Results for 'Lorentz'

57 found
Order:
  1. Lorentz contraction, Bell’s spaceships and rigid body motion in special relativity.Jerrold Franklin - 2010 - European Journal of Physics 31:291-298.
    The meaning of Lorentz contraction in special relativity and its connection with Bell’s spaceships parable is discussed. The motion of Bell’s spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students’ misconceptions due to conflicting earlier treatments.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. The history of quantum mechanics as a decisive argument favoring Einstein over lorentz.R. M. Nugayev - 1985 - Philosophy of Science 52 (1):44-63.
    PHILOSOPHY OF SCIENCE, vol. 52, number 1, pp.44-63. R.M. Nugayev, Kazan State |University, USSR. -/- THE HISTORY OF QUANTUM THEORY AS A DECISIVE ARGUMENT FAVORING EINSTEIN OVER LJRENTZ. -/- Abstract. Einstein’s papers on relativity, quantum theory and statistical mechanics were all part of a single research programme ; the aim was to unify mechanics and electrodynamics. It was this broader program – which eventually split into relativistic physics and quantummmechanics – that superseded Lorentz’s theory. The argument of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  3.  81
    A new paradox and the reconciliation of Lorentz and Galilean transformations.Hongyu Guo - 2021 - Synthese 199 (3-4):8113-8142.
    One of the most debated problems in the foundations of the special relativity theory is the role of conventionality. A common belief is that the Lorentz transformation is correct but the Galilean transformation is wrong. It is another common belief that the Galilean transformation is incompatible with Maxwell equations. However, the “principle of general covariance” in general relativity makes any spacetime coordinate transformation equally valid. This includes the Galilean transformation as well. This renders a new paradox. This new paradox (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  16
    Why Is c A Cosmic Speed Limit?Dan J. Bruiger - manuscript
    The Lorentz transformations can be interpreted either in ontological or epistemic terms. The invariance of c could have a different interpretation, as a side-effect of the exclusive role of light as signal between frames of reference. It would not necessarily pose an absolute cosmic speed limit. Time dilation would have a different explanation.
    Download  
     
    Export citation  
     
    Bookmark  
  5.  56
    The Simplicity of Disproving the Theory of Special Relativity.Denis Thomas - 2022 - Science and Philosophy 10 (1):111-120.
    Einstein’s theory of Special relativity is founded on an error made by Hendrick Lorentz. It is not necessary to expose the mathematical inconsistencies of special relativity, since the theory collapses by simply exposing the error made by Lorentz. In doing so, it not only causes special relativity to collapse, but also general relativity, and the many theories built upon these two deceptive theories. There are many claims of tests made which supposedly prove SR or GR, such as the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. When Fields Are Not Degrees of Freedom.Vera Hartenstein & Mario Hubert - 2021 - British Journal for the Philosophy of Science 72 (1):245-275.
    We show that in the Maxwell–Lorentz theory of classical electrodynamics most initial values for fields and particles lead to an ill-defined dynamics, as they exhibit singularities or discontinuities along light-cones. This phenomenon suggests that the Maxwell equations and the Lorentz force law ought rather to be read as a system of delay differential equations, that is, differential equations that relate a function and its derivatives at different times. This mathematical reformulation, however, leads to physical and philosophical consequences for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7.  60
    Reconstruction of Scientific Theory Change.Spas Spassov & Rinat M. Nugayev - 1997 - International Studies in the Philosophy of Science 11 (3):206-210.
    This book presents an elaborate analysis of the widely discussed problem of reconstruction of scientific theory change, based on material from theoretical physics. It gives a detailed , although not complete, analysis of the ideas of such authors as T. Kuhn, I. Lakatos, P. Feyerabend, E. Zahar and G. Holton, the empiristic account of the notion of “crucial experiment”, as well as of some leading Russian philosophers of science such as V. Stepin, E. Mamchur and V. Branskii. On the positive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  84
    A review of Nugayev's book "Reconstruction of Scientific Theory Change". [REVIEW]Yuri V. Balashov - 1993 - Erkenntnis 38 (3):429-432.
    The author’s studies in the philosophy of science, culminating in this book, were inspired by his previous research in the domains of classical and quantum gravity. In fact it was the need to bring some order in the family of modern classical theories of gravitation and to build up the appropriate conceptual foundations of quantum gravity , that forced the author to create his own methodological model of theory change, which he applies rather successfully to the most controversial case study, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Reconstruction of Mature Theory Change: A Theory-Change Model.Rinat M. Nugayev - 1999 - Peter Lang.
    A comprehensible model is proposed aimed at an analysis of the reasons for theory change in science. According to the model the origins of scientific revolutions lie not in a clash of fundamental theories with facts, but of “old” fundamental theories with each other, leading to contradictions that can only be eliminated in a more general theory. The model is illustrated with reference to physics in the early 20th century, the three “old” theories in this case being Maxwellian electrodynamics, statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  10. The Dark Energy as effect on Gravitational field.Joao Carlos Holland - manuscript
    We will make a new approach for an effect known as “Dark Energy” by an effect on gravitational field. In an accelerated rocket, the dimensions of space towards movement due to ‘Lorentz Contraction’ are on continuous reduction. Using the equivalence principle, we presume that in the gravitational field, the same thing would happen. In this implicates in ‘dark energy effect’. The calculi show that in a 7%-contraction for each billion years would explain our observation of galaxies in accelerated separation.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Special Relativity as a Stage in the Development of Quantum Theory: A New Outlook of Scientific Revolution.Rinat M. Nugayev - 1988 - Historia Scientiarum (34):57-79.
    To comprehend the special relativity genesis, one should unfold Einstein’s activities in quantum theory first . His victory upon Lorentz’s approach can only be understood in the wider context of a general programme of unification of classical mechanics and classical electrodynamics, with relativity and quantum theory being merely its subprogrammes. Because of the lack of quantum facets in Lorentz’s theory, Einstein’s programme, which seems to surpass the Lorentz’s one, was widely accepted as soon as quantum theory became (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12. General Classical Electrodynamics.Koenraad Johan van Vlaenderen - 2016 - Universal Journal of Physics and Application 10 (4):128-140.
    Maxwell’s Classical Electrodynamics (MCED) suffers several inconsistencies: (1) the Lorentz force law of MCED violates Newton’s Third Law of Motion (N3LM) in case of stationary and divergent or convergent current distributions; (2) the general Jefimenko electric field solution of MCED shows two longitudinal far fields that are not waves; (3) the ratio of the electrodynamic energy-momentum of a charged sphere in uniform motion has an incorrect factor of 4/3. A consistent General Classical Electrodynamics (GCED) is presented that is based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Einstein's Revolution: Reconciliation of Mechanics, Electrodynamics and Thermodynamics.Rinat M. Nugayev - 2000 - Physis.Rivista Internazionale Di Storia Della Scienza (1):181-207.
    The aim of this paper is to make a step towards a complete description of Special Relativity genesis and acceptance, bringing some light on the intertheoretic relations between Special Relativity and other physical theories of the day. I’ll try to demonstrate that Special Relativity and the Early Quantum Theory were created within the same programme of statistical mechanics, thermodynamics and Maxwellian electrodynamics reconciliation, i.e. elimination of the contradictions between the consequences of this theories. The approach proposed enables to explain why (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. General Classical Electrodynamics.van Vlaenderen Koen - 2016 - Universal Journal of Physics and Application 10 (4):128-140.
    Maxwell’s Classical Electrodynamics (MCED) suffers several inconsistencies: (1) the Lorentz force law of MCED violates Newton’s Third Law of Motion (N3LM) in case of stationary and divergent or convergent current distributions; (2) the general Jefimenko electric field solution of MCED shows two longitudinal far fields that are not waves; (3) the ratio of the electrodynamic energy-momentum of a charged sphere in uniform motion has an incorrect factor of 4/3. A consistent General Classical Electrodynamics (GCED) is presented that is based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Einstein's Revolution: A Study in Theory Unification.Rinat M. Nugayev - 2018 - Sharjah, UAE: Bentham science publishers.
    Press release. -/- The ebook entitled, Einstein’s Revolution: A Study of Theory-Unification, gives students of physics and philosophy, and general readers, an epistemological insight into the genesis of Einstein’s special relativity and its further unification with other theories, that ended well by the construction of general relativity. The book was developed by Rinat Nugayev who graduated from Kazan State University relativity department and got his M.Sci at Moscow State University department of philosophy of science and Ph.D at Moscow Institute of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. The Apparent Nature of Relative Simultaneity.Andrew Wutke - manuscript
    This paper presents the proof of the apparent nature of relative simultaneity originally derived from Einstein’s Special Theory of Relativity (STR). The proof does not challenge the validity of the STR but uncovers fundamental and widespread error in understanding of practical implications of Lorentz transformations. It is demonstrated that more than a century long debates generally miss the point. This results in counterintuitive claims of coexisting multiple time realities by mere equivalence of equal clock indications and simultaneity. Such claims (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. A Case for Lorentzian Relativity.Daniel Shanahan - 2014 - Foundations of Physics 44 (4):349-367.
    The Lorentz transformation (LT) is explained by changes occurring in the wave characteristics of matter as it changes inertial frame. This explanation is akin to that favoured by Lorentz, but informed by later insights, due primarily to de Broglie, regarding the underlying unity of matter and radiation. To show the nature of these changes, a massive particle is modelled as a standing wave in three dimensions. As the particle moves, the standing wave becomes a travelling wave having two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18.  83
    Einstein's Scientific Revolution (1898-1915): interdisciplinary Context.Rinat M. Nugayev (ed.) - 2010 - Logos: Innovative Technologies Center.
    What are the reasons of the second scientific revolution that happened at the beginning of the XX century? Why did the new physics supersede the old one? The author tries to answer the subtle questions with a help of the epistemological model of scientific revolutions that takes into account some recent advances in philosophy, sociology and history of science. According to the model, Einstein’s Revolution took place due to resolution of deep contradictions between the basic classical research traditions: Newtonian mechanics, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to bе (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Can Magnetic Forces Do Work?Jacob Barandes - manuscript
    Standard lore holds that magnetic forces are incapable of doing mechanical work. More precisely, the claim is that whenever it appears that a magnetic force is doing work, the work is actually being done by another force, with the magnetic force serving only as an indirect mediator. On the other hand, the most familiar instances of magnetic forces acting in everyday life—bar magnets lifting other bar magnets—appear to present manifest evidence of magnetic forces doing work. These sorts of counterexamples are (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  21. Manifestly Covariant Lagrangians, Classical Particles with Spin, and the Origins of Gauge Invariance.Jacob Barandes - manuscript
    In this paper, we review a general technique for converting the standard Lagrangian description of a classical system into a formulation that puts time on an equal footing with the system's degrees of freedom. We show how the resulting framework anticipates key features of special relativity, including the signature of the Minkowski metric tensor and the special role played by theories that are invariant under a generalized notion of Lorentz transformations. We then use this technique to revisit a classification (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  66
    A review of Nugayev's book "Reconstruction of Scientific Theory Change". [REVIEW]Murad D. Akhundov & Rinat M. Nugayev - 1993 - Isis 84 (2):426-427.
    Nugayev critically analyzes current conceptions of scientific change. Then he constructs his own normative model and compares it with actual problematic situations. In particular, he analyzes critically the replacement of Lorentz’s theory with the special theory of relativity. Key words: Popper, Duhem, Schlesinger, Lakatos, Kuhn .
    Download  
     
    Export citation  
     
    Bookmark  
  23. A Synopsis of the Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We summarize a new realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory's basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. Electromagnetic and Gravitational Pictures of the World.Sergey G. Fedosin - 2007 - Apeiron 14 (4):385-413.
    The review of the theory of electromagnetic field together with the special and general theories of relativity has been made. The similar theory of gravitation has been presented which has the property of Lorentz-invariancy in its own representation in which the information is transferred at the speed of propagation of the gravitational field. Generalization of the specified gravitation theory on noninertial reference systems has been made with the help of the mathematical apparatus of the general relativity. It allows to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. The Minimal Modal Interpretation of Quantum Theory.Jacob Barandes & David Kagan - manuscript
    We introduce a realist, unextravagant interpretation of quantum theory that builds on the existing physical structure of the theory and allows experiments to have definite outcomes but leaves the theory’s basic dynamical content essentially intact. Much as classical systems have specific states that evolve along definite trajectories through configuration spaces, the traditional formulation of quantum theory permits assuming that closed quantum systems have specific states that evolve unitarily along definite trajectories through Hilbert spaces, and our interpretation extends this intuitive picture (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. The GRW Flash Theory: A Relativistic Quantum Ontology of Matter in Space-Time?Michael Esfeld & Nicolas Gisin - 2014 - Philosophy of Science 81 (2):248-264.
    John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space- time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  27. Eternalism and Perspectival Realism About the ‘Now’.Matias Slavov - 2020 - Foundations of Physics 50 (11):1398-1410.
    Eternalism is the view that all times are equally real. The relativity of simultaneity in special relativity backs this up. There is no cosmically extended, self-existing ‘now.’ This leads to a tricky problem. What makes statements about the present true? I shall approach the problem along the lines of perspectival realism and argue that the choice of the perspective does. To corroborate this point, the Lorentz transformations of special relativity are compared to the structurally similar equations of the Doppler (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  28. Contradictions inherent in special relativity: Space varies.Kim Joosoak - manuscript
    Special relativity has changed the fundamental view on space and time since Einstein introduced it in 1905. It substitutes four dimensional spacetime for the absolute space and time of Newtonian mechanics. It is believed that the validities of Lorentz invariants are fully confirmed empirically for the last one hundred years and therefore its status are canonical underlying all physical principles. However, spacetime metric is a geometric approach on nature when we interpret the natural phenomenon. A geometric flaw on this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. On the fragmentalist interpretation of special relativity.Martin A. Lipman - 2020 - Philosophical Studies 177 (1):21-37.
    Fragmentalism was first introduced by Kit Fine in his ‘Tense and Reality’. According to fragmentalism, reality is an inherently perspectival place that exhibits a fragmented structure. The current paper defends the fragmentalist interpretation of the special theory of relativity, which Fine briefly considers in his paper. The fragmentalist interpretation makes room for genuine facts regarding absolute simultaneity, duration and length. One might worry that positing such variant properties is a turn for the worse in terms of theoretical virtues because such (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  30.  94
    Einstein's Train in Fragmentalist Presentism.Paul Merriam - manuscript
    It is often thought the relativity of simultaneity is inconsistent with presentism. This would be troubling as it conflicts with common sense and—arguably—the empirical data. This note gives a novel fragmentalist-presentist theory that allows for the (non-trivial) relativity of simultaneity. A detailed account of the canonical moving train argument is considered. Alice, standing at the train station, forms her own ontological fragment, in which Bob’s frame of reference, given by the moving train, is modified by the Lorentz transformations. On (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. The Chromodielectric Soliton Model: Quark Self-Energy and Hadron Bags.Stephan Hartmann, Larry Wilets & Ping Tang - 1997 - Physical Review C 55:2067-2077.
    The chromodielectric soliton model is Lorentz and chirally invariant. It has been demonstrated to exhibit dynamical chiral symmetry breaking and spatial confinement in the locally uniform approximation. We here study the full nonlocal quark self-energy in a color-dielectric medium modeled by a two-parameter Fermi function. Here color confinement is manifest. The self-energy thus obtained is used to calculate quark wave functions in the medium which, in turn, are used to calculate the nucleon and pion masses in the one-gluon-exchange approximation. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Einstein's Bergson Problem.Jimena Canales - 2016 - In Yuval Dolev & Michael Roubach (eds.), Boston Studies in the Philosophy and History of Science. Springer. pp. 53-72.
    Does a privileged frame of reference exist? Part of Einstein’s success consisted in eliminating Bergson’s objections to relativity theory, which were consonant with those of the most important scientists who had worked on the topic: Henri Poincaré, Hendrik Lorentz and Albert A. Michelson. In the early decades of the century, Bergson’s fame, prestige and influence surpassed that of the physicist. Once considered as one of the most renowned intellectuals of his era and an authority on the nature of time, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. On Magnetic Forces and Work.Jacob A. Barandes - 2021 - Foundations of Physics 51 (4):1-17.
    We address a long-standing debate over whether classical magnetic forces can do work, ultimately answering the question in the affirmative. In detail, we couple a classical particle with intrinsic spin and elementary dipole moments to the electromagnetic field, derive the appropriate generalization of the Lorentz force law, show that the particle’s dipole moments must be collinear with its spin axis, and argue that the magnetic field does mechanical work on the particle’s elementary magnetic dipole moment. As consistency checks, we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Special and General Relativity based on the Physical Meaning of the Spacetime Interval.Alan Macdonald - manuscript
    We outline a simple development of special and general relativity based on the physical meaning of the spacetime interval. The Lorentz transformation is not used.
    Download  
     
    Export citation  
     
    Bookmark  
  35. Einstein y las ondas gravitacionales.Alfonso Leon Guillen Gomez - manuscript
    El autor presenta la historia de las ondas gravitacionales según Einstein, uniéndola a su biografía y a su época con el fin de comprenderla en su conexión con la historia de los semitas, la personalidad de Einstein en el manejo de sus circunstancias generadoras de conflicto en sus relaciones de competencia con sus colegas y en la formulación de la llamada teoría general de la relatividad. Recaeremos en las vicisitudes que vivió Einstein en el tránsito de que su trabajo científico (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. [Early First Draft] Must Minkowski Spacetime be Categorized as Pseudoscience? (Revisiting the legitimacy of Mansouri-Sexl test theory).Shiva Meucci - manuscript
    Here we discuss and hope to solve a problem rooted in the necessity of the study of historical science, the slow deviation of physics education over the past century, and how the loss of crucial contextual tool has debilitated discussion of a very important yet specialized physics sub-topic: the isotropy of the one-way speed of light. Most notably, the information that appears to be most commonly missing is not simply the knowledge of the historical fact that Poincare and Lorentz (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Connecting Spin and Statistics in Quantum Mechanics.Arthur Jabs - 2014 - arXiv:0810.2399.
    The spin-statistics connection is derived in a simple manner under the postulates that the original and the exchange wave functions are simply added, and that the azimuthal phase angle, which defines the orientation of the spin part of each single-particle spin-component eigenfunction in the plane normal to the spin-quantization axis, is exchanged along with the other parameters. The spin factor (−1)2s belongs to the exchange wave function when this function is constructed so as to get the spinor ambiguity under control. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  38. In General Relativity, gravity is effect of coordinates with change of geometry of spacetime.Alfonso Leon Guillen Gomez - manuscript
    Einstein structured the theoretical frame of his work on gravity under the Special Relativity and Minkowski´s spacetime using three guide principles: The strong principle of equivalence establishes that acceleration and gravity are equivalents. Mach´s principle explains the inertia of the bodies and particles as completely determined by the total mass existent in the universe. And, general covariance searches to extend the principle of relativity from inertial motion to accelerated motion. Mach´s principle was abandoned quickly, general covariance resulted mathematical property of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39.  24
    Thermodynamics of an Empty Box.G. J. Schmitz, M. te Vrugt, T. Haug-Warberg, L. Ellingsen & P. Needham - 2023 - Entropy 25 (315):1-30.
    A gas in a box is perhaps the most important model system studied in thermodynamics and statistical mechanics. Usually, studies focus on the gas, whereas the box merely serves as an idealized confinement. The present article focuses on the box as the central object and develops a thermodynamic theory by treating the geometric degrees of freedom of the box as the degrees of freedom of a thermodynamic system. Applying standard mathematical methods to the thermody- namics of an empty box allows (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. The construction of Electromagnetism.Mario Natiello & H. G. Solari - manuscript
    Abstract We examine the construction of electromagnetism in its current form, and in an alternative form, from a point of view that combines a minimal realism with strict rational demands. We begin by discussing the requests of reason when constructing a theory and next, we follow the historical development as presented in the record of original publications, the underlying epistemology (often explained by the authors) and the mathematical constructions. The historical construction develops along socio-political disputes (mainly, the reunification of Germany (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Einstein and gravitational waves.Alfonso Leon Guillen Gomez - manuscript
    The author presents the history of gravitational waves according to Einstein, linking it to his biography and his time in order to understand it in his connection with the history of the Semites, the personality of Einstein in the handling of his conflict-generating circumstances in his relationships competition with his colleagues and in the formulation of the so-called general theory of relativity. We will fall back on the vicissitudes that Einstein experienced in the transition from his scientific work to normal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Gravity is a quantum force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, from general to particular, breaks the law of inertia of Galilei since recovers apparently the rectilinear uniform movement but not the repose state, unless the bodies have undergone their collapse, although, the curved (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Scrutiny of Droste’s Original Solution (1917).Mohamed Elmansour Hassani - manuscript
    In 1916, Johannes Droste independently found an exact (vacuum) solution to the Einstein's (gravitational) field equations in empty space. Droste's solution is quasi-comparable to Schwarzschild's one . Droste published his paper entitled “The field of a single centre in Einstein's theory of gravitation, and the motion of a particle in that fieldˮ. The paper communicated (in the meeting of May 27, 1916) by Prof. H.A. Lorentz, and published in ʻProceedings of the Royal Netherlands Academy of Arts and Science. 19 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. From Time Asymmetry to Quantum Entanglement: The Humean Unification.Eddy Keming Chen - 2022 - Noûs 56 (1):227-255.
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the quantum state in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  45. Gravity is a force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, of the particular to the general, breaks the law of inertia of Galilei since recovers the rectilinear uniform movement but not the repose state, unless the bodies have undergone their union, although, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. How the Laws of Physics Can be Confronted with Experience.Rinat M. Nugayev - 1992 - Theoria Et Historia Scientiarum:24-36.
    Nancy Cartwright’s arguments in favor of the phenomenological laws and against the fundamental ones are discussed. I support and strengthen her criticism of the standard covering-law account but I am skeptical in respect to her radical conclusion that the laws of physics lie. Arguments in favor of the opposite stance are based on V.S. Stepin’s analysis of mature theory structure. A mature theory-change model presented here demonstrates how the fundamental laws of physics can be confronted with experience. Its case studies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Origin and Resolution of Theory-Choice Situations in Modern Theory of gravity.Rinat M. Nugayev - 1987 - Methodology and Science 20 (4):177-197.
    A methodological model of origin and settlement of theory-choice situations (previously tried on the theories of Einstein and Lorentz in electrodynamics) is applied to modern Theory of Gravity. The process of origin and growth of empirically-equivalent relativistic theories of gravitation is theoretically reproduced. It is argued that all of them are proposed within the two rival research programmes – (1) metric (A. Einstein et al.) and (2) nonmetric (H. Poincare et al.). Each programme aims at elimination of the cross-contradiction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  25
    Model P(f)_4 Quantum Field Theory: A Nonstandard Approach Based on Nonstandard Pointwise-Defined Quantum Fields.Jaykov Foukzon - forthcoming - AIP Conference Proceedings.
    A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field operator φ(x,t) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued function. We prove using this novel approach that the quantum field theory with Hamiltonian P(φ)_4 exists and that the corresponding C^*­ algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz covariance. We prove that the λ(φ^4 )_4 quantum field theory model is Lorentz covariant.
    Download  
     
    Export citation  
     
    Bookmark  
  49. Reconstruction of the Process of Fundamental Theory Change.Rinat M. Nugayev - 1989 - Kazan University Press.
    What are the reasons for theory change in science? –To give a sober answer a comprehensible model is proposed based on the works of V.P. Bransky, P. Feyerabend , T.S. Kuhn, I. Lakatos, K.R.Popper, V.S. Scwvyrev, Ya. Smorodinsky, V.S. Stepin, and others. According to model the origins of scientific revolutions lie not in a clash of fundamental theories with facts, but of “old” basic research traditions with each other, leading to contradictions that can only be eliminated in a more general (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The de Broglie Wave as Evidence of a Deeper Wave Structure.Daniel Shanahan - manuscript
    It is argued that the de Broglie wave is not the independent wave usually supposed, but the relativistically induced modulation of an underlying carrier wave that moves with the velocity of the particle. In the rest frame of the particle this underlying structure has the form of a standing wave. De Broglie also assumed the existence of this standing wave, but it would appear that he failed to notice its survival as a carrier wave in the Lorentz transformed wave (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 57