Related

Contents
24 found
Order:
  1. Mathematical Gettier Cases and Their Implications.Neil Barton - manuscript
    Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are possible (and indeed actual) in mathematical (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. (1 other version)Recalcitrant Disagreement in Mathematics: An “Endless and Depressing Controversy” in the History of Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2023 - Global Philosophy 33 (38):1-29.
    If there is an area of discourse in which disagreement is virtually absent, it is mathematics. After all, mathematicians justify their claims with deductive proofs: arguments that entail their conclusions. But is mathematics really exceptional in this respect? Looking at the history and practice of mathematics, we soon realize that it is not. First, deductive arguments must start somewhere. How should we choose the starting points (i.e., the axioms)? Second, mathematicians, like the rest of us, are fallible. Their ability to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Dialogue Types, Argumentation Schemes, and Mathematical Practice: Douglas Walton and Mathematics.Andrew Aberdein - 2021 - Journal of Applied Logics 8 (1):159-182.
    Douglas Walton’s multitudinous contributions to the study of argumentation seldom, if ever, directly engage with argumentation in mathematics. Nonetheless, several of the innovations with which he is most closely associated lend themselves to improving our understanding of mathematical arguments. I concentrate on two such innovations: dialogue types (§1) and argumentation schemes (§2). I argue that both devices are much more applicable to mathematical reasoning than may be commonly supposed.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   15 citations  
  5. Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth.William D’Alessandro - 2020 - Synthese (9):1-44.
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  6. Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - 2020 - Analytic Philosophy 62 (3):252-274.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. The results of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  9. Teaching and Learning Guide for: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   22 citations  
  11. Pluralism and the Liar.Cory Wright - 2017 - In Bradley P. Armour-Garb (ed.), Reflections on the Liar. Oxford, England: Oxford University. pp. 347–373.
    Pluralists maintain that there is more than one truth property in virtue of which bearers are true. Unfortunately, it is not yet clear how they diagnose the liar paradox or what resources they have available to treat it. This chapter considers one recent attempt by Cotnoir (2013b) to treat the Liar. It argues that pluralists should reject the version of pluralism that Cotnoir assumes, discourse pluralism, in favor of a more naturalized approach to truth predication in real languages, which should (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Diversity in proof appraisal.Matthew Inglis & Andrew Aberdein - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 163-179.
    We investigated whether mathematicians typically agree about the qualities of mathematical proofs. Between-mathematician consensus in proof appraisals is an implicit assumption of many arguments made by philosophers of mathematics, but to our knowledge the issue has not previously been empirically investigated. We asked a group of mathematicians to assess a specific proof on four dimensions, using the framework identified by Inglis and Aberdein (2015). We found widespread disagreement between our participants about the aesthetics, intricacy, precision and utility of the proof, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  13. Danielle Macbeth, "Realizing Reason: A Narrative of Truth and Knowing". [REVIEW]Catherine Legg - 2015 - Notre Dame Philosophical Reviews:online.
    This substantial book is a highly original and thorough work of synthetic first philosophy. Although it has some recognizable roots in the Kantian/Sellarsian tradition of the Pittsburgh school, it adds a wealth of precise discussion of examples from science and mathematics, made possible by Macbeth's dual training in arts and sciences. It presents a developmental story of human reason bootstrapping itself towards greater power and clarity through the Western tradition (which is the sole purview of the discussion). This development is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   30 citations  
  15. An Inquiry into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2014 - In Giorgio Venturi, Marco Panza & Gabriele Lolli (eds.), From Logic to Practice: Italian Studies in the Philosophy of Mathematics. Cham: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   17 citations  
  16. Intuitionistic logic and its philosophy.Panu Raatikainen - 2013 - Al-Mukhatabat. A Trilingual Journal For Logic, Epistemology and Analytical Philosophy (6):114-127.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Objectivity Sans Intelligibility. Hermann Weyl's Symbolic Constructivism.Iulian D. Toader - 2011 - Dissertation, University of Notre Dame
    A new form of skepticism is described, which holds that objectivity and understanding are incompossible ideals of modern science. This is attributed to Weyl, hence its name: Weylean skepticism. Two general defeat strategies are then proposed, one of which is rejected.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  18. Affect, behavioural schemas and the proving process.Annie Selden, John Selden & Kerry McKee - 2010 - International Journal for Mathematical Education in Science and Technology 41 (2):199-215.
    In this largely theoretical article, we discuss the relation between a kind of affect, behavioural schemas and aspects of the proving process. We begin with affect as described in the mathematics education literature, but soon narrow our focus to a particular kind of affect – nonemotional cognitive feelings. We then mention the position of feelings in consciousness because that bears on the kind of data about feelings that students can be expected to be able to report. Next we introduce the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. The approximation property in Banach spaces.Luis Loureiro - 2005 - Dissertation,
    J. Schauder introduced the notion of basis in a Banach space in 1927. If a Banach space has a basis then it is also separable. The problem whether every separable Banach space has a Schauder basis appeared for the first time in 1931 in Banach's book "Theory of Linear Operations". If a Banach space has a Schauder basis it also has the approximation property. A Banach space X has the approximation property if for every Banach space Y the finite rank (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Le quantificateur effini, la descente infinie et les preuves de consistance de Gauthier. [REVIEW]Richard Zach - 2004 - Philosophiques 31 (1):221-224.
    Internal Logic brings together several threads of Yvon Gauthier's work on the foundations of mathematics and revisits his attempt to, as he puts it, radicalize Hilbert's Program. A radicalization of Hilbert's Program, I take it, is supposed to take Hilberts' finitary viewpoint more seriously than other attempts to salvage Hilbert's Program have. Such a return to the "roots of Hilbert's metamathematical idea" will, so claims Gauthier, enable him to save Hilbert's Program.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Proof in Mathematics: An Introduction.James Franklin - 1996 - Sydney, Australia: Quakers Hill Press.
    A textbook on proof in mathematics, inspired by an Aristotelian point of view on mathematics and proof. The book expounds the traditional view of proof as deduction of theorems from evident premises via obviously valid steps. It deals with the proof of "all" statements, "some" statements, multiple quantifiers and mathematical induction.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. The formal sciences discover the philosophers' stone.James Franklin - 1994 - Studies in History and Philosophy of Science Part A 25 (4):513-533.
    The formal sciences - mathematical as opposed to natural sciences, such as operations research, statistics, theoretical computer science, systems engineering - appear to have achieved mathematically provable knowledge directly about the real world. It is argued that this appearance is correct.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  23. A Mathematical Model of Aristotle’s Syllogistic.John Corcoran - 1973 - Archiv für Geschichte der Philosophie 55 (2):191-219.
    In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and skill. Several (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   24 citations  
  24. Teoria zdań odrzuconych.Urszula Wybraniec-Skardowska - 1969 - Dissertation, Opole University
    This is the PhD dissertation, written under supervision of Professor Jerzy Słupecki, published in the book: U.Wybraniec-Skardowska i Grzegorz Bryll "Z badań nad teorią zdań odrzuconych" ( "Studies of theory of rejected sentences"), Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Opolu, Seria B: Studia i Monografie nr 22, pp. 5-131. It is the first, original publication on the theory of rejected sentences on which are based, among other, papers: "Theory of rejected propositions. I"and "Theory of rejected propositions II" with Jerzy Słupecki (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations