Constructive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. The normative structure of mathematization in systematic biology.Beckett Sterner & Scott Lidgard - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 46 (1):44-54.
    We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Nietzsche’s Philosophy of Mathematics.Eric Steinhart - 1999 - International Studies in Philosophy 31 (3):19-27.
    Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Mathematical Models for Unstable Quantum Systems and Gamow States.Manuel Gadella, Sebastian Fortin, Juan Pablo Jorge & Marcelo Losada - 2022 - Entropy 24 (6):804.
    We review some results in the theory of non-relativistic quantum unstable systems. We account for the most important definitions of quantum resonances that we identify with unstable quantum systems. Then, we recall the properties and construction of Gamow states as vectors in some extensions of Hilbert spaces, called Rigged Hilbert Spaces. Gamow states account for the purely exponential decaying part of a resonance; the experimental exponential decay for long periods of time physically characterizes a resonance. We briefly discuss one of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Retrieving the Mathematical Mission of the Continuum Concept from the Transfinitely Reductionist Debris of Cantor’s Paradise. Extended Abstract.Edward G. Belaga - forthcoming - International Journal of Pure and Applied Mathematics.
    What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Lakatos' Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science - Introduction to the Special Issue on Lakatos’ Undone Work.Sophie Nagler, Hannah Pillin & Deniz Sarikaya - 2022 - Kriterion - Journal of Philosophy 36:1-10.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, which gave rise to this special issue. Lastly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Topics in Mathematical Consciousness Science.Johannes Kleiner - 2024 - Dissertation, Munich Center for Mathematical Philosophy & Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich
    The scientific study of consciousness, also referred to as consciousness science, is a young scientific field devoted to understanding how conscious experiences and the brain relate. It comprises a host of theories, experiments, and analyses that aim to investigate the problem of consciousness empirically, theoretically, and conceptually. This thesis addresses some of the questions that arise in these investigations from a formal and mathematical perspective. These questions concern theories of consciousness, experimental paradigms, methodology, and artificial consciousness. -/- Regarding theories (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Standard Quantum Theory Derived from First Physical Principles.Mehran Shaghaghi - manuscript
    The mathematical formalism of quantum theory has been established for nearly a century, yet its physical foundations remain elusive. In recent decades, connections between quantum theory and information theory have garnered increasing attention. This study presents a physical derivation of the mathematical formalism quantum theory based on information-theoretic considerations in physical systems. We postulate that quantum systems are characterized by single independent adjustable variables. Utilizing this physical postulate along with the conservation of total probability, we derive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Walter Dubislav’s Philosophy of Science and Mathematics.Nikolay Milkov - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):96-116.
    Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these disciplines as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modelling living systems.Plamen L. Simeonov & Andree C. Ehresmann - forthcoming - Progress in Biophysics and Molecular Biology 131 (Special).
    Forty-two years ago, Capra published “The Tao of Physics” (Capra, 1975). In this book (page 17) he writes: “The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts” and that, unlike ‘classical’ physics, the sub-atomic and quantum “modern physics” shows resonances with Eastern thoughts and “leads us to a view of the world which is very similar to the views held by mystics of all ages and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. The Making of Peacocks Treatise on Algebra: A Case of Creative Indecision.Menachem Fisch - 1999 - Archive for History of Exact Sciences 54 (2):137-179.
    A study of the making of George Peacock's highly influential, yet disturbingly split, 1830 account of algebra as an entanglement of two separate undertakings: arithmetical and symbolical or formal.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  24. Computation in Physical Systems: A Normative Mapping Account.Paul Schweizer - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 27-47.
    The relationship between abstract formal procedures and the activities of actual physical systems has proved to be surprisingly subtle and controversial, and there are a number of competing accounts of when a physical system can be properly said to implement a mathematical formalism and hence perform a computation. I defend an account wherein computational descriptions of physical systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore, the criteria of utility and success vary according to our diverse (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  25. Language and the Self-Reference Paradox.Julio Michael Stern - 2007 - Cybernetics and Human Knowing 14 (4):71-92.
    Heinz Von Forester characterizes the objects “known” by an autopoietic system as eigen-solutions, that is, as discrete, separable, stable and composable states of the interaction of the system with its environment. Previous articles have presented the FBST, Full Bayesian Significance Test, as a mathematical formalism specifically designed to access the support for sharp statistical hypotheses, and have shown that these hypotheses correspond, from a constructivist perspective, to systemic eigen-solutions in the practice of science. In this article several issues (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  26. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Losing Sight of the Forest for the Ψ: Beyond the Wavefunction Hegemony.Alisa Bokulich - 2020 - In Juha Saatsi & Steven French (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Traditionally Ψ is used to stand in for both the mathematical wavefunction (the representation) and the quantum state (the thing in the world). This elision has been elevated to a metaphysical thesis by advocates of the view known as wavefunction realism. My aim in this paper is to challenge the hegemony of the wavefunction by calling attention to a little-known formulation of quantum theory that does not make use of the wavefunction in representing the quantum state. This approach, called (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Pluralist-Monism. Derived Category Theory as the Grammar of n-Awareness.Shanna Dobson & Robert Prentner - manuscript
    In this paper, we develop a mathematical model of awareness based on the idea of plurality. Instead of positing a singular principle, telos, or essence as noumenon, we model it as plurality accessible through multiple forms of awareness (“n-awareness”). In contrast to many other approaches, our model is committed to pluralist thinking. The noumenon is plural, and reality is neither reducible nor irreducible. Nothing dies out in meaning making. We begin by mathematizing the concept of awareness by appealing to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. THE HISTORICAL SYNTAX OF PHILOSOPHICAL LOGIC.Yaroslav Hnatiuk - 2022 - European Philosophical and Historical Discourse 8 (1):78-87.
    This article analyzes the historical development of the philosophical logic syntax from the standpoint of the unity of historical and logical methods. According to this perspective, there are three types of logical syntax: the elementary subject-predicate, the modified definitivespecificative, and the standard propositional-functional. These types are generalized in the grammatical and mathematical styles of logical syntax. The main attention is paid to two scientific revolutions in elementary subject-predicate syntax, which led to the emergence of modified definitive-specific and standard propositional-functional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Complexity Revolution and the New Age of Scientific Discoveries.Andrei P. Kirilyuk - manuscript
    This summary of the original paradigm of the universal science of complexity starts with the discovered exact origin of the stagnating "end" of conventional, unitary science paradigm and development traditionally presented by its own estimates as the only and the best possible kind of scientific knowledge. Using a transparent generalisation of the exact mathematical formalism of arbitrary interaction process, we show that unitary science approach and description, including its imitations of complexity and chaoticity, correspond to artificial and ultimately (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (besides the above only (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. THE NOTION OF LOGOS FROM HERACLITUS TO MODERN PHYSICS.George Meskos - manuscript
    In this paper I argue that we can solve the interpretation problem of quantum mechanics and the question of ontology of Quantum Field Theory on the basis of simple metaphysical position: The connection of the phase space with the ancient Theory of Logi of Beings, which is, by giving ontological meaning to the entities which "live" at the phase space, the Hamiltonian or Lagrangian formalism. There is a physical subject of such functions and it is the logos of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Dialectics and Catastrophe.Martin Zwick - 1978 - In F. Geyer & J. Van der Zouwen (ed.), Sociocybernetics. Martinus Nijhoff. pp. 129-154.
    The Catastrophe Theory of Rene Thom and E. C. Zeeman suggests a mathematical interpretation of certain aspects of Hegelian and Marxist dialectics. Specifically, the three 'classical' dialectical principles, (1) the transformation of quantity into quality, (2) the unity and struggle of opposites, and (3) the negation of negation, can be modeled with the seven 'elementary catastrophes' given by Thorn, especially the catastrophes known as the 'cusp' and the 'butterfly'. Far from being empty metaphysics or scholasticism, as critics have argued, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Czy matematyka jest składnią języka? Kurta Gödla argument przeciwko formalizmowi.Maciej Głowacki - 2021 - Filozofia Nauki 29 (113):43-61.
    In this paper, I critically examine Kurt Gödel’s argument against the syntactic interpretation of mathematics. While the main aim is to analyze the argument, I also wish to underscore the relevance of the original elements of Gödel’s philosophical thought. The paper consists of four parts. In the first part, I introduce the reader to Gödel’s philosophy. In the second part, I reconstruct the formalist stance in the philosophy of mathematics, which is the object of Gödel’s criticism. In the third part, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Metanormativity: Solving questions about moral and empirical uncertainty.Nicholas Kluge Corrêa & Nythamar Fernandes de Oliveira - 2020 - Ethic@: An International Journal for Moral Philosophy 19 (3):790-810.
    How can someone reconcile the desire to eat meat, and a tendency toward vegetarian ideals? How should we reconcile contradictory moral values? How can we aggregate different moral theories? How individual preferences can be fairly aggregated to represent a will, norm, or social decision? Conflict resolution and preference aggregation are tasks that intrigue philosophers, economists, sociologists, decision theorists, and many other scholars, being a rich interdisciplinary area for research. When trying to solve questions about moral uncertainty a meta understanding of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Logic of Probability and Conjecture.Harry Crane - unknown
    I introduce a formalization of probability which takes the concept of 'evidence' as primitive. In parallel to the intuitionistic conception of truth, in which 'proof' is primitive and an assertion A is judged to be true just in case there is a proof witnessing it, here 'evidence' is primitive and A is judged to be probable just in case there is evidence supporting it. I formalize this outlook by representing propositions as types in Martin-Lof type theory (MLTT) and defining a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Minimal Sartre: Diagonalization and Pure Reflection.John Bova - 2012 - Open Philosophy 1:360-379.
    These remarks take up the reflexive problematics of Being and Nothingness and related texts from a metalogical perspective. A mutually illuminating translation is posited between, on the one hand, Sartre’s theory of pure reflection, the linchpin of the works of Sartre’s early period and the site of their greatest difficulties, and, on the other hand, the quasi-formalism of diagonalization, the engine of the classical theorems of Cantor, Gödel, Tarski, Turing, etc. Surprisingly, the dialectic of mathematical logic from its (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. The math is not the territory: navigating the free energy principle.Mel Andrews - 2021 - Biology and Philosophy 36 (3):1-19.
    Much has been written about the free energy principle (FEP), and much misunderstood. The principle has traditionally been put forth as a theory of brain function or biological self-organisation. Critiques of the framework have focused on its lack of empirical support and a failure to generate concrete, falsifiable predictions. I take both positive and negative evaluations of the FEP thus far to have been largely in error, and appeal to a robust literature on scientific modelling to rectify the situation. A (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  39. Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08.John Corcoran - 1972 - Philosophy of Science 39 (1):106-108.
    Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08. -/- Constance Reid was an insider of the Berkeley-Stanford logic circle. Her San Francisco home was in Ashbury Heights near the homes of logicians such as Dana Scott and John Corcoran. Her sister Julia Robinson was one of the top mathematical logicians of her generation, as was Julia’s husband Raphael Robinson for whom Robinson Arithmetic was named. Julia was a Tarski PhD and, in recognition (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Invariance, intrinsicality and perspicuity.Caspar Jacobs - 2022 - Synthese 200 (2):1-17.
    It is now standard to interpret symmetry-related models of physical theories as representing the same state of affairs. Recently, a debate has sprung up around the question when this interpretational move is warranted. In particular, Møller-Nielsen :1253–1264, 2017) has argued that one is only allowed to interpret symmetry-related models as physically equivalent when one has a characterisation of their common content. I disambiguate two versions of this claim. On the first, a perspicuous interpretation is required: an account of the models’ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41. From Models to Simulations.Franck Varenne - 2018 - London, UK: Routledge.
    This book analyses the impact computerization has had on contemporary science and explains the origins, technical nature and epistemological consequences of the current decisive interplay between technology and science: an intertwining of formalism, computation, data acquisition, data and visualization and how these factors have led to the spread of simulation models since the 1950s. -/- Using historical, comparative and interpretative case studies from a range of disciplines, with a particular emphasis on the case of plant studies, the author shows (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  42. The Powers of Quantum Mechanics: A Metametaphysical Discussion of the “Logos Approach”.Raoni Wohnrath Arroyo & Jonas R. Becker Arenhart - 2023 - Foundations of Science 28 (3):885-910.
    This paper presents and critically discusses the “logos approach to quantum mechanics” from the point of view of the current debates concerning the relation between metaphysics and science. Due to its alleged direct connection with quantum formalism, the logos approach presents itself as a better alternative for understanding quantum mechanics than other available views. However, we present metaphysical and methodological difficulties that seem to clearly point to a different conclusion: the logos approach is on an epistemic equal footing among (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Generalized Uncertainty Principle.Saurav Dwivedi - manuscript
    Quantum theory brought an irreducible lawlessness in physics. This is accompanied by lack of specification of state of a system. We can not measure states even though they ever existed. We can measure only transition from one state into another. We deduce this lack of determination of state mathematically, and thus provide formalism for maximum precision of determination of mixed states. However, the results thus obtained show consistency with Heisenberg's uncertainty relations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Kin Selection: A Philosophical Analysis.Jonathan Birch - 2013 - Dissertation, University of Cambridge
    This PhD dissertation examines the conceptual and theoretical foundations of the most general and most widely used framework for understanding social evolution, W. D. Hamilton's theory of kin selection. While the core idea is intuitive enough (when organisms share genes, they sometimes have an evolutionary incentive to help one another), its apparent simplicity masks a host of conceptual subtleties, and the theory has proved a perennial source of controversy in evolutionary biology. To move towards a resolution of these controversies, we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  45. Critical Realism’s Critique of Methodological Individualism in Neoclassical Economics.S. M. Reza Amiri Tehrani - forthcoming - Persian Journal for the Methodology of Social Sciences and Humanities:1-24.
    The critique of philosophical foundations of neoclassical economics is significant, because of its hegemony on economic education and research programs in Iran and worldwide academies. Due to an epistemological fallacy, methodological individualism plays a prominent role in the philosophy of economic; since the ontological aspects of economy are reduced to methodological considerations. Accordingly, critique of methodological individualism is regarded as the main entry for philosophical analysis of neoclassical economics. This article aims to analyze and appraise the methodological individualism from critical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Quantum no-go theorems and consciousness.Danko Georgiev - 2013 - Axiomathes 23 (4):683-695.
    Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Second-order Logic.John Corcoran - 2001 - In C. Anthony Anderson & Michael Zelëny (eds.), Logic, meaning, and computation: essays in memory of Alonzo Church. Boston: Kluwer Academic Publishers. pp. 61–76.
    “Second-order Logic” in Anderson, C.A. and Zeleny, M., Eds. Logic, Meaning, and Computation: Essays in Memory of Alonzo Church. Dordrecht: Kluwer, 2001. Pp. 61–76. -/- Abstract. This expository article focuses on the fundamental differences between second- order logic and first-order logic. It is written entirely in ordinary English without logical symbols. It employs second-order propositions and second-order reasoning in a natural way to illustrate the fact that second-order logic is actually a familiar part of our traditional intuitive logical framework and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  48. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed the limits of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. On Walter Dubislav.Nikolay Milkov - 2015 - History and Philosophy of Logic 36 (2):147-161.
    This paper outlines the intellectual biography of Walter Dubislav. Besides being a leading member of the Berlin Group headed by Hans Reichenbach, Dubislav played a defining role as well in the Society for Empirical/Scientific Philosophy in Berlin. A student of David Hilbert, Dubislav applied the method of axiomatic to produce original work in logic and formalist philosophy of mathematics. He also introduced the elements of a formalist philosophy of science and addressed more general problems concerning the substantiation of human knowledge. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 959