Results for 'theorems'

854 found
Order:
  1. (1 other version)Jury Theorems.Franz Dietrich & Kai Spiekermann - 2019 - In Miranda Fricker, Peter Graham, David Henderson & Nikolaj Jang Pedersen (eds.), The Routledge Handbook of Social Epistemology. New York, USA: Routledge.
    We give a review and critique of jury theorems from a social-epistemology perspective, covering Condorcet’s (1785) classic theorem and several later refinements and departures. We assess the plausibility of the conclusions and premises featuring in jury theorems and evaluate the potential of such theorems to serve as formal arguments for the ‘wisdom of crowds’. In particular, we argue (i) that there is a fundamental tension between voters’ independence and voters’ competence, hence between the two premises of most (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  2. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Representation theorems and the foundations of decision theory.Christopher Meacham & Jonathan Weisberg - 2011 - Australasian Journal of Philosophy 89 (4):641 - 663.
    Representation theorems are often taken to provide the foundations for decision theory. First, they are taken to characterize degrees of belief and utilities. Second, they are taken to justify two fundamental rules of rationality: that we should have probabilistic degrees of belief and that we should act as expected utility maximizers. We argue that representation theorems cannot serve either of these foundational purposes, and that recent attempts to defend the foundational importance of representation theorems are unsuccessful. As (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  4. Jury Theorems for Peer Review.Marcus Arvan, Liam Kofi Bright & Remco Heesen - forthcoming - British Journal for the Philosophy of Science.
    Peer review is often taken to be the main form of quality control on academic research. Usually journals carry this out. However, parts of maths and physics appear to have a parallel, crowd-sourced model of peer review, where papers are posted on the arXiv to be publicly discussed. In this paper we argue that crowd-sourced peer review is likely to do better than journal-solicited peer review at sorting papers by quality. Our argument rests on two key claims. First, crowd-sourced peer (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. A Representation Theorem for Frequently Irrational Agents.Edward Elliott - 2017 - Journal of Philosophical Logic 46 (5):467-506.
    The standard representation theorem for expected utility theory tells us that if a subject’s preferences conform to certain axioms, then she can be represented as maximising her expected utility given a particular set of credences and utilities—and, moreover, that having those credences and utilities is the only way that she could be maximising her expected utility. However, the kinds of agents these theorems seem apt to tell us anything about are highly idealised, being always probabilistically coherent with infinitely precise (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  6. Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, machine learning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Representation Theorems and Radical Interpretation.Edward J. R. Elliott - manuscript
    This paper begins with a puzzle regarding Lewis' theory of radical interpretation. On the one hand, Lewis convincingly argued that the facts about an agent's sensory evidence and choices will always underdetermine the facts about her beliefs and desires. On the other hand, we have several representation theorems—such as those of (Ramsey 1931) and (Savage 1954)—that are widely taken to show that if an agent's choices satisfy certain constraints, then those choices can suffice to determine her beliefs and desires. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Theorems and Models in Political Theory: An Application to Pettit on Popular Control.Sean Ingham - 2015 - The Good Society 24 (1):98-117.
    Pettit (2012) presents a model of popular control over government, according to which it consists in the government being subject to those policy-making norms that everyone accepts. In this paper, I provide a formal statement of this interpretation of popular control, which illuminates its relationship to other interpretations of the idea with which it is easily conflated, and which gives rise to a theorem, similar to the famous Gibbard-Satterthwaite theorem. The theorem states that if government policy is subject to popular (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Bell’s Theorem, Quantum Probabilities, and Superdeterminism.Eddy Keming Chen - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    In this short survey article, I discuss Bell’s theorem and some strategies that attempt to avoid the conclusion of non-locality. I focus on two that intersect with the philosophy of probability: (1) quantum probabilities and (2) superdeterminism. The issues they raised not only apply to a wide class of no-go theorems about quantum mechanics but are also of general philosophical interest.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  12. An Impossibility Theorem for Base Rate Tracking and Equalized Odds.Rush Stewart, Benjamin Eva, Shanna Slank & Reuben Stern - forthcoming - Analysis.
    There is a theorem that shows that it is impossible for an algorithm to jointly satisfy the statistical fairness criteria of Calibration and Equalised Odds non-trivially. But what about the recently advocated alternative to Calibration, Base Rate Tracking? Here, we show that Base Rate Tracking is strictly weaker than Calibration, and then take up the question of whether it is possible to jointly satisfy Base Rate Tracking and Equalised Odds in non-trivial scenarios. We show that it is not, thereby establishing (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Judgment aggregation: (Im)possibility theorems.Franz Dietrich - 2006 - Journal of Economic Theory 1 (126):286-298.
    The aggregation of individual judgments over interrelated propositions is a newly arising field of social choice theory. I introduce several independence conditions on judgment aggregation rules, each of which protects against a specific type of manipulation by agenda setters or voters. I derive impossibility theorems whereby these independence conditions are incompatible with certain minimal requirements. Unlike earlier impossibility results, the main result here holds for any (non-trivial) agenda. However, independence conditions arguably undermine the logical structure of judgment aggregation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  14. Agreement theorems for self-locating belief.Michael Caie - 2016 - Review of Symbolic Logic 9 (2):380-407.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Arrow's theorem in judgment aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  16. The Π-Theorem as a Guide to Quantity Symmetries and the Argument Against Absolutism.Mahmoud Jalloh - 2024 - In Dean W. Zimmerman & Karen Bennett (eds.), Oxford Studies in Metaphysics Volume 14. Oxford University Press.
    In this paper a symmetry argument against quantity absolutism is amended. Rather than arguing against the fundamentality of intrinsic quantities on the basis of transformations of basic quantities, a class of symmetries defined by the Π-theorem is used. This theorem is a fundamental result of dimensional analysis and shows that all unit-invariant equations which adequately represent physical systems can be put into the form of a function of dimensionless quantities. Quantity transformations that leave those dimensionless quantities invariant are empirical and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Central limit theorem for the functional of jump Markov process.Nguyen Van Huu, Quan-Hoang Vuong & Tran Minh Ngoc - 2005 - In Nguyen Van Huu, Quan-Hoang Vuong & Tran Minh Ngoc (eds.), Báo cáo: Hội nghị toàn quốc lần thứ III “Xác suất - Thống kê: Nghiên cứu, ứng dụng và giảng dạy”. Ha Noi: Viện Toán học. pp. 34.
    Central limit theorem for the functional of jump Markov process. Nguyễn Văn Hữu, Vương Quân Hoàng và Trần Minh Ngọc. Báo cáo: Hội nghị toàn quốc lần thứ III “Xác suất - Thống kê: Nghiên cứu, ứng dụng và giảng dạy” (tr. 34). Ba Vì, Hà Tây, ngày 12-14 tháng 05 năm 2005. Viện Toán học / Trường Đại học Khoa học tự nhiên / Đại học Quốc gia Hà Nội.
    Download  
     
    Export citation  
     
    Bookmark  
  18. Arrow's theorem, ultrafilters, and reverse mathematics.Benedict Eastaugh - forthcoming - Review of Symbolic Logic.
    This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's theorem in RCA0, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Theoremizing Yablo's Paradox.Ahmad Karimi & Saeed Salehi - manuscript
    To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these versions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. An impossibility theorem for amalgamating evidence.Jacob Stegenga - 2013 - Synthese 190 (12):2391-2411.
    Amalgamating evidence of different kinds for the same hypothesis into an overall confirmation is analogous, I argue, to amalgamating individuals’ preferences into a group preference. The latter faces well-known impossibility theorems, most famously “Arrow’s Theorem”. Once the analogy between amalgamating evidence and amalgamating preferences is tight, it is obvious that amalgamating evidence might face a theorem similar to Arrow’s. I prove that this is so, and end by discussing the plausibility of the axioms required for the theorem.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  21. Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum mechanics proposes (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. Fermat’s Last Theorem Proved by Induction (and Accompanied by a Philosophical Comment).Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (8):1-8.
    A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of n = 3 as well as the premises necessary for the formulation of the theorem itself. It involves a modification of Fermat’s approach of infinite descent. The infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Making Theorem-Proving in Modal Logic Easy.Paul Needham - 2009 - In Lars-Göran Johansson, Jan Österberg & Rysiek Śliwiński (eds.), Logic, Ethics and All That Jazz: Essays in Honour of Jordan Howard Sobel. Uppsala: Dept. Of Philosophy, Uppsala University. pp. 187-202.
    A system for the modal logic K furnishes a simple mechanical process for proving theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  25. The Reasons Aggregation Theorem.Ralph Wedgwood - 2022 - Oxford Studies in Normative Ethics 12:127-148.
    Often, when one faces a choice between alternative actions, there are reasons both for and against each alternative. On one way of understanding these words, what one “ought to do all things considered (ATC)” is determined by the totality of these reasons. So, these reasons can somehow be “combined” or “aggregated” to yield an ATC verdict on these alternatives. First, various assumptions about this sort of aggregation of reasons are articulated. Then it is shown that these assumptions allow for the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Oversights in the Respective Theorems of von Neumann and Bell are Homologous.Joy Christian - manuscript
    We show that the respective oversights in the von Neumann's general theorem against all hidden variable theories and Bell's theorem against their local-realistic counterparts are homologous. When latter oversight is rectified, the bounds on the CHSH correlator work out to be ±2√2 instead of ±2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Condorcet's Jury Theorem and Democracy.Wes Siscoe - 2022 - 1000-Word Philosophy: An Introductory Anthology 1.
    Suppose that a majority of jurors decide that a defendant is guilty (or not), and we want to know the likelihood that they reached the correct verdict. The French philosopher Marquis de Condorcet (1743-1794) showed that we can get a mathematically precise answer, a result known as the “Condorcet Jury Theorem.” Condorcet’s theorem isn’t just about juries, though; it’s about collective decision-making in general. As a result, some philosophers have used his theorem to argue for democratic forms of government. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Nature, Science, Bayes 'Theorem, and the Whole of Reality‖.Moorad Alexanian - manuscript
    A fundamental problem in science is how to make logical inferences from scientific data. Mere data does not suffice since additional information is necessary to select a domain of models or hypotheses and thus determine the likelihood of each model or hypothesis. Thomas Bayes’ Theorem relates the data and prior information to posterior probabilities associated with differing models or hypotheses and thus is useful in identifying the roles played by the known data and the assumed prior information when making inferences. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine – (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. An Arrovian Impossibility Theorem for the Epistemology of Disagreement.Nicholaos Jones - 2012 - Logos and Episteme 3 (1):97-115.
    According to conciliatory views about the epistemology of disagreement, when epistemic peers have conflicting doxastic attitudes toward a proposition and fully disclose to one another the reasons for their attitudes toward that proposition (and neither has independent reason to believe the other to be mistaken), each peer should always change his attitude toward that proposition to one that is closer to the attitudes of those peers with which there is disagreement. According to pure higher-order evidence views, higher-order evidence for a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Escaping Arrow's Theorem: The Advantage-Standard Model.Wesley Holliday & Mikayla Kelley - forthcoming - Theory and Decision.
    There is an extensive literature in social choice theory studying the consequences of weakening the assumptions of Arrow's Impossibility Theorem. Much of this literature suggests that there is no escape from Arrow-style impossibility theorems unless one drastically violates the Independence of Irrelevant Alternatives (IIA). In this paper, we present a more positive outlook. We propose a model of comparing candidates in elections, which we call the Advantage-Standard (AS) model. The requirement that a collective choice rule (CCR) be rationalizable by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Why Arrow's Theorem Matters for Political Theory Even If Preference Cycles Never Occur.Sean Ingham - forthcoming - Public Choice.
    Riker (1982) famously argued that Arrow’s impossibility theorem undermined the logical foundations of “populism”, the view that in a democracy, laws and policies ought to express “the will of the people”. In response, his critics have questioned the use of Arrow’s theorem on the grounds that not all configurations of preferences are likely to occur in practice; the critics allege, in particular, that majority preference cycles, whose possibility the theorem exploits, rarely happen. In this essay, I argue that the critics’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Normalization Theorem for the First-Order Classical Natural Deduction with Disjunctive Syllogism.Seungrak Choi - 2021 - Korean Journal of Logic 2 (24):143-168.
    In the present paper, we prove the normalization theorem and the consistency of the first-order classical logic with disjunctive syllogism. First, we propose the natural deduction system SCD for classical propositional logic having rules for conjunction, implication, negation, and disjunction. The rules for disjunctive syllogism are regarded as the rules for disjunction. After we prove the normalization theorem and the consistency of SCD, we extend SCD to the system SPCD for the first-order classical logic with disjunctive syllogism. It can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. The Craig interpolation theorem for prepositional logics with strong negation.Valentin Goranko - 1985 - Studia Logica 44 (3):291 - 317.
    This paper deals with, prepositional calculi with strong negation (N-logics) in which the Craig interpolation theorem holds. N-logics are defined to be axiomatic strengthenings of the intuitionistic calculus enriched with a unary connective called strong negation. There exists continuum of N-logics, but the Craig interpolation theorem holds only in 14 of them.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  39. On the Martingale Representation Theorem and on Approximate Hedging a Contingent Claim in the Minimum Deviation Square Criterion.Nguyen Van Huu & Quan-Hoang Vuong - 2007 - In Ta-Tsien Li Rolf Jeltsch (ed.), Some Topics in Industrial and Applied Mathematics. World Scientific. pp. 134-151.
    In this work we consider the problem of the approximate hedging of a contingent claim in the minimum mean square deviation criterion. A theorem on martingale representation in case of discrete time and an application of the result for semi-continuous market model are also given.
    Download  
     
    Export citation  
     
    Bookmark  
  40. Quantum no-go theorems and consciousness.Danko Georgiev - 2013 - Axiomathes 23 (4):683-695.
    Our conscious minds exist in the Universe, therefore they should be identified with physical states that are subject to physical laws. In classical theories of mind, the mental states are identified with brain states that satisfy the deterministic laws of classical mechanics. This approach, however, leads to insurmountable paradoxes such as epiphenomenal minds and illusionary free will. Alternatively, one may identify mental states with quantum states realized within the brain and try to resolve the above paradoxes using the standard Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Making Sense of Bell’s Theorem and Quantum Nonlocality.Stephen Boughn - 2017 - Foundations of Physics 47 (5):640-657.
    Bell’s theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell’s theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system. Einstein was repulsed by such “spooky action at a distance” and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  43. The Premises of Condorcet’s Jury Theorem Are Not Simultaneously Justified.Franz Dietrich - 2008 - Episteme 5 (1):56-73.
    Condorcet's famous jury theorem reaches an optimistic conclusion on the correctness of majority decisions, based on two controversial premises about voters: they are competent and vote independently, in a technical sense. I carefully analyse these premises and show that: whether a premise is justi…ed depends on the notion of probability considered; none of the notions renders both premises simultaneously justi…ed. Under the perhaps most interesting notions, the independence assumption should be weakened.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  44. Generalized Löb’s Theorem. Strong Reflection Principles and Large Cardinal Axioms.Jaykov Foukzon - 2013 - Advances in Pure Mathematics (3):368-373.
    In this article, a possible generalization of the Löb’s theorem is considered. Main result is: let κ be an inaccessible cardinal, then ¬Con( ZFC +∃κ) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  45. Some theorems on the expressive limitations of modal languages.Harold T. Hodes - 1984 - Journal of Philosophical Logic 13 (1):13 - 26.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  46. Arrow’s impossibility theorem and the national security state.S. M. Amadae - 2005 - Studies in History and Philosophy of Science Part A 36 (4):734-743.
    This paper critically engages Philip Mirowki's essay, "The scientific dimensions of social knowledge and their distant echoes in 20th-century American philosophy of science." It argues that although the cold war context of anti-democratic elitism best suited for making decisions about engaging in nuclear war may seem to be politically and ideologically motivated, in fact we need to carefully consider the arguments underlying the new rational choice based political philosophies of the post-WWII era typified by Arrow's impossibility theorem. A distrust of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Independent Opinions? On the Causal Foundations of Belief Formation and Jury Theorems.Franz Dietrich & Kai Spiekermann - 2013 - Mind 122 (487):655-685.
    Democratic decision-making is often defended on grounds of the ‘wisdom of crowds’: decisions are more likely to be correct if they are based on many independent opinions, so a typical argument in social epistemology. But what does it mean to have independent opinions? Opinions can be probabilistically dependent even if individuals form their opinion in causal isolation from each other. We distinguish four probabilistic notions of opinion independence. Which of them holds depends on how individuals are causally affected by environmental (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  48. Virtue signalling and the Condorcet Jury theorem.Scott Hill & Renaud-Philippe Garner - 2021 - Synthese 199 (5-6):14821-14841.
    One might think that if the majority of virtue signallers judge that a proposition is true, then there is significant evidence for the truth of that proposition. Given the Condorcet Jury Theorem, individual virtue signallers need not be very reliable for the majority judgment to be very likely to be correct. Thus, even people who are skeptical of the judgments of individual virtue signallers should think that if a majority of them judge that a proposition is true, then that provides (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical instrumentalism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Epistemic democracy: Generalizing the Condorcet jury theorem.Christian List & Robert E. Goodin - 2001 - Journal of Political Philosophy 9 (3):277–306.
    This paper generalises the classical Condorcet jury theorem from majority voting over two options to plurality voting over multiple options. The paper further discusses the debate between epistemic and procedural democracy and situates its formal results in that debate. The paper finally compares a number of different social choice procedures for many-option choices in terms of their epistemic merits. An appendix explores the implications of some of the present mathematical results for the question of how probable majority cycles (as in (...)
    Download  
     
    Export citation  
     
    Bookmark   153 citations  
1 — 50 / 854