Results for 'GODEL ARITHMETIC'

577 found
Order:
  1. There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - 2021 - Philosophia Mathematica 29 (2):278–287.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The gödel paradox and Wittgenstein's reasons.Francesco Berto - 2009 - Philosophia Mathematica 17 (2):208-219.
    An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  4. Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number theory that are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. On the Arithmetical Truth of Self‐Referential Sentences.Kaave Lajevardi & Saeed Salehi - 2019 - Theoria 85 (1):8-17.
    We take an argument of Gödel's from his ground‐breaking 1931 paper, generalize it, and examine its validity. The argument in question is this: "the sentence G says about itself that it is not provable, and G is indeed not provable; therefore, G is true".
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the relation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Arithmetic logical Irreversibility and the Halting Problem (Revised and Fixed version).Yair Lapin - manuscript
    The Turing machine halting problem can be explained by several factors, including arithmetic logic irreversibility and memory erasure, which contribute to computational uncertainty due to information loss during computation. Essentially, this means that an algorithm can only preserve information about an input, rather than generate new information. This uncertainty arises from characteristics such as arithmetic logical irreversibility, Landauer's principle, and memory erasure, which ultimately lead to a loss of information and an increase in entropy. To measure this uncertainty (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14.  85
    Wittgenstein x Gödel: reflexões sobre o Teorema da Incompletude.Rafael Ongaratto - 2024 - Dissertation, Unicamp
    In the Appendix I of his "Remarks on the Foundations of Mathematics", Wittgenstein elaborates a different interpretation of Gödel’s First Incompleteness Theorem, which we have come to refer to as "Gödel’s Theorem" or "Incompleteness Theorem". This nomenclature arises from the recognition that the so-called "Second Incompleteness Theorem" is essentially a corollary of the primary theorem. Wittgenstein aims to reassess Gödel’s conclusion that there exist true formulas not demonstrable within formal systems capable of representing a sufficient amount of arithmetic theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. From Traditional Set Theory – that of Cantor, Hilbert , Gödel, Cohen – to Its Necessary Quantum Extension.Edward G. Belaga - manuscript
    The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. (1 other version)Information recovery problems.John Corcoran - 1995 - Theoria 10 (3):55-78.
    An information recovery problem is the problem of constructing a proposition containing the information dropped in going from a given premise to a given conclusion that folIows. The proposition(s) to beconstructed can be required to satisfy other conditions as well, e.g. being independent of the conclusion, or being “informationally unconnected” with the conclusion, or some other condition dictated by the context. This paper discusses various types of such problems, it presents techniques and principles useful in solving them, and it develops (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  27. The Boundary between Mind and Machine.Dingzhou Fei - 2018 - Journal of Human Cognition 2 (1):5-15.
    The mind-body problem is one of the important topics in philosophy of mind and cognitive science. Following the analytical tradition of linguistic and logical analysis, we focus on two aspects of the mind- body problem: one is around Gödel's incompleteness theorem, and the other is on cognitive logic, especially on the question of whether Epistemological Arithmetic and machines are private. In the former case, in response to the popular view that the Gödel Incompleteness Theorem supports dualism in the mind-body (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Truth and Existence.Jan Heylen & Leon Horsten - 2017 - Thought: A Journal of Philosophy 6 (1):106-114.
    Halbach has argued that Tarski biconditionals are not ontologically conservative over classical logic, but his argument is undermined by the fact that he cannot include a theory of arithmetic, which functions as a theory of syntax. This article is an improvement on Halbach's argument. By adding the Tarski biconditionals to inclusive negative free logic and the universal closure of minimal arithmetic, which is by itself an ontologically neutral combination, one can prove that at least one thing exists. The (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  29. The Liar Syndrome.Albert A. Johnstone - 2002 - SATS 3 (1):37-55.
    This article examines the various Liar paradoxes and their near kin, Grelling’s paradox and Gödel’s Incompleteness Theorem with its self-referential Gödel sentence. It finds the family of paradoxes to be generated by circular definition–whether of statements, predicates, or sentences–a manoeuvre that generates pseudo-statements afflicted with the Liar syndrome: semantic vacuity, semantic incoherence, and predicative catalepsy. Such statements, e.g., the self-referential Liar statement, are meaningless, and hence fail to say anything, a point that invalidates the reasoning on which the various paradoxes (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  30. Formal Background for the Incompleteness and Undefinability Theorems.Richard Kimberly Heck - manuscript
    A teaching document I've used in my courses on truth and on incompleteness. Aimed at students who have a good grasp of basic logic, and decent math skills, it attempts to give them the background they need to understand a proper statement of the classic results due to Gödel and Tarski, and sketches their proofs. Topics covered include the notions of language and theory, the basics of formal syntax and arithmetization, formal arithmetic (Q and PA), representability, diagonalization, and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Information-theoretic logic and transformation-theoretic logic,.John Corcoran - 1999 - In R. A. M. M. (ed.), Fragments in Science,. World Scientific Publishing Company,. pp. 25-35.
    Information-theoretic approaches to formal logic analyze the "common intuitive" concepts of implication, consequence, and validity in terms of information content of propositions and sets of propositions: one given proposition implies a second if the former contains all of the information contained by the latter; one given proposition is a consequence of a second if the latter contains all of the information contained by the former; an argument is valid if the conclusion contains no information beyond that of the premise-set. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Gödelova věta a relace logického důsledku.Jaroslav Zouhar - 2010 - Teorie Vědy / Theory of Science 32 (1):59-95.
    In his proof of the first incompleteness theorem, Kurt Gödel provided a method of showing the truth of specific arithmetical statements on the condition that all the axioms of a certain formal theory of arithmetic are true. Furthermore, the statement whose truth is shown in this way cannot be proved in the theory in question. Thus it may seem that the relation of logical consequence is wider than the relation of derivability by a pre-defined set of rules. The aim (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Neo-Logicism and Gödelian Incompleteness.Fabian Pregel - 2023 - Mind 131 (524):1055-1082.
    There is a long-standing gap in the literature as to whether Gödelian incompleteness constitutes a challenge for Neo-Logicism, and if so how serious it is. In this paper, I articulate and address the challenge in detail. The Neo-Logicist project is to demonstrate the analyticity of arithmetic by deriving all its truths from logical principles and suitable definitions. The specific concern raised by Gödel’s first incompleteness theorem is that no single sound system of logic syntactically implies all arithmetical truths. I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Философия на квантовата информация.Vasil Penchev - 2009 - Sofia: BAS: IPhR.
    The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is entanglement. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Logical Foundations of Local Gauge Symmetry and Symmetry Breaking.Yingrui Yang - 2022 - Journal of Human Cognition 6 (1):18-23.
    The present paper intends to report two results. It is shown that the formula P(x)=∀y∀z[¬G(x, y)→¬M(z)] provides the logic underlying gauge symmetry, where M denotes the predicate of being massive. For the logic of spontaneous symmetry breaking, by Higgs mechanism, we have P(x)=∀y∀z[G(x, y)→M(z)]. Notice that the above two formulas are not logically equivalent. The results are obtained by integrating four components, namely, gauge symmetry and Higgs mechanism in quantum field theory, and Gödel's incompleteness theorem and Tarski's indefinability theorem in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system of proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39. Soundness does not come for free (if at all).Kaave Lajevardi & Saeed Salehi - manuscript
    We respond to some of the points made by Bennet and Blanck (2022) concerning a previous publication of ours (2021).
    Download  
     
    Export citation  
     
    Bookmark  
  40. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ - (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the newly established quantum information (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Russell's Logicism.Kevin C. Klement - 2018 - In Russell Wahl (ed.), The Bloomsbury Companion to Bertrand Russell. New York, USA: Bloomsbury. pp. 151-178.
    Bertrand Russell was one of the best-known proponents of logicism: the theory that mathematics reduces to, or is an extension of, logic. Russell argued for this thesis in his 1903 The Principles of Mathematics and attempted to demonstrate it formally in Principia Mathematica (PM 1910–1913; with A. N. Whitehead). Russell later described his work as a further “regressive” step in understanding the foundations of mathematics made possible by the late 19th century “arithmetization” of mathematics and Frege’s logical definitions of arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. On the weak Kleene scheme in Kripke's theory of truth.James Cain & Zlatan Damnjanovic - 1991 - Journal of Symbolic Logic 56 (4):1452-1468.
    It is well known that the following features hold of AR + T under the strong Kleene scheme, regardless of the way the language is Gödel numbered: 1. There exist sentences that are neither paradoxical nor grounded. 2. There are 2ℵ0 fixed points. 3. In the minimal fixed point the weakly definable sets (i.e., sets definable as {n∣ A(n) is true in the minimal fixed point where A(x) is a formula of AR + T) are precisely the Π1 1 sets. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  45. Syntactical Treatment of Modalities, 6 February.Lorenz Demey & Jan Heylen - 2013 - The Reasoner 7 (4):45-45.
    The workshop took place in Leuven, Belgium, and was hosted by the KU Leuven's Centre for Logic and Analytic Philosophy. The workshop’s theme was the syntactical treatment of (alethic, epistemic, etc.) modalities. The standard view on modalities nowadays is that they are operators. Syntactic theories, however, treat modalities as predicates, and thus have to assume a background theory which is sufficiently strong to encode its own formulas (usually, one works with some system of arithmetic and Gödel coding). As a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Теоремата на Мартин Льоб във философска интерпретация.Vasil Penchev - 2011 - Philosophical Alternatives 20 (4):142-152.
    А necessary and sllmcient condilion that а given proposition (о Ье provable in such а theory that allows (о Ье assigned to the proposition а Gödеl пunbег fог containing Реanо arithmetic is that Gödеl number itself. This is tlle sense о[ Martin LöЬ's theorem (1955). Now wе сan рut several philosophpllical questions. Is the Gödеl numbег of а propositional formula necessarily finite or onthe contrary? What would the Gödel number of а theorem be containing Реanо arithmetic itself? That (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a specific sequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The Prolog Inference Model refutes Tarski Undefinability.P. Olcott - manuscript
    The generalized conclusion of the Tarski and Gödel proofs: All formal systems of greater expressive power than arithmetic necessarily have undecidable sentences. Is not the immutable truth that Tarski made it out to be it is only based on his starting assumptions. -/- When we reexamine these starting assumptions from the perspective of the philosophy of logic we find that there are alternative ways that formal systems can be defined that make undecidability inexpressible in all of these formal systems.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 577