Related

Contents
127 found
Order:
1 — 50 / 127
Material to categorize
  1. Mathematical Justification without Proof.Silvia De Toffoli - forthcoming - In Giovanni Merlo, Giacomo Melis & Crispin Wright (eds.), Self-knowledge and Knowledge A Priori. Oxford University Press.
    According to a widely held view in the philosophy of mathematics, direct inferential justification for mathematical propositions (that are not axioms) requires proof. I challenge this view while accepting that mathematical justification requires arguments that are put forward as proofs. I argue that certain fallacious putative proofs considered by the relevant subjects to be correct can confer mathematical justification. But mathematical justification doesn’t come for cheap: not just any argument will do. I suggest that to successfully transmit justification an argument (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Proofs for a price: Tomorrow’s ultra-rigorous mathematical culture.Silvia De Toffoli - 2024 - Bulletin (New Series) of the American Mathematical Society 61 (3):395–410.
    Computational tools might tempt us to renounce complete cer- tainty. By forgoing of rigorous proof, we could get (very) probable results for a fraction of the cost. But is it really true that proofs (as we know and love them) can lead us to certainty? Maybe not. Proofs do not wear their correct- ness on their sleeve, and we are not infallible in checking them. This suggests that we need help to check our results. When our fellow mathematicians will be (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. The Epistemological Subject(s) of Mathematics.Silvia De Toffoli - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 1-27.
    Paying attention to the inner workings of mathematicians has led to a proliferation of new themes in the philosophy of mathematics. Several of these have to do with epistemology. Philosophers of mathematical practice, however, have not (yet) systematically engaged with general (analytic) epistemology. To be sure, there are some exceptions, but they are few and far between. In this chapter, I offer an explanation of why this might be the case and show how the situation could be remedied. I contend (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Objectivity and Rigor in Classical Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2022 - Noesis 38:195-212.
    The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th-century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their distinctive conception of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Idéaux de preuve : explication et pureté.Andrew Arana - 2022 - In Andrew Arana & Marco Panza (eds.), Précis de philosophie de la logique et des mathématiques, Volume 2, philosophie des mathématiques. Paris: Editions de la Sorbonne. pp. 387-425.
    Why do mathematics often give several proofs of the same theorem? This is the question raised in this article, introducing the notion of an epistemic ideal and discussing two such ideals, the explanatoriness and purity of proof.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. On Different Ways of Being Equal.Bruno Bentzen - 2020 - Erkenntnis 87 (4):1809-1830.
    The aim of this paper is to present a constructive solution to Frege's puzzle (largely limited to the mathematical context) based on type theory. Two ways in which an equality statement may be said to have cognitive significance are distinguished. One concerns the mode of presentation of the equality, the other its mode of proof. Frege's distinction between sense and reference, which emphasizes the former aspect, cannot adequately explain the cognitive significance of equality statements unless a clear identity criterion for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  8. (1 other version)Riemann, Metatheory, and Proof, Rev.3.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The work provides comprehensively definitive, unconditional proofs of Riemann's hypothesis, Goldbach's conjecture, the 'twin primes' conjecture, the Collatz conjecture, the Newcomb-Benford theorem, and the Quine-Putnam Indispensability thesis. The proofs validate holonomic metamathematics, meta-ontology, new number theory, new proof theory, new philosophy of logic, and unconditional disproof of the P/NP problem. The proofs, metatheory, and definitions are also confirmed and verified with graphic proof of intrinsic enabling and sustaining principles of reality.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Reconciling Rigor and Intuition.Silvia De Toffoli - 2020 - Erkenntnis 86 (6):1783-1802.
    Criteria of acceptability for mathematical proofs are field-dependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my co-author and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this article, I (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  10. There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - 2021 - Philosophia Mathematica 29 (2):278–287.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2017 - Philosophia Mathematica:nkx007.
    ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. God, Human Memory, and the Certainty of Geometry: An Argument Against Descartes.Marc Champagne - 2016 - Philosophy and Theology 28 (2):299–310.
    Descartes holds that the tell-tale sign of a solid proof is that its entailments appear clearly and distinctly. Yet, since there is a limit to what a subject can consciously fathom at any given moment, a mnemonic shortcoming threatens to render complex geometrical reasoning impossible. Thus, what enables us to recall earlier proofs, according to Descartes, is God’s benevolence: He is too good to pull a deceptive switch on us. Accordingly, Descartes concludes that geometry and belief in God must go (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. On Bolzano’s Alleged Explicativism.Jacques Dubucs & Sandra Lapointe - 2006 - Synthese 150 (2):229-246.
    Bolzano was the first to establish an explicit distinction between the deductive methods that allow us to recognise the certainty of a given truth and those that provide its objective ground. His conception of the relation between what we, in this paper, call "subjective consequence", i.e., the relation from epistemic reason to consequence and "objective consequence", i.e., grounding however allows for an interpretation according to which Bolzano advocates an "explicativist" conception of proof: proofs par excellence are those that reflect the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. On the Depth of Szemeredi's Theorem.Andrew Arana - 2015 - Philosophia Mathematica 23 (2):163-176.
    Many mathematicians have cited depth as an important value in their research. However, there is no single widely accepted account of mathematical depth. This article is an attempt to bridge this gap. The strategy is to begin with a discussion of Szemerédi's theorem, which says that each subset of the natural numbers that is sufficiently dense contains an arithmetical progression of arbitrary length. This theorem has been judged deep by many mathematicians, and so makes for a good case on which (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  15. Automated Theorem Proving and Its Prospects. [REVIEW]Desmond Fearnley-Sander - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2.
    REVIEW OF: Automated Development of Fundamental Mathematical Theories by Art Quaife. (1992: Kluwer Academic Publishers) 271pp. Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of elementary number theory; dozens of Euclidean geometry theorems; and Gödel's incompleteness theorems. It is an impressive achievement. To gauge its significance and to see what prospects it offers this review looks closely at the book and the proofs it presents.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Deepening the Automated Search for Gödel's Proofs.Adam Conkey - unknown
    Gödel's incompleteness theorems establish the stunning result that mathematics cannot be fully formalized and, further, that any formal system containing a modicum of number or set theory cannot establish its own consistency. Wilfried Sieg and Clinton Field, in their paper Automated Search for Gödel's Proofs, presented automated proofs of Gödel's theorems at an abstract axiomatic level; they used an appropriate expansion of the strategic considerations that guide the search of the automated theorem prover AProS. The representability conditions that allow the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Does Gödel's Incompleteness Theorem Prove that Truth Transcends Proof?Joseph Vidal-Rosset - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 51--73.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Teaching proving by coordinating aspects of proofs with students' abilities.Annie Selden & John Selden - 2009 - In Despina A. Stylianou, Maria L. Blanton & Eric J. Knuth (eds.), Teaching and learning proof across the grades: a K-16 perspective. New York: Routledge. pp. 339--354.
    In this chapter we introduce concepts for analyzing proofs, and for analyzing undergraduate and beginning graduate mathematics students’ proving abilities. We discuss how coordination of these two analyses can be used to improve students’ ability to construct proofs. -/- For this purpose, we need a richer framework for keeping track of students’ progress than the everyday one used by mathematicians. We need to know more than that a particular student can, or cannot, prove theorems by induction or contradiction or can, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  20. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical instrumentalism (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
Godel's Theorem
  1. Czy matematyka jest składnią języka? Kurta Gödla argument przeciwko formalizmowi.Maciej Głowacki - 2021 - Filozofia Nauki 29 (113):43-61.
    In this paper, I critically examine Kurt Gödel’s argument against the syntactic interpretation of mathematics. While the main aim is to analyze the argument, I also wish to underscore the relevance of the original elements of Gödel’s philosophical thought. The paper consists of four parts. In the first part, I introduce the reader to Gödel’s philosophy. In the second part, I reconstruct the formalist stance in the philosophy of mathematics, which is the object of Gödel’s criticism. In the third part, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. (1 other version)¿Cómo utilizar el Teorema de Herbrand para decidir la validez de razonamientos en lenguaje de primer orden, en conformidad con el Teorema de Indecidibilidad de Church?Franklin Galindo & María Alejandra Morgado - 2019 - Apuntes Filosóficos: Revista Semestral de la Escuela de Filosofía 18 (55):67-86.
    This article’s objetive is to present four application examples of Herbrand’s theorem to decide the validity of reasoning on first order language, in accordance whit Church’s Undecidability’s theorem. Also, to tell which is the principal problem around it. The logical resolution calculus will be worked on this article, which is a method used in artificial intelligence.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. El Programa original de David Hilbert y el Problema de la Decibilidad.Franklin Galindo & Ricardo Da Silva - 2017 - Episteme NS: Revista Del Instituto de Filosofía de la Universidad Central de Venezuela 37 (1):1-23.
    En este artículo realizamos una reconstrucción del Programa original de Hilbert antes del surgimiento de los teoremas limitativos de la tercera década del siglo pasado. Para tal reconstrucción empezaremos por mostrar lo que Torretti llama los primeros titubeos formales de Hilbert, es decir, la defensa por el método axiomático como enfoque fundamentante. Seguidamente, mostraremos como estos titubeos formales se establecen como un verdadero programa de investigación lógico-matemático y como dentro de dicho programa la inquietud por la decidibilidad de los problemas (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Arithmetic logical Irreversibility and the Halting Problem (Revised and Fixed version).Yair Lapin - manuscript
    The Turing machine halting problem can be explained by several factors, including arithmetic logic irreversibility and memory erasure, which contribute to computational uncertainty due to information loss during computation. Essentially, this means that an algorithm can only preserve information about an input, rather than generate new information. This uncertainty arises from characteristics such as arithmetic logical irreversibility, Landauer's principle, and memory erasure, which ultimately lead to a loss of information and an increase in entropy. To measure this uncertainty and loss (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Application of "A Thing Exists If It's A Grouping" to Russell's Paradox and Godel's First Incompletness Theorem.Roger Granet - manuscript
    A resolution to the Russell Paradox is presented that is similar to Russell's “theory of types” method but is instead based on the definition of why a thing exists as described in previous work by this author. In that work, it was proposed that a thing exists if it is a grouping tying "stuff" together into a new unit whole. In tying stuff together, this grouping defines what is contained within the new existent entity. A corollary is that a thing, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Remarks on the Gödelian Anti-Mechanist Arguments.Panu Raatikainen - 2020 - Studia Semiotyczne 34 (1):267–278.
    Certain selected issues around the Gödelian anti-mechanist arguments which have received less attention are discussed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Cosa significano Paraconsistente, Indecifrabile, Casuale, Calcolabile e Incompleto? Una recensione di Godel's Way: sfrutta in un mondo indecidibile (Godel's Way: Exploits into an Undecidable World) di Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012) (rivisto 2019).Michael Richard Starks - 2020 - In Benvenuti all'inferno sulla Terra: Bambini, Cambiamenti climatici, Bitcoin, Cartelli, Cina, Democrazia, Diversità, Disgenetica, Uguaglianza, Pirati Informatici, Diritti umani, Islam, Liberalismo, Prosperità, Web, Caos, Fame, Malattia, Violenza, Intellige. Las Vegas, NV USA: Reality Press. pp. 163-176.
    Nel 'Godel's Way' tre eminenti scienziati discutono questioni come l'indecidibilità, l'incompletezza, la casualità, la computabilità e la paracoerenza. Affronto questi problemi dal punto di vista di Wittgensteinian che ci sono due questioni fondamentali che hanno soluzioni completamente diverse. Ci sono le questioni scientifiche o empiriche, che sono fatti sul mondo che devono essere studiati in modo osservante e filosofico su come il linguaggio può essere usato in modo intelligibilmente (che include alcune domande in matematica e logica), che devono essere decise (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. क्या Paraconsistent, अनिर्णयीय, रैंडम, Computable और अधूरा मतलब है? है Godel रास्ता की समीक्षा: ग्रेगरी Chaitin, फ्रांसिस्को एक डोरिया, न्यूटन सी.ए. दा कोस्टा 160p (2012 की समीक्षा संशोधित 2019) द्वारा एक undecidable दुनिया में शोषण What Do Paraconsistent, Undecidable, Random, Computable and Incomplete mean? A Review of Godel's Way: Exploits into an undecidable world by Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa.Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Ls Vegas, NV USA: Reality Press. pp. 198-214.
    'गोडेल के रास्ते' में तीन प्रख्यात वैज्ञानिकों ने अनिर्णय, अपूर्णता, यादृच्छिकता, गणनाऔरता और परासंगति जैसे मुद्दों पर चर्चा की। मैं Wittgensteinian दृष्टिकोण से इन मुद्दों दृष्टिकोण है कि वहाँ दो बुनियादी मुद्दों जो पूरी तरह से अलग समाधान है. वहाँ वैज्ञानिक या अनुभवजन्य मुद्दों, जो दुनिया के बारे में तथ्य है कि अवलोकन और दार्शनिक मुद्दों की जांच की जरूरत है के रूप में कैसे भाषा intelligibly इस्तेमाल किया जा सकता है (जो गणित और तर्क में कुछ सवाल शामिल हैं), (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. मैं डगलस Hofstadter (2007) द्वारा एक अजीब लू प हूँ की समीक्षा--Review of I Am a Strange Loop by Douglas Hofstadter.Michael Richard Starks - 2020 - In पृथ्वी पर नर्क में आपका स्वागत है: शिशुओं, जलवायु परिवर्तन, बिटकॉइन, कार्टेल, चीन, लोकतंत्र, विविधता, समानता, हैकर्स, मानव अधिकार, इस्लाम, उदारवाद, समृद्धि, वेब, अराजकता, भुखमरी, बीमारी, हिंसा, कृत्रिम बुद्धिमत्ता, युद्ध. Ls Vegas, NV USA: Reality Press. pp. 130-150.
    पादरी Hofstadter द्वारा कट्टरपंथी प्रकृतिवाद के चर्च से नवीनतम उपदेश. अपने बहुत अधिक प्रसिद्ध (या अपने अथक दार्शनिक त्रुटियों के लिए कुख्यात) काम Godel, Escher, बाख की तरह, यह एक सतही प्रशंसनीयता है, लेकिन अगर एक समझता है कि यह बड़े पैमाने पर वैज्ञानिकता है जो दार्शनिक लोगों के साथ वास्तविक वैज्ञानिक मुद्दों घोला जा सकता है (यानी, केवल असली मुद्दों क्या भाषा का खेल हम खेलना चाहिए रहे हैं) तो लगभग सभी अपनी रुचि गायब हो जाता है. मैं विकासवादी (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Rezension von "Die äußeren Grenzen der Vernunft " (The Outer Limits of Reason) von Noson Yanofsky 403p (2013) ( Überprüfung überarbeitet 2019).Michael Richard Starks - 2020 - In Willkommen in der Hölle auf Erden: Babys, Klimawandel, Bitcoin, Kartelle, China, Demokratie, Vielfalt, Dysgenie, Gleichheit, Hacker, Menschenrechte, Islam, Liberalismus, Wohlstand, Internet, Chaos, Hunger, Krankheit, Gewalt, Künstliche Intelligenz, Krieg. Reality Press. pp. 191-206.
    Ich gebe einen ausführlichen Überblick über 'The Outer Limits of Reason' von Noson Yanofsky aus einer einheitlichen Perspektive von Wittgenstein und Evolutionspsychologie. Ich weise darauf hin, dass die Schwierigkeit bei Themen wie Paradoxon in Sprache und Mathematik, Unvollständigkeit, Unbedenklichkeit, Berechenbarkeit, Gehirn und Universum als Computer usw. allesamt auf das Versäumnis zurückzuführen ist, unseren Sprachgebrauch im geeigneten Kontext sorgfältig zu prüfen, und daher das Versäumnis, Fragen der wissenschaftlichen Tatsache von Fragen der Funktionsweise von Sprache zu trennen. Ich bespreche Wittgensteins Ansichten über (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Was bedeuten Parakonsistente, Unentscheidbar, Zufällig, Berechenbar und Unvollständige? Eine Rezension von „Godels Weg: Exploits in eine unentscheidbare Welt“ (Godels Way: Exploits into a unecidable world) von Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012).Michael Richard Starks - 2020 - In Willkommen in der Hölle auf Erden: Babys, Klimawandel, Bitcoin, Kartelle, China, Demokratie, Vielfalt, Dysgenie, Gleichheit, Hacker, Menschenrechte, Islam, Liberalismus, Wohlstand, Internet, Chaos, Hunger, Krankheit, Gewalt, Künstliche Intelligenz, Krieg. Reality Press. pp. 1171-185.
    In "Godel es Way" diskutieren drei namhafte Wissenschaftler Themen wie Unentschlossenheit, Unvollständigkeit, Zufälligkeit, Berechenbarkeit und Parakonsistenz. Ich gehe diese Fragen aus Wittgensteiner Sicht an, dass es zwei grundlegende Fragen gibt, die völlig unterschiedliche Lösungen haben. Es gibt die wissenschaftlichen oder empirischen Fragen, die Fakten über die Welt sind, die beobachtungs- und philosophische Fragen untersuchen müssen, wie Sprache verständlich verwendet werden kann (die bestimmte Fragen in Mathematik und Logik beinhalten), die entschieden werden müssen, indem man sich anschaut,wie wir Wörter in bestimmten (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. パラコンシステント、決定不能、ランダム、計算可能、不完全とはどういう意味 ですか? 「ゴーデルの方法:決定不可能な世界への冒険:」のレビュー(Godel's Way: exploits into an Undecidable World) byA. da Costa 160p (2012) (2019年のレビュー改訂).Michael Richard Starks - 2020 - In 地獄へようこそ : 赤ちゃん、気候変動、ビットコイン、カルテル、中国、民主主義、多様性、ディスジェニックス、平等、ハッカー、人権、イスラム教、自由主義、繁栄、ウェブ、カオス、飢餓、病気、暴力、人工知能、戦争. Las Vegas, NV USA: Reality Press. pp. 158-171.
    「ゴーデルの道」では、3人の著名な科学者が、デシッド不能、不完全性、ランダム性、計算可能性、パラコンシステンションなどの問題について議論しています。私は、ウィトゲンシュタイニアンの視点から、全く異なる 解決策を持つ2つの基本的な問題があることをこれらの問題に取り組んでいます。科学的または経験的な問題は、言語がどのように理解的に使用できるか(数学と論理に特定の質問を含む)、特定の文脈で実際にどのように 単語を使用するかを調べて決定する必要がある、観察的および哲学的な問題を調査する必要がある世界に関する事実です。私たちがプレイしている言語ゲームについて明確になると、これらのトピックは他の人と同じように 普通の科学的、数学的な質問であると見なされます。ウィトゲンシュタインの洞察はめったに等しくなく、決して上回ることはなく、彼がブルーブックスとブラウンブックスを口述した80年前と同じくらい適切です。失敗 にもかかわらず、本当に完成した本ではなく一連のノートは、半世紀以上にわたって物理学、数学、哲学の出血エッジで働いてきたこれらの3人の有名な学者の作品のユニークな源です。ダ・コスタとドリアは、普遍的な計 算に書いて以来、ウォルパート(以下または私の記事を参照)によって引用されています(ウォルパートとヤナフスキーの「理由の外側の限界」の私のレビューを参照)、,そして彼の多くの成果の中で、ダ・コスタはパラ コンシタンションのパイオニアです。 現代の2つのシス・エムスの見解から人間の行動のための包括的な最新の枠組みを望む人は、私の著書「ルートヴィヒ・ヴィトゲンシュタインとジョン・サールの第2回(2019)における哲学、心理学、ミンと言語の論 理的構造」を参照することができます。私の著作の多くにご興味がある人は、運命の惑星における「話す猿--哲学、心理学、科学、宗教、政治―記事とレビュー2006-2019 第3回(2019)」と21世紀4日(2019年)の自殺ユートピア妄想st Century 4th ed (2019)などを見ることができます。 .
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. 私は奇妙なループです」のレビュー(I am a Strange Loop) by Douglas Hofstadter (2007) (レビュー改訂2019).Michael Richard Starks - 2020 - In 地獄へようこそ : 赤ちゃん、気候変動、ビットコイン、カルテル、中国、民主主義、多様性、ディスジェニックス、平等、ハッカー、人権、イスラム教、自由主義、繁栄、ウェブ、カオス、飢餓、病気、暴力、人工知能、戦争. Las Vegas, NV USA: Reality Press. pp. 102-118.
    ホフスタッター牧師による原理主義自然主義教会からの最新の説教。彼のはるかに有名な(または容赦ない哲学的誤りで悪名高い)作品ゴーデル、エッシャー、バッハのように、それは表面的な妥当性を持っていますが、こ れが哲学的なものと実際の科学的問題を混ぜ合わせた横行するサイエンティズムであることを理解すれば(つまり、唯一の本当の問題は、私たちがプレイすべき言語ゲームです)、その後、ほとんどすべての関心が消えます 。進化心理学とヴィトゲンシュタインの仕事に基づく分析のフレームワークを提供しています(最近の著作で更新されて以来)。 現代の2つのシス・エムスの見解から人間の行動のための包括的な最新の枠組みを望む人は、私の著書「ルートヴィヒ・ヴィトゲンシュタインとジョン・サールの第2回(2019)における哲学、心理学、ミンと言語の論 理的構造」を参照することができます。私の著作の多くにご興味がある人は、運命の惑星における「話す猿--哲学、心理学、科学、宗教、政治―記事とレビュー2006-2019 第3回(2019)」と21世紀4日(2019年)の自殺ユートピア妄想st Century 4th ed (2019)などを見ることができます .
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Wolpert, Chaitin et Wittgenstein sur l’impossibilité, l’incomplétude, le paradoxe menteur, le théisme, les limites du calcul, un principe d’incertitude mécanique non quantique et l’univers comme ordinateur, le théorème ultime dans Turing Machine Theory (révisé 2019).Michael Richard Starks - 2020 - In Bienvenue en Enfer sur Terre : Bébés, Changement climatique, Bitcoin, Cartels, Chine, Démocratie, Diversité, Dysgénique, Égalité, Pirates informatiques, Droits de l'homme, Islam, Libéralisme, Prospérité, Le Web, Chaos, Famine, Maladie, Violence, Intellige. Las Vegas, NV USA: Reality Press. pp. 185-189.
    J’ai lu de nombreuses discussions récentes sur les limites du calcul et de l’univers en tant qu’ordinateur, dans l’espoir de trouver quelques commentaires sur le travail étonnant du physicien polymathe et théoricien de la décision David Wolpert, mais n’ont pas trouvé une seule citation et je présente donc ce résumé très bref. Wolpert s’est avéré quelques théoricaux d’impossibilité ou d’incomplétude renversants (1992 à 2008-voir arxiv dot org) sur les limites de l’inférence (computation) qui sont si généraux qu’ils sont indépendants de (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Defining Gödel Incompleteness Away.P. Olcott - manuscript
    We can simply define Gödel 1931 Incompleteness away by redefining the meaning of the standard definition of Incompleteness: A theory T is incomplete if and only if there is some sentence φ such that (T ⊬ φ) and (T ⊬ ¬φ). This definition construes the existence of self-contradictory expressions in a formal system as proof that this formal system is incomplete because self-contradictory expressions are neither provable nor disprovable in this formal system. Since self-contradictory expressions are neither provable nor disprovable (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. 《我是一个奇怪的循环》的回顾由道格拉斯·霍夫施塔特 (2007)(Review of I Am a Strange Loop by Douglas Hofstadter (2007)) (审查修订 2019).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 105-120.
    霍夫施塔特牧师从原教旨主义自然主义教会的最新讲道。像他更出名(或臭名昭著的无情的哲学错误)的工作戈德尔,埃舍尔,巴赫,它有一个肤浅的合理性,但如果人们明白,这是猖獗的科学主义,混合真正的科学问题与哲学 问题(即,只有真正的问题是我们应该玩什么语言游戏),然后几乎所有的兴趣消失。我提供了一个基于进化心理学和维特根斯坦工作的分析框架(自从我最近的著作中更新)。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、心神 (Mind) 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第3次(2019年)和自杀乌托邦幻想21篇世纪4日 (2019).
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. Wolpert, Chaitin и Wittgenstein о невозможности, неполноте, парадоксе лжецов, теизм, границах вычислений, принципе неквантовой механической неопределенности и вселенной как компьютер – конечной теорете в Тuring машин Тьюринга (пересмотренный 2019).Michael Richard Starks - 2020 - In ДОБРО ПОЖАЛОВАТЬ В АД НА НАШЕМ МИРЕ. Las Vegas, NV USA: Reality Press. pp. 187-192.
    Я читал много недавних дискуссий о границах вычислений и Вселенной, как компьютер, надеясь найти некоторые комментарии по удивительной работы физика полимата и теоретик решений Дэвид Вольперт, но не нашли ни одной цитаты, и поэтому я представляю это очень краткое резюме. Вольперт доказал некоторые потрясающие невозможности или теоремы неполноты (1992 до 2008-см arxiv dot org) на пределы выводов (вычисления), которые настолько общие они не зависят от устройства делать вычисления, и даже независимо от законов физики, поэтому они применяются через компьютеры, физика, и (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. (1 other version)Что означают парапоследовательные, неопределимые, случайные, вычислительные и неполные? Обзор: “Путь Годеля - Приключения в неопределенном мире” (Godel's Way: Exploits into an undecidable world) by Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012) (обзор пересмотрен 2019).Michael Richard Starks - 2020 - In ДОБРО ПОЖАЛОВАТЬ В АД НА НАШЕМ МИРЕ. Las Vegas, NV USA: Reality Press. pp. 171-186.
    В «Godel's Way» три видных ученых обсуждают такие вопросы, как неплатежеспособность, неполнота, случайность, вычислительность и последовательность. Я подхожу к этим вопросам с точки зрения Витгенштейна, что есть две основные проблемы, которые имеют совершенно разные решения. Есть научные или эмпирические вопросы, которые являются факты о мире, которые должны быть исследованы наблюдений и философские вопросы о том, как язык может быть использован внятно (которые включают в себя определенные вопросы в математике и логике), которые должны быть решены, глядят, как мы на самом деле (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. 이유의 외부 한계'에 대한 검토 (The Outer Limits of Reason) Noson Yanofsky 403p (2013).Michael Richard Starks - 2020 - In 지구상의 지옥에 오신 것을 환영합니다 : 아기, 기후 변화, 비트 코인, 카르텔, 중국, 민주주의, 다양성, 역학, 평등, 해커, 인권, 이슬람, 자유주의, 번영, 웹, 혼돈, 기아, 질병, 폭력, 인공 지능, 전쟁. Las Vegas, NV USA: Reality Press. pp. 210-227.
    나는 비텐슈타인과 진화 심리학의 통일 된 관점에서 노슨 야노프스키에 의해 '이성의 외부 한계'에 대한 자세한 리뷰를 제공합니다. 나는 언어와 수학의 역설, 불완전성, 부정성, 계산성, 컴퓨터와 같은 뇌와 우주와 같은 문제의 어려움은 모두 적절한 맥락에서 언어의 사용을 주의 깊게 바라보지 못하고 따라서 언어가 작동하는 방법의 문제에서 과학적 사실의 문제를 분리하지 못하는 데서 발생한다는 것을 나타냅니다. 나는 불완전성, 파라불일치 및 부정성에 대한 비트겐슈타인의 견해와 계산의 한계에 대한 울퍼트의 작품에 대해 논의한다. 요약하자면: 브루클린---좋은 과학에 따르면 우주, 그리 좋은 철학. 현대 의 두 systems보기에서인간의 (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  21. Wolpert, Chaitin and Wittgenstein 불가능, 불완전 성, 거짓말 쟁이 역설, 신념, 전산 한계, 비 양자 역학적 불확실성 원리 및 -Turing 기계 이론의 궁극적 이론(.Michael Richard Starks - 2020 - In 지구상의 지옥에 오신 것을 환영합니다 : 아기, 기후 변화, 비트 코인, 카르텔, 중국, 민주주의, 다양성, 역학, 평등, 해커, 인권, 이슬람, 자유주의, 번영, 웹, 혼돈, 기아, 질병, 폭력, 인공 지능, 전쟁. Las Vegas, NV USA: Reality Press. pp. 201-209.
    나는 컴퓨터로 계산과 우주의 한계에 대한 많은 최근의 토론을 읽었습니다, polymath 물리학자 및 결정 이론가 데이비드 울퍼트의 놀라운 작품에 대한 몇 가지 의견을 찾을 수 있기를 바라고 있지만 하나의 인용을 발견하지 않은 그래서 나는이 매우 간단한 요약을 제시. Wolpert는 계산을 수행하는 장치와 는 별개이며 물리학법칙과는 무관하므로 컴퓨터, 물리학 및 인간의 행동에 적용되므로 추론(계산)에 대한 제한에 대해 놀라운 불가능또는 불완전성 정리(1992년에서 2008년 참조 arxiv dot org)를 입증했습니다. 그들은 캔터의 대각선화, 거짓말쟁이 역설 및 세계관을 사용하여 튜링 머신 이론의 궁극적 인 정리가 될 (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. (1 other version)불일치, 결정 불가능, 임의, 계산 가능 및 불완전한 의미는 무엇입니까? '고델의 길 : 결정 불가능한 세상으로의 착취'에 대한 검토 (Godel's Way: Exploits into an undecidable world) by Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012).Michael Richard Starks - 2020 - In 지구상의 지옥에 오신 것을 환영합니다 : 아기, 기후 변화, 비트 코인, 카르텔, 중국, 민주주의, 다양성, 역학, 평등, 해커, 인권, 이슬람, 자유주의, 번영, 웹, 혼돈, 기아, 질병, 폭력, 인공 지능, 전쟁. Las Vegas, NV USA: Reality Press. pp. 187-203.
    'Godel's Way'에서 세 명의 저명한 과학자들은 부정성, 불완전성, 임의성, 계산성 및 파라불일치와 같은 문제에 대해 논의합니다. 나는 완전히 다른 해결책을 가지고 두 가지 기본 문제가 있다는 비트 겐슈타인의 관점에서 이러한 문제에 접근. 과학적 또는 경험적 문제가 있다, 관찰 하 고 철학적 문제 언어를 어떻게 이해할 수 있는 (수학 및 논리에 특정 질문을 포함) 에 대 한 조사 해야 하는 세계에 대 한 사실,우리가 실제로 특정 컨텍스트에서 단어를 사용 하는 방법을 보고 하 여 결정 될 필요가. 우리가 어떤 언어 게임을 하고 (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. (1 other version)Reseña de ‘Soy un Bucle Extraño’ ( I am a Strange Loop) de Douglas Hofstadter (2007) (reseña revisado 2019).Michael Richard Starks - 2020 - In Michael Starks (ed.), Comprender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política, Economía, Historia y Literatura - Artículos y reseñas 2006-2019. Las Vegas, NV USA: Reality Press. pp. 265-282.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. (1 other version)Revisão de ‘Eu sou um Loop Estranho’ (I am a Strange Loop) por Douglas Hofstadter (2007) (revisão revisada 2019).Michael Richard Starks - 2020 - In Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política, Economia, História e Literatura - Artigos e Avaliações 2006-2019. Las Vegas, NV USA: Reality Press. pp. 251-268.
    Último sermão da Igreja do naturalismo fundamentalista pelo pastor Hofstadter. Como o seu muito mais famoso (ou infame por seus erros filosóficos implacáveis) Godel, Escher, Bach, ele tem uma plausibilidade superficial, mas se se compreende que este é um cientificismo desenfreado que mistura questões científicas reais com os filosóficos (ou seja, o somente as edições reais são que jogos da língua nós devemos jogar) então quase todo seu interesse desaparece. Eu forneci um quadro para análise baseada na psicologia evolutiva e (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. Wolpert, Chaitin e Wittgenstein em impossibilidade, incompletude, o paradoxo do mentiroso, o teísmo, os limites da computação, um princípio de incerteza mecânica não quântica e o universo como computador — o teorema final na teoria da máquina de Turing (revisado 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI - Filosofia, Natureza Humana e o Colapso da Civilization - Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 183-187.
    Eu li muitas discussões recentes sobre os limites da computação e do universo como computador, na esperança de encontrar alguns comentários sobre o trabalho surpreendente do físico polimatemático e teórico da decisão David Wolpert, mas não encontrei uma única citação e assim que eu apresento este muito breve Resumo. Wolpert provou alguma impossibilidade impressionante ou teoremas da incompletude (1992 a 2008-Veja arxiv dot org) nos limites à inferência (computação) que são tão gerais que são independentes do dispositivo que faz a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. O que significa paraconsistente, indecível, aleatório, computável e incompleto?- Uma revisão da ‘Godel’s Way: exploits into an undecidable world’ (Maneira de Godel: façanhas em um mundo indecidível) por Gregory Chaitin, Francisco A Doria, Newton C.A. da costa 160P (2012) (revisão revisada 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI - Filosofia, Natureza Humana e o Colapso da Civilization - Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 168-182.
    Em "Godel's Way", três cientistas eminentes discutem questões como a undecidability, incompletude, aleatoriedade, computabilidade e paraconsistência. Eu abordar estas questões do ponto de vista Wittgensteinian que existem duas questões básicas que têm soluções completamente diferentes. Há as questões científicas ou empíricas, que são fatos sobre o mundo que precisam ser investigados observacionalmente e questões filosóficas sobre como a linguagem pode ser usada inteligìvelmente (que incluem certas questões em matemática e lógica), que precisam ser decidido por olhar uma como nós realmente (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. (1 other version)Revisão de ‘Eu sou um Loop Estranho’ (I am a Strange Loop) por Douglas Hofstadter (2007) (revisão revisada 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI - Filosofia, Natureza Humana e o Colapso da Civilization - Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 112-128.
    Último sermão da Igreja do naturalismo fundamentalista pelo pastor Hofstadter. Como o seu muito mais famoso (ou infame por seus erros filosóficos implacáveis) Godel, Escher, Bach, ele tem uma plausibilidade superficial, mas se se compreende que este é um scientismo desenfreado que mistura questões científicas reais com os filosóficos (ou seja, o somente as edições reais são que jogos da língua nós devemos jogar) então quase todo seu interesse desaparece. Eu forneci um quadro para análise baseada na psicologia evolutiva e (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. (1 other version)Wolpert, Chaitin y Wittgenstein sobre la imposibilidad, la incompletitud, la paradoja mentirosa, el teísmo, los límites de la computación, un principio de incertidumbre mecánica no cuántica y el universo como computadora, el teorema definitivo en la teoría de la máquina de Turing (revisado en 2019).Michael Richard Starks - 2019 - In Delirios Utópicos Suicidas en el Siglo 21 La filosofía, la naturaleza humana y el colapso de la civilización Artículos y reseñas 2006-2019 4TH Edición. Reality Press. pp. 278-282.
    He leído muchas discusiones recientes sobre los límites de la computación y el universo como computadora, con la esperanza de encontrar algunos comentarios sobre el increíble trabajo del físico polimatemático y teórico de la decisión David Wolpert pero no han encontrado una sola citación y así que presento esta muy breve Resumen. Wolpert demostró algunos teoremas sorprendentes de imposibilidad o incompletos (1992 a 2008-ver arxiv dot org) en los límites de la inferencia (computación) que son tan generales que son independientes (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. (1 other version)¿Qué significa paraconsistente, indescifrable, aleatorio, computable e incompleto? Una revisión de’ la Manera de Godel: explota en un mundo indecible’ (Godel’s Way: Exploits into an Undecidable World) por Gregory Chaitin, Francisco A Doria, Newton C.A. da Costa 160p (2012) (revisión revisada 2019).Michael Richard Starks - 2019 - In Delirios Utópicos Suicidas en el Siglo 21 La filosofía, la naturaleza humana y el colapso de la civilización Artículos y reseñas 2006-2019 4TH Edición. Reality Press. pp. 263-277.
    En ' Godel’s Way ', tres eminentes científicos discuten temas como la indecisión, la incompleta, la aleatoriedad, la computabilidad y la paracoherencia. Me acerco a estas cuestiones desde el punto de vista de Wittgensteinian de que hay dos cuestiones básicas que tienen soluciones completamente diferentes. Existen las cuestiones científicas o empíricas, que son hechos sobre el mundo que necesitan ser investigados Observacionalmente y cuestiones filosóficas en cuanto a cómo el lenguaje se puede utilizar inteligiblemente (que incluyen ciertas preguntas en matemáticas (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. Reseña de ‘I am a Strange Loop’ (Soy un Lazo Extraño) de Douglas Hofstadter (2007) (revisión revisada 2019).Michael Richard Starks - 2019 - In Delirios Utópicos Suicidas en el Siglo 21 La filosofía, la naturaleza humana y el colapso de la civilización Artículos y reseñas 2006-2019 4TH Edición. Reality Press. pp. 205-221.
    Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 127