Switch to: Citations

References in:

Fictionalism in the philosophy of mathematics

Stanford Encyclopedia of Philosophy (2008)

Add references

You must login to add references.
  1. (3 other versions)Two Dogmas of Empiricism.Willard V. O. Quine - 1951 - Philosophical Review 60 (1):20–43.
    Modern empiricism has been conditioned in large part by two dogmas. One is a belief in some fundamental cleavage between truths which are analytic, or grounded in meanings independently of matters of fact, and truth which are synthetic, or grounded in fact. The other dogma is reductionism: the belief that each meaningful statement is equivalent to some logical construct upon terms which refer to immediate experience. Both dogmas, I shall argue, are ill founded. One effect of abandoning them is, as (...)
    Download  
     
    Export citation  
     
    Bookmark   1411 citations  
  • Science Without Numbers: A Defence of Nominalism.Hartry H. Field - 1980 - Princeton, NJ, USA: Princeton University Press.
    Science Without Numbers caused a stir in 1980, with its bold nominalist approach to the philosophy of mathematics and science. It has been unavailable for twenty years and is now reissued in a revised edition with a substantial new preface presenting the author's current views and responses to the issues raised in subsequent debate.
    Download  
     
    Export citation  
     
    Bookmark   559 citations  
  • (1 other version)Mimesis as make-believe: on the foundations of the representational arts.Kendall L. Walton - 1990 - Cambridge: Harvard University Press.
    Mimesis as Make-Believe is important reading for everyone interested in the workings of representational art.
    Download  
     
    Export citation  
     
    Bookmark   483 citations  
  • Realism, Mathematics & Modality.Hartry H. Field - 1989 - New York, NY, USA: Blackwell.
    Download  
     
    Export citation  
     
    Bookmark   408 citations  
  • (2 other versions)Mathematical truth.Paul Benacerraf - 1973 - Journal of Philosophy 70 (19):661-679.
    Download  
     
    Export citation  
     
    Bookmark   701 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   592 citations  
  • Remarks on the Foundations of Mathematics.Ludwig Wittgenstein - 1956 - Oxford: Macmillan. Edited by G. E. M. Anscombe, Rush Rhees & G. H. von Wright.
    Wittgenstein's work remains, undeniably, now, that off one of those few philosophers who will be read by all future generations.
    Download  
     
    Export citation  
     
    Bookmark   280 citations  
  • The Indispensability of Mathematics.Mark Colyvan - 2001 - Oxford, England: Oxford University Press.
    This book not only outlines the indispensability argument in considerable detail but also defends it against various challenges.
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • The nature of mathematical knowledge.Philip Kitcher - 1983 - Oxford: Oxford University Press.
    This book argues against the view that mathematical knowledge is a priori,contending that mathematics is an empirical science and develops historically,just as ...
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • Mathematics Without Numbers: Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1989 - Oxford, England: Oxford University Press.
    Develops a structuralist understanding of mathematics, as an alternative to set- or type-theoretic foundations, that respects classical mathematical truth while ...
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Realism in mathematics.Penelope Maddy - 1990 - New York: Oxford University Prress.
    Mathematicians tend to think of themselves as scientists investigating the features of real mathematical things, and the wildly successful application of mathematics in the physical sciences reinforces this picture of mathematics as an objective study. For philosophers, however, this realism about mathematics raises serious questions: What are mathematical things? Where are they? How do we know about them? Offering a scrupulously fair treatment of both mathematical and philosophical concerns, Penelope Maddy here delineates and defends a novel version of mathematical realism. (...)
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • The Construction of Logical Space.Agustín Rayo - 2013 - Oxford, England: Oxford University Press.
    Our conception of logical space is the set of distinctions we use to navigate the world. Agustn Rayo argues that this is shaped by acceptance or rejection of 'just is'-statements: e.g. 'to be composed of water just is to be composed of H2O'. He offers a novel conception of metaphysical possibility, and a new trivialist philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Naturalism in mathematics.Penelope Maddy - 1997 - New York: Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • Mathematics as a science of patterns.Michael David Resnik - 1997 - New York ;: Oxford University Press.
    This book expounds a system of ideas about the nature of mathematics which Michael Resnik has been elaborating for a number of years. In calling mathematics a science he implies that it has a factual subject-matter and that mathematical knowledge is on a par with other scientific knowledge; in calling it a science of patterns he expresses his commitment to a structuralist philosophy of mathematics. He links this to a defense of realism about the metaphysics of mathematics--the view that mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   243 citations  
  • Intensional Logic and the Metaphysics of Intentionality.Edward N. Zalta - 1988 - Cambridge, MA, USA: MIT Press.
    This book tackles the issues that arise in connection with intensional logic -- a formal system for representing and explaining the apparent failures of certain important principles of inference such as the substitution of identicals and existential generalization -- and intentional states --mental states such as beliefs, hopes, and desires that are directed towards the world. The theory offers a unified explanation of the various kinds of inferential failures associated with intensional logic but also unifies the study of intensional contexts (...)
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • (1 other version)The Problems of Philosophy.Bertrand Russell - 1912 - Revue de Métaphysique et de Morale 21 (1):22-28.
    Download  
     
    Export citation  
     
    Bookmark   630 citations  
  • Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford, England: Oxford University Press USA.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Philosophy of Logic.Hilary Putnam - 1971 - New York, NY, USA: Routledge. Edited by Stephen Laurence & Cynthia Macdonald.
    First published in 1971, Professor Putnam's essay concerns itself with the ontological problem in the philosophy of logic and mathematics - that is, the issue of whether the abstract entities spoken of in logic and mathematics really exist. He also deals with the question of whether or not reference to these abstract entities is really indispensible in logic and whether it is necessary in physical science in general.
    Download  
     
    Export citation  
     
    Bookmark   174 citations  
  • A subject with no object: strategies for nominalistic interpretation of mathematics.John P. Burgess & Gideon Rosen - 1997 - New York: Oxford University Press. Edited by Gideon A. Rosen.
    Numbers and other mathematical objects are exceptional in having no locations in space or time or relations of cause and effect. This makes it difficult to account for the possibility of the knowledge of such objects, leading many philosophers to embrace nominalism, the doctrine that there are no such objects, and to embark on ambitious projects for interpreting mathematics so as to preserve the subject while eliminating its objects. This book cuts through a host of technicalities that have obscured previous (...)
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • Grundgesetze der Arithmetik.Gottlob Frege - 1893 - Hildesheim,: G.Olms.
    Download  
     
    Export citation  
     
    Bookmark   147 citations  
  • Deflating Existential Consequence: A Case for Nominalism.Jody Azzouni - 2004 - Oxford, England: Oup Usa.
    If we must take mathematical statements to be true, must we also believe in the existence of abstract eternal invisible mathematical objects accessible only by the power of pure thought? Jody Azzouni says no, and he claims that the way to escape such commitments is to accept true statements which are about objects that don't exist in any sense at all. Azzouni illustrates what the metaphysical landscape looks like once we avoid a militant Realism which forces our commitment to anything (...)
    Download  
     
    Export citation  
     
    Bookmark   119 citations  
  • Are there genuine mathematical explanations of physical phenomena?Alan Baker - 2005 - Mind 114 (454):223-238.
    Many explanations in science make use of mathematics. But are there cases where the mathematical component of a scientific explanation is explanatory in its own right? This issue of mathematical explanations in science has been for the most part neglected. I argue that there are genuine mathematical explanations in science, and present in some detail an example of such an explanation, taken from evolutionary biology, involving periodical cicadas. I also indicate how the answer to my title question impacts on broader (...)
    Download  
     
    Export citation  
     
    Bookmark   257 citations  
  • (1 other version)Fiction and Metaphysics.Amie Thomasson - 1999 - Journal of Aesthetics and Art Criticism 60 (2):190-192.
    Download  
     
    Export citation  
     
    Bookmark   256 citations  
  • Modal fictionalism.Gideon Rosen - 1990 - Mind 99 (395):327-354.
    Download  
     
    Export citation  
     
    Bookmark   201 citations  
  • Constructibility and mathematical existence.Charles S. Chihara - 1990 - New York: Oxford University Press.
    This book is concerned with `the problem of existence in mathematics'. It develops a mathematical system in which there are no existence assertions but only assertions of the constructibility of certain sorts of things. It explores the philosophical implications of such an approach through an examination of the writings of Field, Burgess, Maddy, Kitcher, and others.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • Mathematical Explanation in Science.Alan Baker - 2009 - British Journal for the Philosophy of Science 60 (3):611-633.
    Does mathematics ever play an explanatory role in science? If so then this opens the way for scientific realists to argue for the existence of mathematical entities using inference to the best explanation. Elsewhere I have argued, using a case study involving the prime-numbered life cycles of periodical cicadas, that there are examples of indispensable mathematical explanations of purely physical phenomena. In this paper I respond to objections to this claim that have been made by various philosophers, and I discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   173 citations  
  • Language and Other Abstract Objects.Jerrold J. Katz - 1980 - Rowman & Littlefield Publishers.
    To find more information about Rowman and Littlefield titles, please visit www.rowmanlittlefield.com.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Platonism and Anti-Platonism in Mathematics.Mark Balaguer - 1998 - Bulletin of Symbolic Logic 8 (4):516-518.
    This book does three main things. First, it defends mathematical platonism against the main objections to that view (most notably, the epistemological objection and the multiple-reductions objection). Second, it defends anti-platonism (in particular, fictionalism) against the main objections to that view (most notably, the Quine-Putnam indispensability objection and the objection from objectivity). Third, it argues that there is no fact of the matter whether abstract mathematical objects exist and, hence, no fact of the matter whether platonism or anti-platonism is true.
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • There is No Easy Road to Nominalism.M. Colyvan - 2010 - Mind 119 (474):285-306.
    Hartry Field has shown us a way to be nominalists: we must purge our scientific theories of quantification over abstracta and we must prove the appropriate conservativeness results. This is not a path for the faint hearted. Indeed, the substantial technical difficulties facing Field's project have led some to explore other, easier options. Recently, Jody Azzouni, Joseph Melia, and Stephen Yablo have argued that it is a mistake to read our ontological commitments simply from what the quantifiers of our best (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • (1 other version)Intuitionism.Arend Heyting - 1956 - Amsterdam,: North-Holland Pub. Co..
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Ontology and Metaontology: A Contemporary Guide.Francesco Berto & Matteo Plebani - 2015 - New York: Bloomsbury Academic. Edited by Matteo Plebani.
    'Ontology and Metaontology: A Contemporary Guide' is a clear and accessible survey of ontology, focussing on the most recent trends in the discipline. -/- Divided into parts, the first half characterizes metaontology: the discourse on the methodology of ontological inquiry, covering the main concepts, tools, and methods of the discipline, exploring the notions of being and existence, ontological commitment, paraphrase strategies, fictionalist strategies, and other metaontological questions. The second half considers a series of case studies, introducing and familiarizing the reader (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Reference to numbers in natural language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.
    A common view is that natural language treats numbers as abstract objects, with expressions like the number of planets, eight, as well as the number eight acting as referential terms referring to numbers. In this paper I will argue that this view about reference to numbers in natural language is fundamentally mistaken. A more thorough look at natural language reveals a very different view of the ontological status of natural numbers. On this view, numbers are not primarily treated abstract objects, (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • (2 other versions)Philosophy of mathematics: selected readings.Paul Benacerraf & Hilary Putnam (eds.) - 1983 - New York: Cambridge University Press.
    The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Weaseling away the indispensability argument.Joseph Melia - 2000 - Mind 109 (435):455-480.
    According to the indispensability argument, the fact that we quantify over numbers, sets and functions in our best scientific theories gives us reason for believing that such objects exist. I examine a strategy to dispense with such quantification by simply replacing any given platonistic theory by the set of sentences in the nominalist vocabulary it logically entails. I argue that, as a strategy, this response fails: for there is no guarantee that the nominalist world that go beyond the set of (...)
    Download  
     
    Export citation  
     
    Bookmark   177 citations  
  • Mathematics without foundations.Hilary Putnam - 1967 - Journal of Philosophy 64 (1):5-22.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • (1 other version)Nominalism, Naturalism, Epistemic Relativism.Gideon Rosen - 2001 - Noûs 35 (s15):69 - 91.
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • The structuralist view of mathematical objects.Charles Parsons - 1990 - Synthese 84 (3):303 - 346.
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • Hermeneutic fictionalism.Jason Stanley - 2001 - Midwest Studies in Philosophy 25 (1):36–71.
    Fictionalist approaches to ontology have been an accepted part of philosophical methodology for some time now. On a fictionalist view, engaging in discourse that involves apparent reference to a realm of problematic entities is best viewed as engaging in a pretense. Although in reality, the problematic entities do not exist, according to the pretense we engage in when using the discourse, they do exist. In the vocabulary of Burgess and Rosen (1997, p. 6), a nominalist construal of a given discourse (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Mathematics and reality.Mary Leng - 2010 - Bulletin of Symbolic Logic 17 (2):267-268.
    Download  
     
    Export citation  
     
    Bookmark   115 citations  
  • The myth of the seven.Stephen Yablo - 2005 - In Mark Eli Kalderon (ed.), Fictionalism in Metaphysics. New York: Oxford University Press UK. pp. 88--115.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Talking About Nothing: Numbers, Hallucinations and Fictions.Jody Azzouni - 2010 - Oxford, England: Oxford University Press USA.
    Ordinary language and scientific language enable us to speak about, in a singular way, what we recognize not to exist: fictions, the contents of our hallucinations, abstract objects, and various idealized but nonexistent objects that our scientific theories are often couched in terms of. Indeed, references to such nonexistent items-especially in the case of the application of mathematics to the sciences-are indispensable. We cannot avoid talking about such things. Scientific and ordinary languages thus enable us to say things about Pegasus (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Epistemological Challenges to Mathematical Platonism.Øystein Linnebo - 2006 - Philosophical Studies 129 (3):545-574.
    Since Benacerraf’s “Mathematical Truth” a number of epistemological challenges have been launched against mathematical platonism. I first argue that these challenges fail because they unduely assimilate mathematics to empirical science. Then I develop an improved challenge which is immune to this criticism. Very roughly, what I demand is an account of how people’s mathematical beliefs are responsive to the truth of these beliefs. Finally I argue that if we employ a semantic truth-predicate rather than just a deflationary one, there surprisingly (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • (1 other version)Mathematical knowledge.Mark Steiner - 1975 - Ithaca: Cornell University Press.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Calculus as Geometry.Frank Arntzenius & Cian Dorr - 2012 - In Space, time, & stuff. New York: Oxford Univ. Press.
    We attempt to extend the nominalistic project initiated in Hartry Field's Science Without Numbers to modern physical theories based in differential geometry.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Explanation, Extrapolation, and Existence.Stephen Yablo - 2012 - Mind 121 (484):1007-1029.
    Mark Colyvan (2010) raises two problems for ‘easy road’ nominalism about mathematical objects. The first is that a theory’s mathematical commitments may run too deep to permit the extraction of nominalistic content. Taking the math out is, or could be, like taking the hobbits out of Lord of the Rings. I agree with the ‘could be’, but not (or not yet) the ‘is’. A notion of logical subtraction is developed that supports the possibility, questioned by Colyvan, of bracketing a theory’s (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Mathematics and indispensability.Elliott Sober - 1993 - Philosophical Review 102 (1):35-57.
    Realists persuaded by indispensability arguments af- firm the existence of numbers, genes, and quarks. Van Fraassen's empiricism remains agnostic with respect to all three. The point of agreement is that the posits of mathematics and the posits of biology and physics stand orfall together. The mathematical Platonist can take heart from this consensus; even if the existence of num- bers is still problematic, it seems no more problematic than the existence of genes or quarks. If the two positions just described (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Mathematics and aesthetic considerations in science.Mark Colyvan - 2002 - Mind 111 (441):69-74.
    Download  
     
    Export citation  
     
    Bookmark   81 citations  
  • Metaphysical Myths, Mathematical Practice: The Ontology and Epistemology of the Exact Sciences.Jody Azzouni - 1994 - New York: Cambridge University Press.
    Most philosophers of mathematics try to show either that the sort of knowledge mathematicians have is similar to the sort of knowledge specialists in the empirical sciences have or that the kind of knowledge mathematicians have, although apparently about objects such as numbers, sets, and so on, isn't really about those sorts of things as well. Jody Azzouni argues that mathematical knowledge really is a special kind of knowledge with its own special means of gathering evidence. He analyses the linguistic (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Realistic Rationalism.Jerrold J. Katz - 1997 - Bradford.
    In _Realistic Rationalism_, Jerrold J. Katz develops a new philosophical position integrating realism and rationalism. Realism here means that the objects of study in mathematics and other formal sciences are abstract; rationalism means that our knowledge of them is not empirical. Katz uses this position to meet the principal challenges to realism. In exposing the flaws in criticisms of the antirealists, he shows that realists can explain knowledge of abstract objects without supposing we have causal contact with them, that numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations