Switch to: Citations

Add references

You must login to add references.
  1. Are Our Logical and Mathematical Concepts Highly Indeterminate?Hartry Field - 1994 - Midwest Studies in Philosophy 19 (1):391-429.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The consistency of Frege's foundations of arithmetic.George Boolos - 1987 - In Judith Jarvis Thomson (ed.), On Being and Saying: Essays for Richard Cartwright. MIT Press. pp. 3--20.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Abstract Objects: An Introduction to Axiomatic Metaphysics.Edward N. Zalta - 1983 - Dordrecht, Netherland: D. Reidel.
    In this book, Zalta attempts to lay the axiomatic foundations of metaphysics by developing and applying a (formal) theory of abstract objects. The cornerstones include a principle which presents precise conditions under which there are abstract objects and a principle which says when apparently distinct such objects are in fact identical. The principles are constructed out of a basic set of primitive notions, which are identified at the end of the Introduction, just before the theorizing begins. The main reason for (...)
    Download  
     
    Export citation  
     
    Bookmark   181 citations  
  • Structure and identity.Stewart Shapiro - 2006 - In Fraser MacBride (ed.), Identity and modality. New York: Oxford University Press. pp. 34--69.
    According to ante rem structuralism a branch of mathematics, such as arithmetic, is about a structure, or structures, that exist independent of the mathematician, and independent of any systems that exemplify the structure. A structure is a universal of sorts: structure is to exemplified system as property is to object. So ante rem structuralist is a form of ante rem realism concerning universals. Since the appearance of my Philosophy of mathematics: Structure and ontology, a number of criticisms of the idea (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Essence and modality.Kit Fine - 1994 - Philosophical Perspectives 8 (Logic and Language):1-16.
    It is my aim in this paper to show that the contemporary assimilation of essence to modality is fundamentally misguided and that, as a consequence, the corresponding conception of metaphysics should be given up. It is not my view that the modal account fails to capture anything which might reasonably be called a concept of essence. My point, rather, is that the notion of essence which is of central importance to the metaphysics of identity is not to be understood in (...)
    Download  
     
    Export citation  
     
    Bookmark   941 citations  
  • How to say goodbye to the third man.Francis Jeffry Pelletier & Edward N. Zalta - 2000 - Noûs 34 (2):165–202.
    In (1991), Meinwald initiated a major change of direction in the study of Plato’s Parmenides and the Third Man Argument. On her conception of the Parmenides , Plato’s language systematically distinguishes two types or kinds of predication, namely, predications of the kind ‘x is F pros ta alla’ and ‘x is F pros heauto’. Intuitively speaking, the former is the common, everyday variety of predication, which holds when x is any object (perceptible object or Form) and F is a property (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Mathematical structuralism and the identity of indiscernibles.James Ladyman - 2005 - Analysis 65 (3):218–221.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Logical and analytic truths that are not necessary.Edward N. Zalta - 1988 - Journal of Philosophy 85 (2):57-74.
    The author describes an interpreted modal language and produces some clear examples of logical and analytic truths that are not necessary. These examples: (a) are far simpler than the ones cited in the literature, (b) show that a popular conception of logical truth in modal languages is incorrect, and (c) show that there are contingent truths knowable ``a priori'' that do not depend on fixing the reference of a term.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Mathematics as a science of patterns: Ontology and reference.Michael Resnik - 1981 - Noûs 15 (4):529-550.
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Mathematics without foundations.Hilary Putnam - 1967 - Journal of Philosophy 64 (1):5-22.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Three varieties of mathematical structuralism.Geoffrey Hellman - 2001 - Philosophia Mathematica 9 (2):184-211.
    Three principal varieties of mathematical structuralism are compared: set-theoretic structuralism (‘STS’) using model theory, Shapiro's ante rem structuralism invoking sui generis universals (‘SGS’), and the author's modal-structuralism (‘MS’) invoking logical possibility. Several problems affecting STS are discussed concerning, e.g., multiplicity of universes. SGS overcomes these; but it faces further problems of its own, concerning, e.g., the very intelligibility of purely structural objects and relations. MS, in contrast, overcomes or avoids both sets of problems. Finally, it is argued that the modality (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • An answer to Hellman's question: ‘Does category theory provide a framework for mathematical structuralism?’.Steve Awodey - 2004 - Philosophia Mathematica 12 (1):54-64.
    An affirmative answer is given to the question quoted in the title.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • (2 other versions)The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.
    Download  
     
    Export citation  
     
    Bookmark   821 citations  
  • Structuralism and the identity of indiscernibles.Jeffrey Ketland - 2006 - Analysis 66 (4):303-315.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • (3 other versions)Principles of mathematics.Bertrand Russell - 1931 - New York,: W.W. Norton & Company.
    Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege to a wider (...)
    Download  
     
    Export citation  
     
    Bookmark   462 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • Haecceities and Mathematical Structuralism.Christopher Menzel - 2018 - Philosophia Mathematica 26 (1):84-111.
    Recent work in the philosophy of mathematics has suggested that mathematical structuralism is not committed to a strong form of the Identity of Indiscernibles (II). José Bermúdez demurs, and argues that a strong form of II can be warranted on structuralist grounds by countenancing identity properties, or haecceities, as legitimately structural. Typically, structuralists dismiss such properties as obviously non-structural. I will argue to the contrary that haecceities can be viewed as structural but that this concession does not warrant Bermúdez’s version (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Identity Problem for Realist Structuralism.J. Keranen - 2001 - Philosophia Mathematica 9 (3):308--330.
    According to realist structuralism, mathematical objects are places in abstract structures. We argue that in spite of its many attractions, realist structuralism must be rejected. For, first, mathematical structures typically contain intra-structurally indiscernible places. Second, any account of place-identity available to the realist structuralist entails that intra-structurally indiscernible places are identical. Since for her mathematical singular terms denote places in structures, she would have to say, for example, that 1 = − 1 in the group (Z, +). We call this (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Mathematics Without Numbers: Towards a Modal-Structural Interpretation.Geoffrey Hellman - 1989 - Oxford, England: Oxford University Press.
    Develops a structuralist understanding of mathematics, as an alternative to set- or type-theoretic foundations, that respects classical mathematical truth while ...
    Download  
     
    Export citation  
     
    Bookmark   263 citations  
  • Identity, indiscernibility, and Ante Rem structuralism: The tale of I and –I.Stewart Shapiro - 2008 - Philosophia Mathematica 16 (3):285-309.
    Some authors have claimed that ante rem structuralism has problems with structures that have indiscernible places. In response, I argue that there is no requirement that mathematical objects be individuated in a non-trivial way. Metaphysical principles and intuitions to the contrary do not stand up to ordinary mathematical practice, which presupposes an identity relation that, in a sense, cannot be defined. In complex analysis, the two square roots of –1 are indiscernible: anything true of one of them is true of (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Neo-logicism? An ontological reduction of mathematics to metaphysics.Edward N. Zalta - 2000 - Erkenntnis 53 (1-2):219-265.
    In this paper, we describe "metaphysical reductions", in which the well-defined terms and predicates of arbitrary mathematical theories are uniquely interpreted within an axiomatic, metaphysical theory of abstract objects. Once certain (constitutive) facts about a mathematical theory T have been added to the metaphysical theory of objects, theorems of the metaphysical theory yield both an analysis of the reference of the terms and predicates of T and an analysis of the truth of the sentences of T. The well-defined terms and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Essence and modality.Edward N. Zalta - 2006 - Mind 115 (459):659-693.
    Some recently-proposed counterexamples to the traditional definition of essential property do not require a separate logic of essence. Instead, the examples can be analysed in terms of the logic and theory of abstract objects. This theory distinguishes between abstract and ordinary objects, and provides a general analysis of the essential properties of both kinds of object. The claim ‘x has F necessarily’ becomes ambiguous in the case of abstract objects, and in the case of ordinary objects there are various ways (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Structuralism and the notion of dependence.Øystein Linnebo - 2008 - Philosophical Quarterly 58 (230):59-79.
    This paper has two goals. The first goal is to show that the structuralists’ claims about dependence are more significant to their view than is generally recognized. I argue that these dependence claims play an essential role in the most interesting and plausible characterization of this brand of structuralism. The second goal is to defend a compromise view concerning the dependence relations that obtain between mathematical objects. Two extreme views have tended to dominate the debate, namely the view that all (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   590 citations  
  • Frege, Boolos, and logical objects.David J. Anderson & Edward N. Zalta - 2004 - Journal of Philosophical Logic 33 (1):1-26.
    In this paper, the authors discuss Frege's theory of "logical objects" and the recent attempts to rehabilitate it. We show that the 'eta' relation George Boolos deployed on Frege's behalf is similar, if not identical, to the encoding mode of predication that underlies the theory of abstract objects. Whereas Boolos accepted unrestricted Comprehension for Properties and used the 'eta' relation to assert the existence of logical objects under certain highly restricted conditions, the theory of abstract objects uses unrestricted Comprehension for (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • What constitutes the numerical diversity of mathematical objects?F. MacBride - 2006 - Analysis 66 (1):63-69.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Good-bye to the Third Man.Constance Meinwald - 1992 - In Richard Kraut (ed.), The Cambridge Companion to Plato. New York, NY, USA: Cambridge University Press. pp. 365--396.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Fiction and Metaphysics.Peter van Inwagen - 1983 - Philosophy and Literature 7 (1):67-77.
    In lieu of an abstract, here is a brief excerpt of the content:Peter van Inwagen FICTION AND METAPHYSICS Many works of fiction address themselves directly to metaphysiced issues. One thinks of the stories of Olaf Stapledon, Charles Williams, or Jorge Luis Borges. Other fiction is more subtly and indirectly related to metaphysics — A la recherche du temps perdu, for exeimple, or, in a radier different way, some science fiction. The relations that various novels and stories bear to the questions (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • (1 other version)Grundlagen der Arithmetik: Studienausgabe mit dem Text der Centenarausgabe.Gottlob Frege - 1884 - Breslau: Wilhelm Koebner Verlag.
    Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
    Download  
     
    Export citation  
     
    Bookmark   309 citations  
  • Criteria of identity and structuralist ontology.Hannes Leitgib & James Ladyman - 2008 - Philosophia Mathematica 16 (3):388-396.
    In discussions about whether the Principle of the Identity of Indiscernibles is compatible with structuralist ontologies of mathematics, it is usually assumed that individual objects are subject to criteria of identity which somehow account for the identity of the individuals. Much of this debate concerns structures that admit of non-trivial automorphisms. We consider cases from graph theory that violate even weak formulations of PII. We argue that (i) the identity or difference of places in a structure is not to be (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2002 - Philosophy and Phenomenological Research 65 (2):467-475.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Structuralism reconsidered.Fraser MacBride - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 563--589.
    The basic relations and functions that mathematicians use to identify mathematical objects fail to settle whether mathematical objects of one kind are identical to or distinct from objects of an apparently different kind, and what, if any, intrinsic properties mathematical objects possess. According to one influential interpretation of mathematical discourse, this is because the objects under study are themselves incomplete; they are positions or akin to positions in patterns or structures. Two versions of this idea are examined. It is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • The Significance of Complex Numbers for Frege's Philosophy of Mathematics.Robert Brandom - 1996 - Proceedings of the Aristotelian Society 96 (1):293 - 315.
    Robert Brandom; XII*—The Significance of Complex Numbers for Frege's Philosophy of Mathematics1, Proceedings of the Aristotelian Society, Volume 96, Issue 1, 1.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Dedekind's structuralism: An interpretation and partial defense.Erich H. Reck - 2003 - Synthese 137 (3):369 - 419.
    Various contributors to recent philosophy of mathematics havetaken Richard Dedekind to be the founder of structuralismin mathematics. In this paper I examine whether Dedekind did, in fact, hold structuralist views and, insofar as that is the case, how they relate to the main contemporary variants. In addition, I argue that his writings contain philosophical insights that are worth reexamining and reviving. The discussion focusses on Dedekind''s classic essay Was sind und was sollen die Zahlen?, supplemented by evidence from Stetigkeit und (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • The structuralist view of mathematical objects.Charles Parsons - 1990 - Synthese 84 (3):303 - 346.
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Logical structuralism and Benacerraf’s problem.Audrey Yap - 2009 - Synthese 171 (1):157-173.
    There are two general questions which many views in the philosophy of mathematics can be seen as addressing: what are mathematical objects, and how do we have knowledge of them? Naturally, the answers given to these questions are linked, since whatever account we give of how we have knowledge of mathematical objects surely has to take into account what sorts of things we claim they are; conversely, whatever account we give of the nature of mathematical objects must be accompanied by (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mathematical Structuralism and the Third Man.Michael Hand - 1993 - Canadian Journal of Philosophy 23 (2):179 - 192.
    Plato himself would be pleased at the recent emergence of a certain highly Platonic variety of platonism concerning mathematics, viz., the structuralism of Michael Resnik and Stewart Shapiro. In fact, this species of platonism is so Platonic that it is susceptible to an objection closely related to one raised against Plato by Parmenides in the dialogue of that name. This is the Third Man Argument against a view about the relation of Forms to particulars. My objection is not a TMA (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Structures and structuralism in contemporary philosophy of mathematics.Erich H. Reck & Michael P. Price - 2000 - Synthese 125 (3):341-383.
    In recent philosophy of mathematics avariety of writers have presented ``structuralist''views and arguments. There are, however, a number ofsubstantive differences in what their proponents take``structuralism'' to be. In this paper we make explicitthese differences, as well as some underlyingsimilarities and common roots. We thus identifysystematically and in detail, several main variants ofstructuralism, including some not often recognized assuch. As a result the relations between thesevariants, and between the respective problems theyface, become manifest. Throughout our focus is onsemantic and metaphysical issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Was Sind und was Sollen Die Zahlen?Richard Dedekind - 1888 - Cambridge University Press.
    This influential 1888 publication explained the real numbers, and their construction and properties, from first principles.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Mathematics as a science of patterns. [REVIEW]Mark Steiner - 2000 - Philosophical Review 109 (1):115-118.
    For the past hundred years, mathematics, for its own reasons, has been shifting away from the study of “mathematical objects” and towards the study of “structures”. One would have expected philosophers to jump onto the bandwagon, as in many other cases, to proclaim that this shift is no accident, since mathematics is “essentially” about structures, not objects. In fact, structuralism has not been a very popular philosophy of mathematics, probably because of the hostility of Frege and other influential logicists, and (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Structuralism and metaphysics.Charles Parsons - 2004 - Philosophical Quarterly 54 (214):56--77.
    I consider different versions of a structuralist view of mathematical objects, according to which characteristic mathematical objects have no more of a 'nature' than is given by the basic relations of a structure in which they reside. My own version of such a view is non-eliminative in the sense that it does not lead to a programme for eliminating reference to mathematical objects. I reply to criticisms of non-eliminative structuralism recently advanced by Keränen and Hellman. In replying to the former, (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Mathematics as a science of patterns: Epistemology.Michael Resnik - 1982 - Noûs 16 (1):95-105.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Meinongian theories and a Russellian paradox.William J. Rapaport - 1978 - Noûs 12 (2):153-180.
    This essay re-examines Meinong's "Über Gegenstandstheorie" and undertakes a clarification and revision of it that is faithful to Meinong, overcomes the various objections to his theory, and is capable of offering solutions to various problems in philosophy of mind and philosophy of language. I then turn to a discussion of a historically and technically interesting Russell-style paradox (now known as "Clark's Paradox") that arises in the modified theory. I also examine the alternative Meinong-inspired theories of Hector-Neri Castañeda and Terence Parsons.
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • What is neologicism?Bernard Linsky & Edward N. Zalta - 2006 - Bulletin of Symbolic Logic 12 (1):60-99.
    In this paper, we investigate (1) what can be salvaged from the original project of "logicism" and (2) what is the best that can be done if we lower our sights a bit. Logicism is the view that "mathematics is reducible to logic alone", and there are a variety of reasons why it was a non-starter. We consider the various ways of weakening this claim so as to produce a "neologicism". Three ways are discussed: (1) expand the conception of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The Julius caesar objection : More problematic than ever.Fraser MacBride - 2006 - In Identity and modality. New York: Oxford University Press. pp. 174.
    This paper investigates the meta-ontological problem, what is the Julius Caesar objection? I distinguish epistemic, metaphysical and semantic versions. I argue that neo-Fregean and supervaluationist solutions to the Caesar objection fails because, amongst other flaws, they fail to determine which version of the problem is in play.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Grundlagen der Arithmetik: Studienausgabe mit dem Text der Centenarausgabe.Gottlob Frege - 1988 - Meiner, F.
    Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • Mathematics. A science of patterns?Gianluigi Oliveri - 1997 - Synthese 112 (3):379-402.
    The present article aims at showing that it is possible to construct a realist philosophy of mathematics which commits one neither to dream the dreams of Platonism nor to reduce the word ''realism'' to mere noise. It is argued that mathematics is a science of patterns, where patterns are not objects (or properties of objects), but aspects, or aspects of aspects, etc. of objects. (The notion of aspect originates from ideas sketched by Wittgenstein in the Philosophical Investigations.).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematics as a Science of Patterns. [REVIEW]Eric D. Hetherington - 1999 - Review of Metaphysics 53 (1):196-197.
    Resnik presents a position in the philosophy of mathematics that combines realism, naturalism, and structuralism. The book is well written and, much to Resnik’s credit, it does not rely on sophisticated mathematics to make its philosophical points. Part 1, “Problems and Positions,” explains Resnik’s mathematical realism, argues that indispensability arguments provide a justification for it, and provides cogent criticism of antirealist alternatives that try to undermine such arguments. Part 2, “.
    Download  
     
    Export citation  
     
    Bookmark   2 citations