The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to (...) existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource providing details on the people, policies, and issues being addressed in association with OBI. (shrink)
Throughout the biological and biomedical sciences there is a growing need for, prescriptive ‘minimum information’ (MI) checklists specifying the key information to include when reporting experimental results are beginning to find favor with experimentalists, analysts, publishers and funders alike. Such checklists aim to ensure that methods, data, analyses and results are described to a level sufficient to support the unambiguous interpretation, sophisticated search, reanalysis and experimental corroboration and reuse of data sets, facilitating the extraction of maximum value from data sets (...) them. However, such ‘minimum information’ MI checklists are usually developed independently by groups working within representatives of particular biologically- or technologically-delineated domains. Consequently, an overview of the full range of checklists can be difficult to establish without intensive searching, and even tracking thetheir individual evolution of single checklists may be a non-trivial exercise. Checklists are also inevitably partially redundant when measured one against another, and where they overlap is far from straightforward. Furthermore, conflicts in scope and arbitrary decisions on wording and sub-structuring make integration difficult. This presents inhibit their use in combination. Overall, these issues present significant difficulties for the users of checklists, especially those in areas such as systems biology, who routinely combine information from multiple biological domains and technology platforms. To address all of the above, we present MIBBI (Minimum Information for Biological and Biomedical Investigations); a web-based communal resource for such checklists, designed to act as a ‘one-stop shop’ for those exploring the range of extant checklist projects, and to foster collaborative, integrative development and ultimately promote gradual integration of checklists. (shrink)
Providing the most thorough coverage available in one volume, this comprehensive, broadly based collection offers a wide variety of selections in four major genres, and also includes a section on film. Each of the five sections contains a detailed critical introduction to each form, brief biographies of the authors, and a clear, concise editorial apparatus. Updated and revised throughout, the new Fourth Edition adds essays by Margaret Mead, Russell Baker, Joan Didion, Annie Dillard, and Alice Walker; fiction by Nathaniel Hawthorne, (...) Ursula K. LeGuin, Anton Chekov, James Joyce, Katherine Mansfield, F. Scott Fitzgerald, William Faulkner, Alice Walker, Louise Erdrich, Donald Barthelme, and James McPherson; poems by John Donne, Robert Browning, Walt Whitman, Edwin Arlington Robinson, e.e. cummings, Langston Hughes, W.H. Auden, Philip Levine, and Louise Gluck; and plays by August Wilson, Marsha Norman, Wendy Wasserstein, and Vaclav Havel. The chapter devoted to film examines the relation of film to literature and gives the complete screenplay for Citizen Kane plus close analysis of a scene from the film. With its innovative structure, comprehensive coverage, and insightful and stimulating presentation of all kinds of literature, this is an anthology readers will turn to again and again. (shrink)
Edited proceedings of an interdisciplinary symposium on consciousness held at the University of Cambridge in January 1978. Includes a foreword by Freeman Dyson. Chapter authors: G. Vesey, R.L. Gregory, H.C. Longuet-Higgins, N.K. Humphrey, H.B. Barlow, D.M. MacKay, B.D. Josephson, M. Roth, V.S. Ramachandran, S. Padfield, and (editorial summary only) E. Noakes. A scanned pdf is available from this web site (philpapers.org), while alternative versions more suitable for copying text are available from https://www.repository.cam.ac.uk/handle/1810/245189. -/- Page numbering convention for the pdf (...) version viewed in a pdf viewer is as follows: 'go to page n' accesses the pair of scanned pages 2n and 2n+1. Applicable licence: CC Attribution-NonCommercial-ShareAlike 2.0. (shrink)
HORMÔNIOS E SISTEMA ENDÓCRINO NA REPRODUÇÃO ANIMAL -/- OBJETIVO -/- As glândulas secretoras do corpo são estudadas pelo ramo da endocrinologia. O estudante de Veterinária e/ou Zootecnia que se preze, deverá entender os processos fisio-lógicos que interagem entre si para a estimulação das glândulas para a secreção de vários hormônios. -/- Os hormônios, dentro do animal, possuem inúmeras funções; sejam exercendo o papel sobre a nutrição, sobre a produção de leite e sobre a reprodução, os hormônios desempenham um primordial papel (...) quanto ao funcionamento do animal. -/- Nesse capítulo, o estudante identificará os hormônios relevantes para o controle reprodutivo, suas características e o uso clínico dos mesmos. -/- -/- INTRODUÇÃO -/- A endocrinologia é a ciência que se encarrega do estudo do sistema endócrino: um sistema de comunicação entre as células de um organismo; esse trabalho de comunicação é compartilhado com o sistema nervoso já que ambos sistemas possuem características distintas que lhes permite complementar-se para alcançar uma adequada coordenação das funções. Em algumas ocasiões o sistema nervoso e o sistema endócrino interagem direta-mente na transmissão de uma mensagem, pelo qual se conhece como sistema neuroendó-crino. -/- -/- OS HORMÔNIOS -/- A endocrinologia é a ciência que se encarrega do estudo dos hormônios e seus e-feitos. De maneira tradicional os hormônios são considerados como “substâncias secreta-das em direção a circulação pelas glândulas especializadas, e que exercem uma função sobre um órgão branco”. Essa definição, no entanto, é limitada e imprecisa. É necessário ser mais pontual, já que os hormônios não são produzidos em qualquer célula da glândula, senão nas células específicas. Por exemplo, o hormônio luteinizante (LH) é produzido pelos gonadotropos da adenohipófise e não por qualquer outro tipo de célula hipofisária. Da mesma maneira, falar de um “órgão branco” não é exato, já que os hormônios atuam somente nas células que tenham receptores específicos para esse hormônio, e não outras células do mesmo órgão; logo, falar de uma “célula branca” é mais apropriado que falar de um “órgão branco”. As células brancas do LH no testículo são as células de Leydig e as células brancas do hormônio folículo estimulante (FSH) no mesmo órgão são as células de Sertoli. -/- Mediante o supracitado, uma definição mais apropriada de hormônio é a seguinte: “Os hormônios são reguladores biológicos, produzidos e secretados em quantidades pe-quenas pelas células vivas, que depois de viajar pelo meio extracelular atuam sobre as cé-lulas brancas, onde exercem uma ação específica”. -/- É importante levar em conta que os hormônios somente regulam (estimulam ou inibem) funções que já existem na célula branca. Ademais, os hormônios são extraordina-riamente potentes, pelo qual se requerem quantidades muito pequenas para induzir uma resposta na célula. As concentrações circulantes da maioria dos hormônios estão na ordem de nanogramas (10-9 g) ou pictogramas (10-12 g) por mililitro. -/- Etimologicamente o termo “endócrino” significa “secretar em direção adentro”, já que os hormônios são secretados em direção ao interior do organismo (o sangue ou o espaço intracelular), em diferença das secreções exócrinas (em direção ao exterior), que são secretadas em direção a luz de um órgão, como o intestino no caso das enzimas pan-creáticas. -/- Algumas substâncias, sem deixar de ser hormônios, recebem uma classificação adicional em relação ao seu local de ação, ao tipo de células que lhes produzem, ou a al-guma outra característica. Agora, serão descritas algumas dessas características (figura 1). -/- -/- Parahormônio ou hormônio local -/- A maioria dos hormônios são transportados pela circulação desde seu local de se-creção até a célula branca. No entanto, alguns hormônios exercem seu efeito em células adjacentes aquelas que foram produzidos, ao qual não é necessário seu transporte através da circulação geral. Esse tipo de substâncias são chamadas de parahormônios ou hormô-nios locais, e sua liberação é denominada como secreção parácrina. Um exemplo é a pros-taglandina F2 alfa (PGF₂α), que é produzida no epitélio uterino (endométrio) e provoca as contrações nas células musculares do mesmo órgão (miométrio). Deve-se tomar em conta que a mesma substância poderia se comportar em outros casos como um hormônio clássico, atuando em um órgão distinto ao local de sua produção; é o caso da mesma PGF₂α de origem endometrial quando atua sobre as células do corpo lúteo do ovário, pro-vocando sua regressão. A classificação de uma substância como hormônio ou parahormô-nio não depende de sua estrutura química, senão da relação espacial existente entre a célu-la que o produz e a célula branca. -/- -/- Neurohormônio -/- A maioria dos hormônios são produzidos pelas células de origem epitelial, porém, muitos deles são produtos pelos neurônios, logo denominados como neurohormônios. To-dos os neurônios segregam alguma substância, porém tratam-se dos neurohormônios quando o neurônio que os produz despeja-os diretamente em direção a circulação geral, através da qual chegam aos órgãos para exercer seu efeito, sejam na indução, inibição ou estimulação do mesmo. -/- Esse processo é diferente dos neurotransmissores, os quais também são secretados por um neurônio, mas exercem seu efeito em uma célula adjacente com o qual o neurônio estabelece uma sinapse (neuroma com neurônio, neurônio com célula muscular, neurônio com célula glandular). A classificação de uma substância como hormônio ou como neuro-hormônio não depende de sua estrutura química, senão do tipo de célula que o produz. Uma mesma substância é um hormônio quando ele é produzido por uma célula epitelial e um neurohormônio se é produzido por um neurônio. A ocitocina, por exemplo, é secre-tada na neurohipófise por neurônios hipotalâmicos, nesse caso se trata de um neurohor-mônio, mas também é secretada por células do corpo lúteo dos ruminantes, e se trata nesse caso, de um hormônio. A distinção entre um neurohormônio e um hormônio é um neuro-transmissor, da mesma forma, não depende de sua estrutura química, e sim do local onde é secretado. Por exemplo, a dopamina atua como neurotransmissor quando se libera em sinapse da substância negra do mesencéfalo z mas atua como neurohormônio quando é liberada por neurônios hipotalâmicos em direção a circulação do eixo hipotálamo-hipofisário. -/- -/- Pré-hormônio -/- Em alguns casos, os hormônios são secretados em forma inativa (pré-hormônio), que requer uma transformação posterior para converter-se na forma ativa de hormônio. O angiotensinógeno circulante somente cobrará atividade biológica ao se transformar em angiotensina por ação da enzima renina. Algumas substâncias podem atuar como hormô-nios m alguns casos e como pré-hormônios em outros. A testosterona, por exemplo, atua como hormônio nas células musculares, aos quais possui um efeito anabólico direto. O certo é que para a testosterona induzir a masculinização dos órgãos genitais externos em um efeito macho é necessário que seja transformada previamente em 5α-di-hidrotes-tosterona pela enzima 5α-redutase presente nas células de tecido branco, por onde, nesse caso a testosterona é um pré-hormônio de di-hidrotestosterona. -/- -/- Feromônio -/- Os hormônios são mensagens químicas que comunicam a células distintas dentro do mesmo organismo, embora existam casos aos que requerem uma comunicação quími-ca entre organismos diferentes, em geral da mesma espécie. As substâncias empregadas para esse fim denominam-se feromônios. Essas substâncias devem possuir a capacidade de dispersão sobre o ambiente, pelo que nos organismos terrestres geralmente trata-se de substâncias voláteis, enquanto que os feromônios de organismos aquáticos geralmente são substâncias hidrossolúveis. Embora muitos feromônios possuam uma função sexual ou reprodutiva como é o caso de muitas espécies como a canina em que a fêmea em cio dispersa grandes quantidades de feromônios que são captados de longe pelos machos, todavia esse não é sempre o caso, e eles podem ser utilizados para outros tipos de comunicação, como é o caso dos feromônios utilizados pelas formigas para sinalização da rota em direção a fonte de alimentação. E como as abelhas no sentido de orientação da fonte de pólen até a colmeia. Muitos desses feromônios podem ser artificializados, isto é, elaborados pelo homem em laboratório para o estudo ou manipulação de algum animal. -/- -/- O SISTEMA ENDÓCRINO COMO UM SISTEMA DE COMUNICAÇÃO -/- O sistema endócrino é um sistema de comunicação que tem como objetivo coor-denar as funções das células de diferentes órgãos para mantença da homeostase do orga-nismo e promover seu desenvolvimento, crescimento e reprodução. Também ajuda os or-ganismos a adaptarem-se as mudanças de ambiente e ao habitat. O sistema endócrino representa um sistema de comunicação do tipo sem fio, diferentemente do sistema nervo-so que é um sistema de comunicação com fio. -/- Em todo o sistema de comunicação existe uma série de elementos que são necessá-rios para a realização da comunicação de forma efetiva. Esses elementos incluem o emis-sor, a mensagem, o sinal, o meio de transporte do sinal, o receptor, o efetor, a resposta e o feedback ou retroalimentação (figura 1). Todos os elementos são igualmente importan-tes e uma deficiência em qualquer deles pode interromper ou alterar a comunicação. -/- -/- Figura 1: componentes do sistema endócrino de comunicação. Fonte: ZARCO, 2018. -/- -/- Emissor ou transmissor -/- É o elemento responsável pela transmissão de uma mensagem; poderíamos com-pará-lo com a redação de notícias de um canal de televisão. Antes de decidir quais serão as notícias que serão transmitidas esse dia, em que ordem se apresentarão e que ênfase lhes darão, as pessoas da redação analisa rodas as informações disponíveis: provenientes de seus repórteres, de agências de notícias internacionais, publicada em jornais do dia, a existente na internet ou disponíveis através de redes sociais; isso significa que as mensa-gens transmitidas pelo emissor não são aleatórias, e sim respondem a uma análise respon-sável das necessidades de informação. -/- No sistema endócrino o emissor é a célula que produz e secreta um hormônio. Co-mo todo emissor responsável, a mesma célula analisa toda a informação relevante dispo-nível, tal como a concentração de diversos metabólitos no sangue, a concentração de ou-tros hormônios, e as mensagens que recebem por via nervosa, antes de decidir se secretará seu hormônio, em que quantidade o fará e com que frequência. Por essa razão, ao estudar o sistema endócrino não somente devemos conhecer a célula transmissora, e sim qual é a informação que a célula pode receber, e como a analisa e a prioriza para construir sua mensagem. -/- -/- Mensagem -/- É a informação transmitida pelo emissor. No caso de um sistema de notícias tele-visivas a mensagem é a notícia, por exemplo “Vaca dá a luz trigêmeos, um caso raro no Brasil”. No sistema endócrino a mensagem que se transmite é uma instrução para que em outra célula se realize determinadas ações. Por exemplo, os neurônios produtores de GnRH no hipotálamo de uma coelha, ao analisar as concentrações de estradiol circulantes e a informação nervosa procedente de neurônios sensoriais nós órgãos genitais da fêmea, podem “saber” que nos ovários existam folículos lisos para ovularem e que a coelha está copulando, pelo qual decidem transmitir a mensagem “Solicita-se os gonadotropos da adenohipófise a liberação de LH em quantidade suficiente para provocar a ovulação”. -/- -/- Sinal -/- É a forma a qual se codifica a mensagem para permitir sua difusão. No caso de um jornal, a mensagem (por exemplo a notícia da vaca que deu a luz trigêmeos) se codifi-ca em forma de ondas de rádio de uma determinada frequência, amplitude e intensidade; no caso do sistema endócrino a mensagem (a necessidade de realizar uma função celular) é codificada em forma de hormônio secretado em determinada quantidade, frequência e amplitude. Para o exemplo descrito supra, a mensagem se codifica na forma de uma grande elevação nas concentrações de GnRH no sangue do sistema porta hipotálamo-hipofisário. -/- É necessário tomar em conta que o emissor codifica a mensagem de forma tal que quando o receptor decifre o sinal obtenha a informação originalmente contida na mensa-gem. No entanto, o sinal pode ser interpretado de diferentes formas por receptores distintos, o que pode provocar respostas contrárias as esperadas. A notícia transmitida por um jornal de rádio, por exemplo, poderia estar codificada em forma de ondas de rádio que, casualmente, para o sistema eletrônico de um avião signifiquem “baixe a altitude e acelere”, razão pela qual é proibido utilizar aparelhos eletrônicos durante a decolagem e aterrissagem desses aparelhos. -/- Do mesmo modo, a mensagem codificada na forma de secreção de estradiol por parte dos ovários pode ser interpretado pelo sistema nervoso de uma ovelha como uma ordem para apresentar conduta de estro, pelas células do folículo ovariano como uma instrução para sofrer mitose e secretar o líquido folicular, pelos gonadotropos como uma ordem para a secreção de um pico pré-ovulatório de LH, e pelas células do endométrio como uma instrução para sintetizar receptores para a ocitocina. Dessa forma, o mesmo sinal (secreção de estradiol) pode conter diferentes mensagens para diferentes células do organismo. -/- Em alguns casos, pode-se apresentar uma resposta patológica devido as diversas formas de interpretação de uma mensagem, por exemplo, a repetição da secreção de adrenalina em um indivíduo estressado pode resultar no desenvolvimento de um proble-ma de hipertensão arterial. Por isso é necessário conhecer a maneira em que cada célula endócrina codifica suas mensagens, assim como a forma em que esses sinais podem ser interpretados em diferentes órgãos e tecidos, em diferentes momentos da vida do animal, em animais com diferentes antecedentes de espécies diferentes. -/- -/- Meio de transporte do sinal -/- O sinal tem que viajar ou difundir-se desde o emissor até o receptor, e em seu ca-minho pode ser modificado de diversas formas. Os sinais de rádio, por exemplo, viajam através da atmosfera e durante esse trajeto podem ser bloqueados por uma barreira física (como ocorre com as ondas de rádio AM em um túnel), ampliadas por uma estação repeti-dora, alteradas por um campo eletromagnético (uma aspiradora funcionando ao lado da sala de transmissão), entre outros. Da mesma forma, os sinais endócrinos que geralmente viajam no sangue, podem ser modificados ao longo do seu caminho. -/- A PGF₂α é inativada ao passar pelo pulmão, o angiotensinógeno é ativado pela re-nina na circulação, e a testosterona pode ser transformada em di-hidrotestosterona nas células da pele e na próstata, ou em estrógenos nos adipócitos e nos neurônios. Por tudo isso, o sinal que finalmente chega ao receptor pode ser diferente do transmitido pelo emissor. -/- Portanto, ao estudar qualquer sistema hormonal devemos conhecer as possíveis modificações que o hormônio pode sofrer desde o momento em que é secretado até que se uma ao seu receptor na célula branca. -/- -/- Receptor -/- É o elemento que recebe o sinal e interpreta a mensagem contida nele. No caso de um jornal de TV, o receptor é o canal correspondente (por exemplo o canal 2) em um aparelho de televisão. É importante ressaltar que um aparelho de TV possui muitos canais distintos, mas somente receberá mensagens se estiver ligado e sintonizado no canal que está transmitindo a mensagem de interesse. Ou seja, o receptor tem que estar ativo. -/- No caso das mensagens endócrinas os receptores são moléculas específicas nas células brancas. Essas moléculas são proteínas membranais ou citoplasmáticas (segundo o tipo de hormônio), que possui uma alta afinidade por seu hormônio, o que lhes permite registrar a mensagem apenas das baixíssimas concentrações em que os hormônios circu-lam. Os receptores possuem uma alta especificidade, o que significa que somente se unem a seu próprio hormônio, e não a outras substâncias. Em algumas ocasiões um receptor pode receber diversos hormônios do mesmo tipo; por exemplo o receptor de andrógenos pode unir testosterona, androstenediona, di-hidrotestosterona e diversos andrógenos sin-téticos. Apesar disso, cada um desses hormônios pode possuir uma afinidade diferente pelo receptor, pelo qual alguns serão mais potentes que outros para estimulação. -/- Em geral existe um número limitado de moléculas receptoras em cada célula, logo diz-se que os receptores são “saturáveis”, o qual significa que uma vez que todos sejam ocupados a célula não pode receber mais moléculas desse hormônio. Por essa razão a magnitude da resposta de um determinado hormônio vai aumentando conforme se aumen-tam suas concentrações, porém ao saturar-se os receptores alcançam um ponto em que a resposta já não aumenta embora sigam incrementando as concentrações hormonais já que os receptores não permanecem livres para unirem-se ao excesso de moléculas do hormô-nio. -/- As células, em contrapartida, podem regular tanto o número de receptores presen-tes como a afinidade destes por seu hormônio; isso significa que a magnitude da resposta antes um determinado sinal endócrino pode ser distinta em diferentes momentos da vida de um animal; depende do estado dos receptores presentes nos tecidos, pelo qual é impor-tante conhecer quais são os fatores que podem aumentar ou reduzir o número de recepto-res em uma célula, assim como aqueles que podem aumentar ou diminuir a afinidade des-ses receptores por seus hormônios. -/- -/- Efetor -/- É o elemento encarregado de responder a uma mensagem realizando uma ação, e é um elemento diferente do receptor. Vale ressaltar que no caso de uma transmissão de televisão o receptor é o aparelho sintonizado no canal de interesse, porém o efetor é o te-lespectador que está exposto as notícias. Esse telespectador sofrerá mudanças que podem resultar em uma ação. A mudança pode ser evidente (e auxiliar as vítimas de um desastre), ou simplesmente uma mudança potencial (ao se inteirar de uma notícia não se pode produ-zir nenhuma mudança aparente até que alguém lhe pergunte: já se interessou?, E nesse caso a resposta será: “sim” em lugar do “não”). Deve-se tomar em conta que o efetor pode estar ausente embora o receptor esteja presente (um televisor ligado em uma sala vazia). O efetor também pode estar inativado (o telespectador encontra-se dormindo); quando assim ocorre não irá produzir uma resposta embora o receptor esteja presente. -/- No sistema endócrino o efetor é, em geral, um sistema celular encarregado de rea-lizar uma determinada função. Na maioria dos casos trata-se de sistemas enzimáticos cuja função é estimulada pela união do hormônio ao seu receptor. Alguns hormônios, por exemplo, atuam através do sistema AMP cíclico (AMPc) logo, a união do hormônio ao seu receptor resulta na ativação de uma proteína chamada Proteína Gs, que ativa a enzima Adenil-ciclase (ou adenilato ciclase), a qual transforma ATP em AMPc. A presença de AMPc resulta na ativação de uma enzima cinese de proteínas que fosforiza outras enzi-mas, o que pode ativá-las ou inativá-las; nesses casos, é gerada uma cascata de eventos que resulta em uma mudança na atividade celular; por exemplo, a cadeia de eventos que produz-se em resposta ao AMPc quando a célula de Leydig do testículo é estimulada pela união do LH a seu receptor resulta na produção de testosterona, enquanto que a estimula-ção de um adipócito provocada pela união da adrenalina a seu receptor, que também atua através do sistema AMPc, resulta em uma série de eventos que provocam, finalmente, a liberação de ácidos graxos livres em direção a circulação. -/- Nos exemplos supra, o AMPc é considerado um mensageiro intracelular, já que o receptor capta o sinal (hormônio) no exterior da célula, o que resulta na produção de um novo sinal (mudança nas concentrações de AMPc) no interior da célula. Embora o sistema AMPc seja utilizado por muitos hormônios, não é um sistema universal; existem outros sistemas mensageiros intracelulares que também são utilizados para responder os hormô-nios que não entram nas células, por exemplo o sistema cálcio-calmodulina, ou os siste-mas baseados em receptores com atividade de cineses de tirosina. Nos casos que os hor-mônios possa atravessar livremente a membrana celular, como acontece com os hormôni-os esteroides, o hormônio se une a receptores presentes no citoplasma, que depois ingres-sam ao núcleo celular para intervir na regulação da transcrição do genoma. -/- De maneira independente ao mecanismo de ação de um determinado hormônio, sua presença finalmente desencadeará mudanças em um ou mais sistemas efetores da célula, o que permitirá que a mesma responda a mensagem que o emissor transmitiu originalmente. É evidente que para compreender a ação de qualquer hormônio é indispensável conhecer seu mecanismo de ação, o papel dos mensageiros intracelulares e as característi-cas dos sistemas efetores. Deve-se conhecer também quais são os fatores que afetam a transdução da mensagem já que uma célula pode regular seus sistemas efetores e dessa forma ter uma resposta maior, menor ou alterada ante a mesma mensagem. -/- -/- Resposta -/- Como mencionado, qualquer mensagem provoca uma resposta (embora somente seja potencial) sobre o efetor que a recebe. No sistema endócrino, as mensagens hormonais viajam constantemente pelo organismo e são captadas por todas as células que possuem receptores ativos para um determinado hormônio. Uma única célula pode ter receptores para diferentes hormônios, pelo qual pode estar recebendo diversas mensagens simultaneamente, e cada uma dessas mensagens pode afetar a resposta de outras mensagens. Por exemplo, a presença de progesterona pode alterar a resposta das células endometriais ao estradiol. Ademais, as células podem estar recebendo ao mesmo tempo uma informação não hormonal, como as concentrações de diversos metabólitos na circulação, ou a recebida pelo sistema nervoso. A célula analisa toda essa informação e com base nela decide se deve responder a mensagem hormonal que está recebendo como deve responder, com que intensidade e durante quanto tempo. A resposta final pode ser uma resposta física imediata (contração, secreção de um hormônio armazenado previa-mente), uma modificação bioquímica a curto prazo (síntese de um determinado hormônio ou outra substância), ou o início de uma série de mudanças que levam a uma mudança a longo prazo (divisão celular, diferenciação celular, crescimento, morte celular). -/- -/- Feedback ou retroalimentação -/- Quando em um sistema de comunicação se produz uma resposta, em muitos casos essa resposta engloba a geração de informação que vai retornar ao emissor, e que agora constituirá um ou mais dos elementos que o emissor tomará em conta antes de transmitir uma nova mensagem. Assim, se um jornal transmite uma mensagem “menina pobre necessita de doação de roupas”, a resposta de alguns efetores (telespectadores) que virão a doar roupas será conhecida pelo emissor, que assim saberá que já não será mais neces-sário voltar a transmitir a mensagem, o que o fará tomar a decisão de transmitir uma mensagem diferente como “menina pobre já não necessita de roupas, porém requer de ali-mentos para sua família”. Essa modificação da mensagem provocada pela resposta do efetor é conhecida como retroalimentação. -/- De forma análoga, no sistema endócrino a resposta da célula efetora geralmente é reconhecida pelo emissor, que em consequência modifica sua mensagem. Na maioria dos casos se produz uma retroalimentação negativa, que consiste em que a resposta do efetor provoca uma redução na intensidade da mensagem transmitida pelo emissor. Quando os gonadotropos de uma vaca secretam hormônio folículo estimulante (FSH), as células da granulosa de seus folículos ovarianos respondem realizando diversas funções, uma das quais é a secreção de inibina. A elevação nas concentrações circulantes de inibina é capta-da pelos gonadotropos, que logo sabem que o FSH já transmitiu sua mensagem, pelo que reduzem a secreção deste hormônio. A retroalimentação negativa é muito importante em qualquer sistema endócrino já que permite manter as concentrações hormonais dentro de limites aceitáveis. -/- A retroalimentação negativa pode ser de onda ultracurta, curta ou longa. A onda ultracurta é quando o hormônio produzido por uma célula pode inibir sua própria secre-ção. A retroalimentação negativa de onda curta é quando o hormônio produzido por uma célula pode inibir a de um órgão imediatamente superior na hierarquia (por exemplo, quando a progesterona produzida pelo corpo lúteo do ovário inibe a secreção de LH pelos gonadotropos da hipófise). O feedback negativo de onda longa sucede quando o hormônio produzido por uma célula inibe a uma célula de um órgão que está dois ou mais níveis por cima na escala hierárquica, por exemplo, quando a testosterona produzida pelas células de Leydig do testículo inibe diretamente os neurônios produtores de GnRH, saltando as células produtoras de LH e adenohipófise. -/- Existe também a retroalimentação positiva, da qual o primeiro hormônio estimula a secreção de um segundo hormônio, o que por sua vez estimula o primeiro, com o que se estabelece um círculo progressivo de estimulação. Um exemplo de retroalimentação positiva é a que se produz pouco antes da ovulação entre o LH hipofisário e o estradiol de origem folicular. Os dois hormônios se estimulam mutuamente até que alcancem níveis elevados de LH que provoca a ovulação. O círculo de feedback positivo termina quando o pico pré-ovulatório de LH mudanças sobre o folículo que incluem a perda da capacidade de produção de estrógenos. Todo o sistema de retroalimentação positiva deve ter um final abrupto sobre o qual se rompe o ciclo de estimulação mútua, já que não mais deverá ser produzida quantidades elevadas dos hormônios, até que todos os recursos do organismo sejam utilizados para esse fim. -/- -/- CLASSIFICAÇÃO QUÍMICA DOS HORMÔNIOS -/- Do ponto de vista químico e sobre o estudo da Fisiologia da Reprodução Animal, existem quatro grupos principais de hormônios: polipeptídios, esteroides, aminas e prostaglandinas; dentro de cada grupo, por sua vez, existem mais grupos de inúmeros outros hormônios dispostos em subdivisões. -/- -/- Hormônios polipeptídios -/- Os polipeptídios são cadeias de aminoácidos. Quando uma dessas cadeias está constituída por poucos aminoácidos é denominada simplesmente de polipeptídios, mas quando uma cadeia de aminoácidos é longa e adquire uma configuração espacial de três dimensões o polipeptídio é denominado proteína (figura 2). Muitos neurohormônios hipo-talâmicos são polipeptídios, como o liberador de gonadotropinas (GnRH), constituído por 10 aminoácidos, o hormônio liberador de tirotropina (TRH), formado por 3 aminoácidos, o somatostatina, constituído por 14 aminoácidos, a ocitocina que é formada por 8 aminoá-cidos etc. O sistema nervoso central e a hipófise produzem peptídeos opioides. -/- Entre os hormônios polipeptídios que por seu tamanho são considerados proteínas encontramos a prolactina, o hormônio do crescimento, os lactogênios placentários, a relaxina, a insulina e fatores de crescimento parecidos com a insulina (IGFs). Existe outro grupo de hormônios polipeptídios classificados como glicoproteínas. Trata-se de proteí-nas que possuem carboidratos unidos a alguns de seus aminoácidos. -/- -/- Figura 2: classificação dos hormônios polipeptídios. Fonte: ZARCO, 2018. -/- -/- Há um grupo de hormônios glicoproteicos que constituem uma família de molécu-las similares entre si, dentro das quais estão o hormônio luteinizante (LH), o hormônio folículo estimulante (FSH), o hormônio estimulante da tireoide (TSH), a gonadotropina coriônica humana (hCG) e a gonadotropina coriônica equina (eCG); todos estão formados pela subunidade alfa que é idêntica para os hormônios de uma determinada espécie animal, e por uma subunidade beta específica para cada hormônio. As duas subunidades mantém-se unidas através de ligações dissulfeto. Deve-se mencionar que os carboidratos associados as glicoproteínas podem ser distintos em diferentes idades, épocas do ano ou estados fisiológicos; esse processo é conhecido como microheterogenicidade, e recente-mente têm-se dado grande importância a seu estudo, já que é reconhecido fatores tais como a vida média de um hormônio ou sua atividade biológica podem ser modificados de acordo com o tipo de carboidratos presentes na molécula. -/- Existe outra família de hormônios glicoproteicos, que incluem a inibina A, a B, e a activina A, AB e B. Todos os hormônios polipeptídios possuem algumas características comuns. Em primeiro lugar, trata-se de moléculas hidrossolúveis que não conseguem atravessar as membranas celulares pelo qual se unem a receptores transmembranais que flutuam sobre a parede externa da membrana da célula branca e requerem de um segundo mensageiro intracelular, como o cálcio ou o AMPc, para levar sua mensagem ao interior da célula. -/- Os hormônios desse grupo, não podem ser administrados por via dérmica, oral, retal ou intravaginal, já que não podem atravessar a pela ou as mucosas intestinais, retais ou vaginais. Os polipeptídios são digeridos no estômago, o que também impede sua admi-nistração oral. Outra característica que deve-se tomar em conta é que as proteínas (embora não os polipeptídios pequenos) podem se desnaturalizar por fatores como o calor (são termolábeis), a congelação, ou mudanças de pH m a desnaturalização consiste em uma mudança na forma natural da proteína, o que leva a perda de sua função. Por essa razão, ao trabalhar com hormônios proteicos devem-se tomar cuidados especiais durante seu manejo para evitar a exposição a fatores desnaturalizantes. -/- -/- Hormônios esteroides -/- São moléculas derivadas do colesterol; a célula esteroidogênica pode sintetizar o colesterol, obtê-lo de reservas intracelulares ou da circulação. Na célula esteroidogênica existem diversas enzimas que atuam sequencialmente sobre a molécula de colesterol, provocando mudanças sucessivas até obter o hormônio final que será secretado, ao qual dependerá das enzimas que estão presentes e ativas na célula. -/- Existem cinco grupos principais de hormônios esteroides; os progestágenos, os estrógenos, os glicocorticoides e os mineralocorticoides (figura 3). -/- Os progestágenos são hormônios que favorecem o desenvolvimento da gestação; seus efeitos incluem, entre outros, a estimulação da secreção endometrial de substâncias nutritivas para o embrião, a estimulação do desenvolvimento embrionário e placentário, a inibição das contrações uterinas, bem como fazer com que a cérvix fique fechada. O principal hormônio natural desse grupo é a progesterona, mas existem uma grande quantidade de progestágenos sintéticos utilizados na medicina veterinária, tais como o acetato fluorogestona (FGA), o acetato de melengestrol (MGA), o altrenogest e o norgestomet. -/- Os estrógenos são os hormônios femininos responsáveis, entre outras funções, dos sinais do estro ou receptividade sexual nas fêmeas. A maior parte de seus efeitos estão no alcance da fertilização do ovócito. Os estrógenos, além de estimular a conduta sexual feminina, favorecem, entre outras coisas, a abertura da cérvix para permitir a passagem do espermatozoide, e as contrações uterinas para impulsionar o sêmen em direção aos ovidutos. O principal estrógeno natural é o estradiol 17β, outros membros naturais do grupo são a estrona, a equilina e a equilenina, esses dois últimos presentes exclusivamente em éguas gestantes. Também existem numerosos estrógenos sintéticos, tais como o valerato de estradiol, o benzoato de estradiol e o cipionato de estradiol. -/- Os andrógenos são hormônios masculinos. Possuem uma grande quantidade de efeitos encaminhados a alcançar o êxito reprodutivo do macho, como estimular a conduta sexual, estimular a produção de espermatozoides e estimular as secreções das glândulas sexuais acessórias. O andrógeno principal é a testosterona, outros andrógenos naturais incluem a androstenediona e a di-hidrotestosterona. Existe também inúmeros andrógenos sintéticos. -/- Os glicocorticoides ou corticosteroides possuem funções principalmente metabó-licas e de adaptação ao estresse. O principal corticosteroide na maioria das espécies é o cortisol, enquanto que nos ratos e outros roedores é a corticosterona. Na reprodução, os corticosteroides desempenham um papel relevante, em particular durante o parto e a lac-tação. -/- Os mineralocorticoides, como a aldotestosterona, se encarregam da regulação do balanço de líquidos e eletrólitos no organismo. -/- -/- Figura 3: subgrupos dos hormônios esteroides. Fonte: ZARCO, 2018. -/- -/- Os hormônios esteroides como grupos são hidrossolúveis, pelo qual podem atra-vessar livremente as membranas celulares, por essa razão utilizam receptores intracelula-res que se encontram no citoplasma da célula branca; também pode-se administrar por via oral, pela pele, e através das mucosas retal ou vaginal. São moléculas termoestáveis e não são digeridas no estômago, embora algumas possas sofrer modificações na pH ácido, alterando sua função. -/- -/- Aminas -/- São moléculas derivadas de um aminoácido que se modifica pela ação de enzimas específicas. Existem dois tipos de hormônios aminas: as catecolaminas e as indolaminas (figura 4). As catecolaminas derivam do aminoácido tirosina, e incluem a dopamina, a a-drenalina e a noradrenalina. As indolaminas derivam-se do triptofano, e incluem a seroto-nina e a melatonina. -/- As aminas são moléculas hidrossolúveis que não podem atravessar as membranas celulares e portanto atuam através de receptores membranais e segundos mensageiros intracelulares. -/- -/- Figura 4: classificação dos hormônios peptídicos. Fonte: ZARCO, 2018. -/- -/- Prostaglandinas -/- São substâncias derivadas do ácido araquidônico. A principal fonte desse ácido graxo são os fosfolipídios da membrana celular, a partir dos quais se podem liberar o ácido araquidônico mediante a ação da enzima fosfolipase A2. O ácido araquidônico se transforma em prostaglandina H mediante a ação da enzima ciclo-oxigenase (ou sintetase de prostaglandinas), que mais adiante se transforma em diferentes prostaglandinas especí-ficas pela ação de diversas enzimas. O tipo de prostaglandina produzido por cada célula dependerá do complemento de enzimas presentes. -/- A prostaglandina mais importante na reprodução é a PGF2α, a qual é responsável pela destruição do corpo lúteo na maioria das espécies; também provoca contrações uteri-nas, pelo qual é importante para o parto, e o transporte dos espermatozoides e a involução uterina depois do parto. Na prática veterinária a PGF2α natural (dinoprosr) ou seus seme-lhantes sintéticos (cloprostenol, luprostiol etc.) são utilizados para a sincronização do ciclo estral, para a indução do parto e para tratar diversas patologias. Outra prostaglandina com algumas ações relacionadas com a reprodução é a prostaglandina E2 (PGE2). -/- As prostaglandinas são substâncias anfipáticas (com propriedades hidrossolúveis e lipossolúveis), pelo qual podem atravessar as membranas celulares. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. -/- BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. -/- BECKER, Jill B. et al. (Ed.). Behavioral endocrinology. Mit Press, 2002. -/- BITTAR, Edward (Ed.). Reproductive endocrinology and biology. Elsevier, 1998. -/- BURNSTEIN, Kerry L. (Ed.). Steroid hormones and cell cycle regulation. Kluwer Academic Pub., 2002. -/- CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. -/- CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. -/- DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. -/- FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. -/- GILBERT, Scott F. Biologia del desarrollo. Ed. Médica Panamericana, 2005. -/- GORE, Andrea C. GnRH: the master molecule of reproduction. Springer Science & Business Media, 2002. -/- HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. -/- HERNÁNDEZ PARDO, Blanca. Endocrinología: Lo esencial de un vistazo. México: Panamericana, 2016. -/- HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. -/- ILLERA MARTIN, Mariano. Endocrinología veterinaria y fisiología de la reproducción. Madrid: COLIBAC, 1984. -/- JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. -/- MANDOKI, Juan José et al. Hormone multifunctionalities: a theory of endocrine signaling, command and control. Progress in biophysics and molecular biology, v. 86, n. 3, p. 353-377, 2004. -/- MANDOKI, Juan José et al. Reflections on the mode of functioning of endocrine systems. Archives of medical research, v. 41, n. 8, p. 653-657, 2010. -/- MCKINNON, Angus O. et al. (Ed.). Equine reproduction. Nova Jersey: John Wiley & Sons, 2011. -/- MELMED, Shlomo (Ed.). The pituitary. Londres: Academic press, 2010. -/- NORRIS, David O.; LOPEZ, Kristin H. (Ed.). Hormones and reproduction of vertebrates. Academic Press, 2010. -/- PARHAR, Ishwar S. (Ed.). Gonadotropin-releasing hormone: molecules and receptors. Elsevier, 2002. -/- PIMENTEL, C. A. Fisiologia e endocrinologia da reprodução da fêmea bovina. I Simpósio de Reprodução de Bovinos, Porto Alegre, RS, 2002. -/- PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. -/- RAMOS DUEÑAS, J. I. Endocrinología de la reproducción animal. 2018. -/- SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. -/- SANDERS, Stephan. Endocrine and reproductive systems. Elsevier Health Sciences, 2003. -/- SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. -/- SQUIRES, E. James. Applied animal endocrinology. Cambridge: Cabi, 2010. -/- YEN, Samuel SC; JAFFE, Robert B.; BARBIERI, Robert L. Endocrinología de la Reproducción. Fisiología, fisiopatología y manejo clínico. Madrid: Ed. Médica Panamericana, 2001. -/- ZARCO, L. Endocrinología. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. (shrink)
In ‘Affectivity in Heidegger I: Moods and Emotions in Being and Time’, we explicated the crucial role that Martin Heidegger assigns to our capacity to affectively find ourselves in the world. There, our discussion was restricted to Division I of Being and Time. Specifically, we discussed how Befindlichkeit as a basic existential and moods as the ontic counterparts of Befindlichkeit make circumspective engagement with the world possible. Indeed, according to Heidegger, it is primarily through moods that the world is ‘opened (...) up’ and revealed to us as a world that is suffused with values and entities that already matter to us. In this companion essay, our aim is to expand our analysis of affectivity in the following ways: first, we revisit our discussion of Befindlichkeit in light of Heidegger's discussion of temporality in Division II of BT; second, we discuss the basic or fundamental mood of boredom and its ontological significance; we conclude by providing a brief characterization of how Heidegger's notion of mood changes in his later thinking. (shrink)
FISIOLOGIA DO CICLO ESTRAL DOS ANIMAIS -/- Departamento de Zootecnia – UFRPE Embrapa Semiárido e IPA -/- • _____OBJETIVO -/- O cio ou estro é a fase reprodutiva dos animais, onde as fêmeas apresentam receptividade sexual seguida de ovulação. Para tanto, é necessário entender a fisiologia do estro para a realização do manejo reprodutivo dos animais. Em geral, as fêmeas manifestam comportamentos fora do comum quando estão ciclando, tais comportamentos devem ser observados para que não percam o pico de ovulação (...) e, consequentemente, para que não perca o momento de monta ou inseminação para emprenhar o animal. Neste trabalho, o estudante compreenderá o ciclo estral identificando as diferenças entre as espécies domésticas, para considerá-las na manipulação do mesmo. -/- • _____INTRODUÇÃO -/- As fêmeas dos mamíferos domésticos apresentam, em sua vida reprodutiva, even-tos recorrentes conhecidos como ciclos estrais que se caracterizam por uma série de alte-rações ovarianas, genitais, endócrinas e comportamentais. Esses ciclos são o fundamento da reprodução e possuem a finalidade de que ocorra a ovulação de forma sincronizada com o acasalamento para conduzir a uma gestação. A compreensão deste é de suma im-portância para alcançar uma boa eficiência produtiva nas propriedades pecuárias; consi-derando que a oportunidade de gestar os animais se limita a períodos, em geral, muito curtos, que ocorrem em cada ciclo. Assim que as fêmeas atingem a puberdade, em bovinos entre 11 e 19 meses, inicia-se a apresentação dos ciclos estrais, o que geralmente indica o início da receptividade sexual, também chamada de "estro" ou "cio", por ser a fase mais fácil de reconhecer devido ao qual a fêmea busca, atrai e aceita a montaria do macho. Todavia, para uma melhor eficiência reprodutiva, as fêmeas que apresentarem o primeiro cio não devem ser colocadas à disposição do macho ou da IA, uma vez que ela ainda não possui o aporte e a condição corporal ideal para conseguir gestar; logo para serem colocadas à reprodução devem estar ao terceiro estro ou possuir entre 60 a 70% do seu peso vivo adulto. Depois da receptividade ocorre um período em que a fêmea não atrai nem aceita o macho. Assim, um ciclo estral é definido como o período entre um estro e o seguinte. Quando durante o ciclo estral ocorre uma cópula fértil, as fêmeas passam a uma fase de anestro fisiológico, causado pela gestação, em que cessa o ciclo estral e passam a não apresentarem atividade sexual. Nas espécies sazonais (cabras, éguas e ovelhas), a manifestação dos ciclos estrais também é limitada pela época do ano em que as fêmeas apresentam um anestro sazonal. Essas espécies sazonais ou estacionais apresentam cio durante a época em que os dias apresentam a presença de luz por mais tempo; isto é, dias mais longos. Deve-se considerar que a ciclicidade feminina pode ser alterada por eventos patológicos como processos infecciosos, persistência do corpo lúteo, desnutrição e estresse, entre outros. -/- • _____CONTROLE ENDÓCRINO DO CICLO ESTRAL -/- As mudanças ovarianas, genitais e comportamentais que ocorrem ao longo dos ciclos estrais são controladas pelo sistema endócrino e são o resultado de uma complexa interação entre hipotálamo, hipófise, ovário e útero. Vários hormônios participam desse processo, dos quais serão descritos a importância e a participação dos mais relevantes (figura 1). -/- Figura 1: Interação hormonal do eixo hipotálamo-hipófise-gonodal. No lado esquerdo, com linhas contínuas, os principais hormônios são exemplificados quando há um folículo pré-ovulatório. No lado direito, com linhas pontilhadas, os hormônios envolvidos são mostrados quando a estrutura ovariana predominante é o corpo lúteo. Fonte: RANGEL, 2018. A Kisspeptina é um peptídeo hipotalâmico que tem sido denominado regulador central, pois os neurônios que a produzem recebem informações do meio ambiente e do próprio corpo, o que indica o momento ideal para a reprodução. Além de modular a secreção de GnRH durante o ciclo estral, esse hormônio controla tanto o início da puberdade quanto da estacionalidade reprodutiva. Além disso, é inibido durante a lactação, bloqueando a atividade reprodutiva das fêmeas nessa fase. Os neurônios produtores de Kisspeptina possuem receptores de estradiol, que os regulam para modular a liberação tônica e cíclica de GnRH, controlando assim a secreção de gonadotrofina; além disso, foi sugerida a participação de outros hormônios neurotransmissores e neuropeptídios na modulação da secreção de GnRH. Entre eles estão os estimuladores: norepinefrina, serotonina, aminoácidos excitatórios (principal-mente glutamato) e neurotensina. Atuando como inibidores: GABA e opioides endógenos (principalmente o β-endorfina). O GnRH é um neuropeptídio hipotalâmico que estimula a produção e liberação de LH, de forma que um pulso de LH é sempre precedido por um pulso de GnRH. Os estrogênios foliculares têm, por outro lado, um efeito de feedback positivo com o LH, aumentando a produção de GnRH pelo centro cíclico e a formação de seus receptores nos gonadotrópicos da hipófise. Como resultado, a maturação dos folículos ovarianos é alcançada e os picos pré-ovulatórios de estradiol e LH são alcançados. No centro tônico da secreção de GnRH, os estrogênios inibem a liberação desse hormônio quando os animais estão na vida pré-púbere ou nos estágios de anestro, e a sensibilidade a esse feedback negativo diminui durante os estágios reprodutivos. No sentido estrito, a liberação de FSH pelos gonadotrópicos hipofisários não requer a presença do GnRH, que participa antecipadamente do estímulo de sua síntese; o FSH é considerado, então, um hormônio secretado constitutivamente, ou seja, constantemente, a menos que haja um estímulo inibitório. Este estímulo inibitório existe graças aos estrogênios e à inibina, que são produzidos pelos folículos em desenvolvi-mento, especialmente pelo folículo dominante. A progesterona é um hormônio esteroide produzido pelo corpo lúteo (CL) que inibe a secreção de LH. Isso é realizado tanto indiretamente por meio da inibição da secreção de GnRH no nível hipotalâmico, quanto por ação direta no nível da hipófise, uma vez que bloqueia a formação de receptores de GnRH nos gonadotropos. Assim, diminui a frequência dos pulsos de LH, que é mantida em níveis basais capazes de participar da formação e manutenção do corpo lúteo, mas incapaz de causar ovulação. Na vaca, o papel do LH na manutenção do corpo lúteo é controverso, uma vez que alguns autores propõem que apenas o hormônio do crescimento participe para esse fim, pois a administração de inibidores de GnRH quando há corpo lúteo funcional não afeta a secreção de progesterona. Se a fertilização não for alcançada com sucesso, eventualmente o corpo lúteo deve ser destruído por apoptose (processo conhecido como luteólise), para permitir a ocorrência de um novo ciclo estral. Nesse caso, os hormônios participantes são a ocitocina, produzida inicialmente no nível central e posteriormente pelo CL; e a prostaglandina F2alfa (PGF2α), secretada pelo endométrio uterino ao final do diestro; entre ambos os hormônios estabelecerão um mecanismo de feedback positivo até que se complete a luteólise. -/- • _____FREQUÊNCIA DE APRESENTAÇÃO DOS CICLOS ESTRAIS -/- As espécies são classificadas de acordo com a frequência com que apresentam seus ciclos estrais em um dos três grupos existentes (figura 2). -/- Figura 2: classificação das espécies domésticas de acordo com a frequência de apresentação de seus ciclos estrais ao longo do ano. Fonte: RANGEL, 2018. -/- Tabela 1: tipo e duração do ciclo estral de diferentes espécies Monoéstricas -/- São as espécies que apresentam um único ciclo estral, uma ou duas vezes ao ano, que culmina com um período de anestro, que faz parte do mesmo ciclo. Em geral, a fase de receptividade sexual dessas espécies é muito longa para garantir a fecundação. Dentro desta classificação está a família Canidae, que inclui cães domésticos, lobos e raposas. Os cães domésticos são capazes de se reproduzir em qualquer época do ano, portanto, não são considerados sazonais; apesar disso, observou-se que o estro tende a ocorrer com mais frequência no final do inverno ou início da primavera. Como exceção, a raça de cães Basenji é considerada sazonal, pois eles sempre têm seus ciclos férteis no outono. -/- Poliéstricas estacionais ou sazonais -/- São espécies que para garantir que seus filhotes nasçam na época do ano mais favorável à sua sobrevivência, apresentam uma série de ciclos estrais durante uma estação limitada do ano (figura 3). No final desta estação, os animais entram em anestro sazonal, que termina com o início da próxima estação reprodutiva. Dentro deste grupo estão as espécies que se reproduzem nas épocas do ano em que está aumentando a quantidade de horas-luz por dia ou fotoperíodo crescente (primavera-verão), como equinos e gatos; o último mostra a atividade ovariana entre janeiro e setembro (ou até outubro) nas zonas temperadas. Há outro grupo de espécies que se reproduzem em períodos de fotoperíodo decrescente (outono-inverno), entre as quais estão ovinos e caprinos. -/- Figura 3: classificação das espécies domésticas, de acordo com a estacionalidade de sua reprodutiva. Fonte: RANGEL, 2018. Poliéstricas contínuas -/- As espécies deste grupo são caracterizadas por ciclos estrais durante todo o ano. Dentro desta classificação estão bovinos e suínos. -/- • _____ETAPAS DO CICLO ESTRAL -/- Do ponto de vista das estruturas ovarianas predominantes, o ciclo estral se divide em duas fases: a fase folicular, na qual os folículos ovarianos se desenvolvem e amadurecem, além da ovulação; nas espécies poliéstricas, esta fase começa com a regressão do corpo lúteo do ciclo anterior. A outra é conhecida como fase lútea e refere-se às etapas do ciclo em que o corpo lúteo se forma e tem sua maior funcionalidade. Cada uma dessas fases pode ser dividida em etapas de proestro e estro (fase folicular); e metaestro e diestro (fase lútea) (figura 4). Algumas espécies, adicionalmente, podem apresentar períodos de anestro e interestro, como parte de seus ciclos estrais (figura 4). -/- Figura 4: etapas dos ciclos estrais dos animais domésticos. Fonte: RANGEL, 2018. -/- Fase folicular -/- É identificada porque os hormônios ovarianos predominantes são os estrogênios (produzidos pelos folículos em crescimento), que desencadeiam o comportamento sexual e fazem com que o aparelho reprodutor passe por algumas adaptações para atrair o macho, preparar-se para a cópula e facilitar o transporte dos gametas. O proestro começa quando as concentrações de progesterona do ciclo anterior baixem para níveis basais devido à regressão do CL; e termina quando o comportamento de receptividade sexual começa. É caracterizado pelo crescimento do folículo dominante da última onda folicular do ciclo anterior; portanto, sua duração depende do grau de desenvolvimento em que o folículo se encontra no momento da luteólise. Nesse estágio, aumenta-se a produção de estradiol e inibina secretada pelo folículo ou folículos que iniciaram seu desenvolvimento durante o final do período de diestro. As concentrações de FSH diminuem no início do proestro; entretanto, eles começam a aumentar à medida que o estro se aproxima. O LH, devido ao efeito do estradiol, passa a aumentar sua frequência de secreção e diminuir a amplitude de seus pulsos, o que acentua a produção de andrógenos pelas células da teca e a capacidade de aromatização das células da granulosa, com o consequente aumento na produção de estradiol. O aumento do estradiol desencadeia a apresentação comportamental do estro que também é conhecido como estágio de cio, calor ou receptividade sexual, uma vez que representa o único período em que a fêmea procura ativamente o macho e aceita a montagem e a cópula. O comportamento sexual pode variar em intensidade entre diferentes espécies. Durante a fase de estro, o(s) folículo(s) em desenvolvimento no ovário adquirem sua maturidade e tamanho pré-ovulatório (figura 5), atingindo as concentrações máximas de estradiol. Um feedback positivo é então exercido entre o estradiol, GnRH e LH, para que ocorra o pico de LH pré-ovulatório que será responsável pela ovulação. -/- Figura 5: folículos ovarianos de porcas. Esquerda: pequenos folículos, estágio de proestro. À direita: folículos pré-ovulatórios, estágio de estro. Fonte: RANGEL, 2018. -/- O estro é a fase do ciclo em que ocorre a ovulação em espécies domésticas, com exceção dos bovinos que ovulam durante o metaestro inicial. A ovulação, por outro lado, manifesta-se espontaneamente na maioria das espécies domésticas, com exceção dos felinos, leporídeos e camelídeos, nos quais a cópula deve ocorrer para induzi-la, por isso são conhecidos como espécies de ovulação induzida (figura 6). Nessas espécies, a cópula provoca um reflexo nervoso que atua no nível hipotalâmico para induzir a liberação de GnRH e, portanto, o pico pré-ovulatório de LH. Existem outras espécies em que a cópula não estimula a ovulação, mas é necessária para induzir a formação do CL (figura 6). Dentro dessas espécies estão ratos e camundongos. -/- Figura 6: classificação das espécies domésticas, segundo a espontaneidade da ovulação e a formação do corpo lúteo. Fonte: RANGEL, 2018. -/- Em caninos, deve-se considerar que, embora tradicionalmente se diga que a ovulação ocorre dois dias após o início do estro, ela pode ocorrer mais tarde, em alguns casos ocorrendo próximo ao final do estro. Em geral, durante a fase folicular, o útero tem maior suprimento e as glândulas endometriais entram em fase proliferativa, aumentando seu tamanho. Isso faz com que o útero fique mais tônico, ou seja, mais firme, exceto no caso de éguas e carnívoros nos quais os estrogênios fazem com que o útero se encontre com edema e sem tonalidade, enquanto a cérvix aparece relaxada durante o estro. Além disso, o aumento do suprimento de sangue causa hiperemia e congestão do epitélio vaginal e vulvar (figura 7). Para permitir a passagem do esperma, a cérvix se abre e a produção de um muco cervical muito fluido, cristalino e abundante é aumentada; o útero e o oviduto aumentam suas contrações. Nessa última ação participam as prostaglandinas contidas no plasma seminal (PGF₂α e PGE). Na vagina, o número de camadas de células do epitélio começa a aumentar e as células da superfície tornam-se cornificadas. No caso da cadela, a situação hormonal durante a fase folicular é completamente diferente do resto das espécies domésticas (figura 8), uma vez que há altas concentrações de estrógenos durante o proestro, que atingem seu nível máximo 24 a 48 h antes de seu término; ao mesmo tempo, os folículos iniciam sua luteinização, antes de serem ovulados. Essa situação provoca a liberação de progesterona, que começa a aumentar suas concen-trações; à medida que aumenta, as concentrações de estradiol começam a cair. Assim, o estro começa quando os níveis de progesterona atingem uma concentração de cerca de 1 ng/ml. O pico de LH ocorre durante a transição do proestro para o estro e a ovulação ocorre 48 a 60 horas depois; processo que pode se estender de 24 a 96 h. Os níveis de progesterona aumentam após o início do estro, de modo que antes da ovulação estão entre 2 e 4 ng/ml, enquanto as concentrações entre 5 e 10 ng/ml estão relacionadas ao tempo de ovulação. Uma vez que as concentrações de estradiol caem abaixo de 15 pg/ml, o estro é encerrado (figura 8). -/- Figura 7: comparação da aparência vulvar em porcas. O círculo azul indica a vulva de uma porca que não está em estro, enquanto um círculo vermelho mostra uma vulva apresentando hiperemia e edema característicos da fase de estro. Fonte: Acervo pessoal do autor. -/- As altas concentrações de estradiol no proestro são responsáveis pela atração da fêmea pelo macho a partir desta fase, porém, não apresentará comportamento receptivo até o início da fase de estro. Deve-se levar em consideração que algumas cadelas podem não aceitar o macho, apesar de estarem endócrinamente na fase de estro, o que pode ser atribuído às condições de manejo, aos comportamentos adquiridos ou às características hierárquicas, ou ainda a distúrbios relacionados a endocrinologia da reprodução (anorma-lidades hormonais e/ou baixas concentrações de hormônios). No caso das éguas, não há menção à fase de proestro e os eventos que ocorreriam nessa fase estão englobados no estro, que tradicionalmente será denominado fase folicular ou simplesmente estro (figura 9). -/- Figura 8: Endocrinologia do ciclo estral da cadela. Fonte: RANGEL, 2018. -/- Figura 9: duração das etapas do ciclo estral das éguas. A ovulação ocorre nos últimos 2 dias da fase de estro. Fonte: RANGEL, 2018. -/- Fase lútea -/- Durante essa fase, o esteroide ovariano predominante é a progesterona, cujo objetivo é manter a gravidez se a fertilização for bem-sucedida. Para isso, os estrogênios pré-ovulatórios favorecem a formação de receptores de progesterona uterina, então a presença da progesterona faz com que as glândulas endometriais entrem em sua fase secretora e iniciem a produção de histiotrofo ou leite uterino, para nutrir o produto que poderia estar potencialmente presente. Já na fase lútea, ocorre redução das concentrações de estrogênio, o que causa diminuição do tônus uterino, hiperemia e edema vulvar. Por fim, a cérvix se fecha e o muco cervical torna-se espesso, pegajoso, opaco e menos abundante, de modo a isolar o útero por fora, evitando a entrada de microrganismos que poderiam comprometer a possível gravidez. O metaestro começa quando a fêmea deixa de aceitar a montaria do macho e termina quando há um CL funcional bem estabelecido. Este estágio corresponde ao período de transição entre a dominância estrogênica e o aumento das concentrações de progesterona. Nesse estágio, as concentrações de FSH são aumentadas pela queda repentina de estradiol e inibina após a ovulação, o que permite o recrutamento da primeira onda folicular. Nesta fase, o ovário contém o corpo hemorrágico, a partir do qual se desenvolverá o CL (figura 10). O corpo hemorrágico tem meia-vida muito curta, pois as células que compõem suas paredes iniciam sua luteinização imediatamente após ou mesmo antes da ovulação. -/- Figura 10: ovários bovinos. Corpo hemorrágico (CH); folículos (F) e corpo lúteo (CL). -/- O diestro, por sua vez, constitui a etapa mais longa do ciclo estral e é caracterizado por um CL que se encontra em sua atividade secretora máxima. Somente no final dessa fase, e se não houver fecundação, o CL sofre luteólise; caso contrário, o CL é mantido de forma a preservar a gestação, prolongando um estado fisiológico semelhante ao do diestro. A imagem 11 esquematiza o ciclo estral da vaca, eventos ovarianos e endócrinos, bem como a duração das etapas do ciclo estral. Nessa fase, a progesterona atinge suas concentrações máximas e exerce efeito negativo na liberação de LH, pois inibe a formação de receptores de GnRH nos gonadotropos hipofisários, bem como a secreção de GnRH pelo hipotálamo. Além disso, observam-se aumentos repetidos da secreção de FSH com o consequente aumento do desenvolvimento folicular e das concentrações plasmáticas de estradiol e inibina. No entanto, os folículos que começam seu desenvolvimento, não conseguem completar sua maturação e sofrem regressão (ondas foliculares). A égua é a única fêmea doméstica que pode ovular naturalmente durante a fase lútea, com uma incidência de ovulação de 10-25% nesta fase. Figura 11: etapas, estruturas ovarianas e endocrinologia do ciclo estral da vaca. Fonte: RANGEL, 2018. -/- No final do diestro, os estrogênios sensibilizam o endométrio, de modo que as células epiteliais formam os receptores de ocitocina. Após uma primeira secreção de ocitocina da neurohipófise e secreções subsequentes originadas do corpo lúteo, um mecanismo de feedback positivo é iniciado para a secreção de PGF2α. O papel da PGF2α é destruir o CL quando não houver fertilização. Deve-se considerar que para o útero ser capaz de produzir PGF2α deve haver um período prévio de exposição à progesterona, durante o qual aumenta o conteúdo de precursores das prostaglandinas no endométrio, como o ácido araquidônico (ácido graxo C20H32O2). O anestro é considerado como um período de inatividade reprodutiva, mesmo quando continua havendo atividade hormonal e desenvolvimento folicular, uma vez que o estímulo é insuficiente para que ocorra a maturação folicular e a ovulação. Ao longo desta fase não haverá alterações comportamentais ou morfológicas nas fêmeas. Nas espécies estacionais ou sazonais, o anestro é muito importante, pois limita a estação reprodutiva de forma que os partos ocorram na época do ano que pode ser mais favorável para a sobrevivência dos filhotes. Em espécies poliéstricas contínuas, o anestro aparecerá em casos de processos fisiológicos como gestação ou amamentação, ou devido a condições patológicas que interrompem a ciclicidade. Em caninos, o anestro é considerado mais uma fase do ciclo estral (figura 12), e é o estágio de transição entre o diestro de um ciclo e o proestro do próximo; na verdade, o anestro é a fase mais longa do ciclo nessa espécie, pois pode durar de 4 a 10 meses, dependendo do indivíduo. Em algumas espécies de animais domésticos, o anestro pode ocorrer pós-parto. O interestro é uma fase de repouso entre as ondas foliculares e é característica do ciclo estral de espécies cuja ovulação é induzida, como os felinos e camelídeos, por exemplo, a lhama e a alpaca. Ao longo desta fase, não há comportamento sexual. Sua apresentação se deve ao fato de a monta não ter ocorrido ou de não ter sido capaz de induzir a ovulação, de modo que os folículos ovarianos regridem, dando origem a um novo recrutamento folicular. No caso dos felinos, foi relatado que até 50% das cópulas simples são insuficientes para causar ovulação. -/- Figura 12: etapas do ciclo estral da cadela. A ovulação ocorre dois dias após o início do cio. Fonte: RANGEL, 2018. -/- • _DURAÇÃO DOS CICLOS ESTRAIS E PARTICULARIDADES POR ESPÉCIE -/- As variações na duração do ciclo estral e as fases presentes entre as diferentes espécies domésticas são indicadas na tabela 2. Em particular, existe uma grande variação entre os indivíduos dependendo da duração das fases do ciclo estral em caninos e felinos, sendo difícil precisar sua duração, já que no caso da cadela o anestro é parte integrante do ciclo; na gata, a duração do ciclo anovulatório é diferente daquele em que ocorreu a ovulação. Assim, em um ciclo anovulatório, a gata pode manifestar períodos de estro de sete dias em média, seguidos de 2 a 19 dias sem estro (período denominado interestro), que são continuados com outro período de estro. Quando ocorre a ovulação e não é fértil, surge uma fase lútea de 35 a 37 dias e às vezes demora mais 35 dias para o animal apresentar um novo estro. Em cadelas, não há estágio de metaestro propriamente dito, pois a ovulação ocorre no início do estro, de forma que, ao término do comportamento sexual, os corpos lúteos já estão formados. Da mesma forma, as gatas não apresentam este estágio, portanto, se ocorrer ovulação, a fase de estro é imediatamente seguida pela fase diestro (figura 13). Figura 13: etapas e endocrinologia do ciclo estral da gata. Fonte: RANGEL, 2018. -/- Tabela 2: Duração do ciclo estral e suas fases nas diferentes espécies domésticas Espécie Ciclo (dias) Proestro (dias) Estro Metaestro (dias) Diestro (dias) Interestro (dias) Anestro Bovina 21 (17-24) 2 a 3 8-18 h 3 a 5 12 a 14 - Pós-parto (vacas de leite) Lactacional (vacas de corte) Ovina 17 (13-19) 2 24-36 h 2 a 3 12 - Estacional Caprina 21 2 a 3 36 h (24-48) 3 a 5 8 a 15 - Estacional Suína 21 (17-25) 2 24-72 h 2 14 - Lactacional Equina 21 (15-26) - 4-7 d - 14 a 15 - Estacional Canina - 9 (3-20) 9 d (3-20) - 63 ± 5 em gestantes 70 a 80 em vazias - 4 a 10 meses Felina - 1 a 2 7 d (2-19) - 35 a 37 8 (2-19) Estacional (30-90 d) Onde: d = dias. h = horas. -/- O ciclo estral das éguas é dividido apenas em duas fases, folicular e lútea; às vezes também conhecido como estro e diestro, respectivamente (figura 14). No caso de bovinos, a ovulação ocorre durante a fase de metaestro, entre quatro e 16 horas após o término do estro, ou de 30 a 36 horas após o início do estro (figura 15). Uma vez que a ovulação ocorre, e como consequência da queda repentina nas concentrações de estradiol, algumas vacas podem ter uma secreção vulvar sanguinolenta (figura 16). -/- Figura 14: endocrinologia do ciclo estral da égua. Fonte: RANGEL, 2018. -/- Figura 15: duração das etapas do ciclo estral das vacas. A ovulação ocorre no metaestro ou de 4 a 16 horas depois do término do cio. Fonte: RANGEL, 2018. -/- Figura 16: secreção vulvar sanguinolenta em vaca no estágio de metaestro • ___DESENVOLVIMENTO FOLICULAR -/- Embora o desenvolvimento folicular que leva à ovulação ocorra na fase folicular do ciclo estral e desempenhe um papel essencial no controle do ciclo, durante a fase lútea também ocorre o desenvolvimento folicular, mas os folículos não conseguem realizar sua maturação final e ovulação; mesmo em animais pré-púberes e em animais em anestro, há crescimento folicular. Por isso o desenvolvimento folicular é considerado um processo constante e dinâmico. As fêmeas têm certo número de folículos e ovócitos desde o nascimento, que em geral excede consideravelmente o número de oócitos que serão ovulados ao longo de suas vidas. Aproximadamente 90% dos folículos ovarianos começam a crescer, mas não ovulam e regridem, fato conhecido como atresia folicular. Estima-se que a atresia ocorra em qualquer época de desenvolvimento, mas é mais comum nos estágios dependentes de gonadotrofinas. A razão pela qual as ondas foliculares se desenvolvem durante a fase lútea, culminando na atresia, é que a progesterona produzida pelo corpo lúteo inibe a pulsação de LH. Assim, os folículos dominantes não obtêm suprimento suficiente desse hormônio para completar seu crescimento e ovular, causando sua regressão. Quando os folículos sofrem atresia, cessa a produção de estradiol e inibina, retomando a secreção de FSH, iniciando um novo recrutamento folicular. No final do período de diestro, quando as concentrações de progesterona começam a diminuir devido à luteólise, os estrogênios foliculares estimulam a secreção de LH, que fornece suporte suficiente para o crescimento e maturação dos folículos até que a ovulação seja desencadeada. -/- • ___OVULAÇÃO -/- A ovulação ocorre graças a um processo de remodelação, adelgaçamento e ruptura da parede folicular ao nível do estigma, que é uma área de tecido desprovida de vascularização, que se forma na superfície do folículo ovulatório (figura 17). Nas espécies domésticas, o folículo pode se desenvolver e ovular em qualquer parte da superfície do ovário, com exceção dos equinos, nos quais, devido à conformação anatômica característica do ovário desta espécie, a ovulação sempre ocorre ao nível da fossa de ovulação. O pico de LH que precede a ovulação estimula a síntese e a liberação local de PGE₂ e PGF₂α, bem como o início da produção de progesterona pelas células foliculares. Junto com o pico pré-ovulatório de LH, ocorre aumento da quantidade de fluido folicular, graças ao aumento da permeabilidade vascular da teca (ação estimulada em conjunto com a PGE₂) e ao aumento do suprimento sanguíneo no período pré-ovulatório; entretanto, a pressão intrafolicular não aumenta porque a parede do folículo está distendida. -/- Figura 17: ruptura do estigma folicular durante o processo de ovulação. Fonte: Internet. -/- A ovulação começa com um enfraquecimento da parede folicular, porque a PGF₂α causa a liberação de enzimas lisossomais das células da granulosa do folículo pré-ovulatório. O aumento local da progesterona faz com que as células da teca interna sintetizem colagenase, uma enzima que cliva as cadeias de colágeno do tecido conjuntivo, enfraquecendo a túnica albugínea que constitui a parede folicular. À medida que a parede enfraquece, forma o estigma - projeção avascular - na região apical, o que indica que a ovulação está se aproximando. O estigma é o local onde o folículo se rompe, permitindo a liberação do oócito, que sai envolto pelas células da coroa irradiada e acompanhado pelo fluido contido no antro folicular. -/- • ___CORPO LÚTEO -/- Após a ovulação, as células que permanecem na cavidade folicular desenvolvem um CL, que é considerado uma glândula temporária; sua função essencial é a produção hormonal e só está presente durante o diestro, na gestação e em algumas patologias como a piometra. A luteinização, ou formação do CL, é mediada principalmente pelo LH; no entanto, outros hormônios também estão envolvidos, como o hormônio do crescimento (GH). Assim, o tratamento com GH em animais hipofisectomizados foi encontrado para restaurar a função normal do CL; enquanto em espécies como roedores e caninos, a formação do CL é induzida e mantida pela prolactina, hormônio que não participa com essa finalidade no caso dos ruminantes. Durante a luteinização, os remanescentes das células da granulosa se diferenciam em grandes células lúteas, que são capazes de secretar progesterona continuamente (basal), e possuem grânulos secretores responsáveis pela produção e liberação de ocitocina e relaxina, esta última durante a gestação de algumas espécies. Enquanto as células da teca formam as pequenas células lúteas, que não secretam ocitocina e produzem progesterona em resposta ao LH (tônico). O corpo lúteo é, finalmente, constituído de células luteais grandes e pequenas, fibroblastos, células mioides, células endoteliais e células do sistema imunológico. Outro fator importante para o processo de luteinização é a formação de uma rede vascular, essencial para aumentar o fluxo sanguíneo para o CL. A referida formação vascular é mediada principalmente por dois fatores, fator de crescimento de fibroblastos (FGF), que no estágio inicial do desenvolvimento lúteo estimula a proliferação de células endoteliais pela ação de LH, e fator de crescimento endotélio-vascular (VEGF) que promove a invasão de células endoteliais para a camada de células da granulosa e a organização e manutenção da microvasculatura do CL. A luteólise é um processo essencial para retomar a ciclicidade das fêmeas. Sucede ao final do diestro quando não ocorre a fecundação e consiste na desintegração funcional e estrutural do CL. O primeiro refere-se à queda nas concentrações de progesterona, enquanto o segundo abrange a regressão anatômica da estrutura lútea e a recuperação do tamanho normal do ovário. A desintegração funcional, com a consequente queda nas concentrações de progesterona, ocorre antes que a regressão estrutural seja observada. Caso ocorra a gestação, a vida do CL é prolongada, visto que existem mecanismos que o resgatam de sua regressão. Durante o diestro, a progesterona produzida pelo CL bloqueia inicialmente a ação do estradiol e da ocitocina. Para esse último, causa uma redução no número de receptores de ocitocina endometrial, modificando sua estrutura. Desta forma, não é possível estabelecer um feedback positivo entre a ocitocina e a PGF₂α, que será responsável pela luteólise. No entanto, à medida que o diestro progride, a progesterona esgota seus próprios receptores, de modo que, no final desse estágio, ela perde a capacidade de inibir os receptores de ocitocina. O estradiol ativa, então, o centro de geração de pulso de ocitocina no hipotálamo e começa a induzir o endométrio tanto a formação de seus próprios receptores como os da ocitocina. A ocitocina e o estradiol trabalham juntos para aumentar a atividade e a concentração das enzimas envolvidas na síntese de PGF2α: a fosfolipase (enzima responsável pela liberação de ácido araquidônico de fosfolipídios da membrana celular) e a prostaglandina sintetase (enzima responsável pela transformação do ácido araquidônico em prostaglandina). Dessa forma, a ocitocina hipotalâmica, liberada de forma pulsátil pela neurohipófise, estimula inicialmente a síntese e secreção de PGF2α através do endométrio. A PGF2α possui receptores em grandes células do CL, que aumentam seu número à medida que o ciclo estral progride. Assim, quando a PGF2α endometrial atinge o ovário provoca a liberação de ocitocina lútea, desencadeando um mecanismo local de feedback positivo, que agindo no endométrio aumenta a secreção de PGF2α. Este circuito continua até que se alcance uma frequência de pulsos de PGF2α de aproximadamente cinco pulsos em 24 h, uma frequência que é capaz de desencadear a luteólise. Em equinos, o CL não produz ocitocina; no entanto, as células endometriais os produzem, então a secreção por PGF2α depende do estímulo da ocitocina que vem desta última fonte e da hipófise. Ressalte-se que o CL deve atingir certo grau de maturidade para que possa ser receptivo à ação da PGF2α. Isso é conseguido através da formação de receptores para a PGF2α e desenvolvendo a capacidade de expressar a prostaglandina sintetase, de modo que o CL requer para produzir PGF2α na forma autócrina para atingir a lise. As células endoteliais e as células imunes, típicas do CL, também intervêm no processo de luteólise estrutural. As células endoteliais secretam proteína quimiotática de monócitos (MCP-1), para recrutar macrófagos que migram através do epitélio vascular que foi sensibilizado pela PGF2α. Os macrófagos ativados secretam o fator necrose tumoral alfa (TNFα) que atua sobre as células do corpo lúteo causando apoptose celular. A PGF2α também participa da luteólise funcional, inibindo a síntese de progesterona e reduzindo a síntese e fosforilação da proteína responsável pelo transporte de colesterol para a mitocôndria (StAR). Além disso, a PGF2α induz a produção de endotelina-1 (ET1) pelas células endoteliais encontradas no corpo lúteo, as quais contribuem para uma redução na síntese de progesterona. -/- • ___FATORES QUE AFETAM O CICLO ESTRAL -/- A apresentação dos ciclos estrais é natural e impreterível; no entanto pode ser afetada por fatores ambientais como o fotoperíodo, e fatores específicos do indivíduo como a sociabilidade e amamentação, além dos fatores de manejo como a nutrição e, consequentemente, o ECC das fêmeas e a endocrinologia (hormônios). Todos esses fatores serão explicados a seguir. -/- Fotoperíodo -/- O fotoperíodo é determinado pelo número de horas de luz do dia ao longo do ano e é considerado um dos fatores ambientais mais consistentes e repetíveis. A quantidade diária de horas-luz tem maior efeito nas espécies sazonais para determinar o início da atividade reprodutiva. No entanto, em espécies poliéstricas contínuas, variações anuais na ciclicidade também podem ser observadas, um exemplo disso é a acentuada sazonalidade nos nascimentos de búfalos e zebuínos. Da mesma forma, o momento em que uma bezerra ou leitão nasce afeta a idade em que atinge a puberdade, e a explicação para isso é que o fotoperíodo a que estão expostos impacta seu desenvolvimento. Assim, observou-se que uma maior quantidade de horas de luz do dia (suplementação de quatro horas por dia por cerca de dois meses) pode adiantar o início da puberdade em novilhas. -/- Amamentação -/- Em espécies como suínos e bovinos de corte, o anestro pós-parto é mantido pelo estímulo que a prole exerce sobre a mãe no momento da amamentação. Dessa forma, sob esses estímulos a fêmea deixará de apresentar cio enquanto estiver alimentando as crias (figura 18). Na ação de amamentação, pensa-se que participa o reconhecimento filial, onde intervêm a visão, o olfato e a audição. A verdade é que a participação de estímulos táteis é questionável, visto que foram realizados estudos nos quais a denervação da glândula mamária não antecipou o reinício da ciclicidade em fêmeas que amamentavam seus filhotes. O mecanismo pelo qual a amamentação afeta a atividade reprodutiva está relacionado a um aumento da sensibilidade do hipotálamo ao efeito inibitório do estradiol. Nisso intervêm os fatores como os opioides (endorfinas, encefalinas e dinorfinas) e os glicocorticoides. -/- Figura 18: na esquerda porca amamentando seus filhotes e a direita vaca com o bezerro no pé. -/- Nutrição -/- A função reprodutiva depende da existência de um consumo de energia superior ao necessário para manter as funções fisiológicas essenciais do corpo e as funções de produção, como termorregulação, locomoção, crescimento, manutenção celular ou lactação. Considera-se que o efeito da nutrição na atividade reprodutiva é maior nas fêmeas do que nos machos, devido a uma maior demanda de energia exigida pelas fêmeas para manter uma gestação do começo ao fim (figura 19). Quando o consumo de energia é insuficiente, a função reprodutiva é bloqueada para não comprometer as funções vitais. Desta forma, os animais pré-púberes que sofreram deficiências nutricionais durante o seu crescimento apresentam um atraso no início da sua atividade reprodutiva. Assim, existem sinais metabólicos ao nível do sistema nervoso central, como o IGF-I e a leptina, que indicam ao organismo o grau de desenvolvimento somático do indivíduo. Animais adultos que já iniciaram sua atividade reprodutiva também podem ser afetados pela nutrição, de forma que sua ciclicidade pode ser interrompida por perdas de peso corporal igual ou superior a 20%. Da mesma forma, o reinício da atividade ovariana pós-parto é retardado quando as fêmeas estão submetidas a dietas deficientes em proteínas, energia, minerais etc. -/- Figura 19: comparação das condições corporais em vacas leiteiras. À esquerda: uma vaca com uma condição corporal adequada, que está ciclando normalmente. À direita: vaca em péssimo estado corporal e, portanto, em anestro. -/- As deficiências nutricionais de energia e proteína não afetam diretamente os níveis circulantes de FSH em animais intactos, mas o efeito da desnutrição pode ser mascarado por feedback negativo dos hormônios ováricos sobre a secreção de FSH, uma vez que os animais ovariectomizados com uma boa condição corporal têm maiores concentrações de FSH que os de condição corporal pobre. Em contraste, a secreção de LH é altamente sensível a deficiências nutricionais e a mudanças na condição corporal. O diâmetro do folículo dominante é reduzido quando os animais estão a perder peso, o que se correlaciona com uma diminuição na produção de estradiol, o que diminui a secreção de LH e consequentemente é evitada a maturação folicular terminal e a ovulação, o que os animais entrarem em anestro. No pós-parto, a ciclicidade se recupera quando as concentrações basal e média de LH, bem como a sua frequência de secreção aumenta para exceder o nadir do balanço energético (este último é atingido quando o fornecimento de energia está no ponto mínimo e está excedido pelas exigências de mantença do organismo). O ECC possui relação direta com as taxas reprodutivas dos animais. Em bovinos um ECC ideal é entre 3,5 e 4,5 para o período reprodutivo. Com relação do ECC sobre o estro, estima-se que num rebanho de 100 vacas com ECC 2,5 cerca de 47 entram em cio, e dessas apenas 27 conseguem conceber. Por outro lado, no mesmo rebanho de 100 vacas, mas com ECC igual a 3, cerca de 62 vacas entram em cio normalmente e dessas 40 conseguem engravidar. Já com um ECC 3,5, 68 vacas entram em estro normalmente e dessas 46 conseguem engravidar. -/- Efeitos independentes de gonadotropinas -/- A importância das gonadotropinas no crescimento e maturação folicular já foi revisada neste trabalho; também deve ser mencionado que, além das gonadotropinas, existem outros fatores que podem intervir na regulação do desenvolvimento folicular e da ciclicidade. Um exemplo do anterior é o flushing: manejo nutricional que consiste na suplementação de uma fonte energética de rápida absorção, em que o aumento do número de folículos em desenvolvimento tem inicialmente um controle independente do eixo hipotálamo-hipófise-gonodal e é mediado por fatores que participam do controle do metabolismo energético do animal, que estão intimamente relacionados às mudanças nutricionais. Esses fatores incluem insulina, fator de crescimento semelhante à insulina I (IGF-I) e hormônio do crescimento (GH). O IGF-I é secretado principalmente pelo fígado em resposta à estimulação do GH e é creditado na regulação de muitas das ações do GH, portanto, quando o GH é administrado, as concentrações de insulina e IGF-I estão aumentadas e um aumento no número de folículos ovarianos é observado em suínos, bovinos, caprinos e ovinos. O IGF-I, da mesma forma, modula a secreção de GH por um efeito de feedback negativo, de modo que no início do pós-parto, quando o animal está em balanço energético negativo, as concentrações de insulina e IGF-I diminuem, enquanto as de GH aumentam. A insulina e o IGF-I estimulam a proliferação e esteroidogênese das células da granulosa e da teca no folículo. Outro fator que interfere na manifestação da atividade reprodutiva é a quantidade de gordura corporal. -/- Fatores sociais (sociabilidade) -/- Existem diferentes interações sociais que são capazes de modificar o início da atividade reprodutiva durante o período de transição para a puberdade ou para a estação reprodutiva, ou ainda de sincronização e manifestação dos ciclos estrais. Entre os fatores sociais o efeito fêmea-fêmea foi bem documentado em pequenos ruminantes, onde a introdução de fêmeas ciclando (em cio) a um grupo de fêmeas em anestro estacional adianta a estação reprodutiva induzindo e sincronizando a ovulação. Quando as porcas pré-púberes, por outro lado, são alojadas em pequenos grupos de dois ou três animais, o início da puberdade é retardado em comparação com indivíduos alojados em grupos maiores. A bioestimulação das fêmeas através do contato com um macho é conhecida como efeito macho (figura 20). Foi determinado que imediatamente após a introdução do macho se inicia o desenvolvimento e maturação folicular como uma resposta a um aumento na secreção de LH. Esse efeito será explicado em próximos trabalhos de minha autoria. -/- Estresse -/- Em vários estudos, foi demonstrado que o estresse pode bloquear a ciclicidade, devido ao aumento nas concentrações de corticosteroides ou opioides que causam redução na resposta da hipófise ao GnRH. Alojamentos inadequados, um ambiente social adverso e deficiências no manejo são considerados condições estressantes. -/- Figura 20: efeito do macho sobre as fêmeas (suínos). -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- AURICH, Christine. Reproductive cycles of horses. Animal reproduction science, v. 124, n. 3-4, p. 220-228, 2011. AISEN, Eduardo G. Reprodução ovina e caprina. MedVet, 2008. BARTLEWSKI, Pawel M.; BABY, Tanya E.; GIFFIN, Jennifer L. Reproductive cycles in sheep. Animal reproduction science, v. 124, n. 3-4, p. 259-268, 2011. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. CHRISTIANSEN, I. J. Reprodução no cão e no gato. São Paulo: Manole, 1988. CONCANNON, Patrick W. Reproductive cycles of the domestic bitch. Animal reproduction science, v. 124, n. 3-4, p. 200-210, 2011. COLAZO, Marcos Germán; MAPLETOFT, Reuben. Fisiología del ciclo estral bovino. Ciencia Veterinaria, v. 16, n. 2, p. 31-46, 2017. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. . Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. . Fisiologia do Estro e do Serviço na Reprodução Bovina. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Acribia, 1980. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. FATET, Alice; PELLICER-RUBIO, Maria-Teresa; LEBOEUF, Bernard. Reproductive cycle of goats. Animal reproduction science, v. 124, n. 3-4, p. 211-219, 2011. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. FORDE, N. et al. Oestrous cycles in Bos taurus cattle. Animal reproduction science, v. 124, n. 3-4, p. 163-169, 2011. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HIDALGO, Galina et al. Reproducción de animales domésticos. México: Limusa, 2008. HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MEIDAN, R. et al. Intraovarian regulation of luteolysis. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 217-228, 1999. NETT, T. M. et al. Pituitary receptors for GnRH and estradiol, and pituitary content of gonadotropins in beef cows. I. Changes during the estrous cycle. Domestic Animal Endocrinology, v. 4, n. 2, p. 123-132, 1987. NISWENDER, Gordon D. et al. Mechanisms controlling the function and life span of the corpus luteum. Physiological reviews, v. 80, n. 1, p. 1-29, 2000. NORMAN, Anthony W.; LITWACK, Gerald. Hormones. Academic Press, 1997. PATTERSON, David J. et al. Control of estrus and ovulation in beef heifers. Veterinary Clinics: Food Animal Practice, v. 29, n. 3, p. 591-617, 2013. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. RANGEL, L. Ciclo estral. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. REKAWIECKI, R. et al. Regulation of progesterone synthesis and action in bovine corpus luteum. J Physiol Pharmacol, v. 59, n. suppl 9, p. 75-89, 2008. REYNOLDS, L. P.; REDMER, D. A. Growth and development of the corpus luteum. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT-, p. 181-191, 1999. RIPPE, Christian A. El ciclo estral. In: Dairy Cattle Reproduction Conference. 2009. p. 111-116. SANGHA, G. K.; SHARMA, R. K.; GURAYA, S. S. Biology of corpus luteum in small ruminants. Small Ruminant Research, v. 43, n. 1, p. 53-64, 2002. SARTORI, R.; BARROS, C. M. Reproductive cycles in Bos indicus cattle. Animal Reproduction Science, v. 124, n. 3-4, p. 244-250, 2011. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc., 1615 NE Eastgate Blvd., 1997. SMITH, Matthew J.; JENNES, Lothar. Neural signals that regulate GnRH neurones directly during the oestrous cycle. Reproduction (Cambridge, England), v. 122, n. 1, p. 1-10, 2001. SOEDE, N. M.; LANGENDIJK, P.; KEMP, B. Reproductive cycles in pigs. Animal reproduction science, v. 124, n. 3-4, p. 251-258, 2011. WEBB, R. et al. Mechanisms regulating follicular development and selection of the dominant follicle. REPRODUCTION-CAMBRIDGE-SUPPLEMENT-, p. 71-90, 2003. WHITTEMORE, Colin et al. The science and practice of pig production. Blackwell Science Ltd, 1998. -/- FIXAÇÃO DO ASSUNTO -/- 1. Disserte sobre o papel do eixo hipotálamo-hipófise-gonadal sobre o ciclo estral dos animais domésticos. -/- 2. Qual a importância do controle endócrino para a apresentação do estro? -/- 3. De acordo com a frequência do ciclo estral, como se classificam as vacas, porcas, éguas, gatas, cadelas, cabras e ovelhas? -/- 4. Defina e diferencia monoéstricas e poliéstricas. -/- 5. Um produtor possui fêmeas em primeiro cio, e deseja introduzi-las na vida reprodutiva. Explique por que não é ideal utilizar fêmeas em primeiro cio na vida reprodutiva? -/- 6. Quais são as etapas do ciclo estral? -/- 7. Defina e diferencia fase folicular e fase lútea. -/- 8. Defina e diferencie os tipos de ovulação e formação do corpo lúteo nas espécies domésticas? -/- 9. Quais os eventos ocorrem durante as fases proestro, estro, metaestro, diestro e inter-estro. -/- 10. Explique por que a égua possui ciclo diferente da vaca? -/- 11. Disserte e diferencie a endocrinologia do ciclo estral da cadela, da égua, da gata e da vaca? -/- 12. Fale sobre o desenvolvimento folicular durante o ciclo estral. -/- 13. Disserte sobre a ovulação das fêmeas domésticas. -/- 14. Defina e diferencie luteinização e luteólise. -/- 15. Disserte sobre os principais fatores que afetam a apresentação e manifestação do ciclo estral. -/- 16. Qual o papel da nutrição e do ECC sobre o ciclo estral? -/- 17. Defina e diferencie efeito fêmea-fêmea e efeito macho sobre a apresentação do estro nas fêmeas. -/- 18. Um produtor de ruminantes possui um rebanho de 10 bezerras, 10 cabritas e 10 cordeiras, todas com 1 mês de idade. Elabore um projeto reprodutivo para que essas fêmeas tenham seu primeiro parto após ciclos estrais normais e sem complicações. -/- Leve em consideração os fatores de idade ao primeiro cio ou a puberdade que é diferente entre as espécies, bem como aos fatores que podem afetar a manifestação do cio. (shrink)
This essay provides an analysis of the role of affectivity in Martin Heidegger's writings from the mid to late 1920s. We begin by situating his account of mood within the context of his project of fundamental ontology in Being and Time. We then discuss the role of Befindlichkeit and Stimmung in his account of human existence, explicate the relationship between the former and the latter, and consider the ways in which the former discloses the world. To give a more vivid (...) and comprehensive picture of Heidegger's account of mood, we focus on the experience of anxiety by articulating both its function within fundamental ontology and, relatedly, its revelatory nature. We conclude by considering the place of emotions in Heidegger's thinking from this period. In a companion essay, ‘Affectivity in Heidegger II: Temporality, Boredom, and Beyond’, we complement our present analysis by revisiting the issue of affectivity in terms of Heidegger's discussion of temporality in Division II of Being and Time. We also expand our present discussion by considering the fundamental mood of boredom and other specific moods that Heidegger considers within his later thinking. (shrink)
This thesis contends that the possession of a sense of humour would contribute considerably to the quality of human life. It is an exploration and discussion of some of the difficulties involved in justifying the development of humour in terms of a philosophy of education. In light of developments in the digital age with consequent changes in science, technology and society, the educated person of the future will have to be less concerned with the accumulated knowledge of the past than (...) with the development and interplay of social and natural environments. Such a person will need to have, more than ever, a sense of what is truly real and what is truly valuable in human life. If the primary purpose of education is the preparation of students for their future lives, educators are now faced with some challenging problems. Apart from the high social value of laughter, there is a recognized relationship between humour and intelligence. Knowing that the two are related proves to be a key factor in understanding the learning process and assuring that the development of a sense of humour in education is worthy of consideration. (shrink)
This book is an attempt "to give a systematic account of the development of plato's theory of knowledge" (page vii). thus it focuses on the dialogues in which epistemological issues come to the fore. these dialogues are "meno", "phaedo", "symposium", "republic", "cratylus", "theastetus", "phaedrus", "timaeus", "sophist", "politicus", "philebus", and "laws". issues discusssed include the theory of recollection, perception, the difference between belief and knowledge, and mathematical knowledge. (staff).
J. McTaggart argues that the philosophical conception of time is constituted by the notions of fluid and static time. Since, on his view, neither notion is philosophically viable, he concludes that time is nothing but an illusion that arises from our distorted perception of essentially atemporal reality. In the paper, I argue that despite McTaggart’s failure to prove the unreality of time as such, he does succeed in establishing his lesser claim that the concept of fluid time is without any (...) ontological import whatsoever. (shrink)
Phenomenology's central insight is that affectivity is not an inconsequential or contingent characteristic of human existence. Emotions, moods, sentiments, and feelings are not accidents of human existence. They do not happen to happen to us. Rather, we exist the way we do because of and through our affective experiences. Phenomenology thus acknowledges the centrality and ubiquity of affectivity by noting the multitude of ways in which our existence is permeated by our various affective experiences. Yet, it also insists that such (...) experiences are both revealing and constitutive of human nature. It is precisely this last point that marks an important distinction between a phenomenological study of affectivity and perhaps all others. For phenomenology, one cannot understand the nature of human existence without coming to terms with the character of affectivity and at the same time, one cannot come to terms with the character of affectivity without understanding the nature of human existence. Practical and social engagements, scientific endeavors, familial and political interactions are all predicted on the fact that we are beings who are capable of being affectively attuned to ourselves, to the world, and to others. In this entry, we discuss Martin Heidegger's and Jean-Paul Sartre's respective accounts of affectivity. In the first section, we present Heidegger's understanding of affective existence. In this context, we discuss the significance of moods and offer an analysis of the affective phenomena of fear, anxiety, and boredom. In the second section, we present an overview of Sartre's account of emotions and advance a Sartrean interpretation of fear and boredom. We conclude by raising some brief concerns with both accounts. (shrink)
McTaggart’s theory of time is the locus classicus of the contemporary philosophy of time. However, despite its prominence, there is little agreement as to what the theory actually amounts. In this paper, it is first argued that, contrary to the received opinion, McTaggart’s A-time/B-time distinction is not a distinction between static and fluid temporal series. Rather, it is a certain distinction between two types of static temporal series. It is then shown that in his temporal transience paradox, McTaggart employs these (...) two distinct notions of temporal series. The paper is concluded with the claim that McTaggart's temporal transience paradox is best understood not as a contradiction, but as a dilemma both horns of which are unsatisfactory. (shrink)
Bioethics tends to be dominated by discourses concerned with the ethical dimension of medical practice, the organization of medical care, and the integrity of biomedical research involving human subjects and animal testing. Jacques Derrida has explored the fundamental question of the “limit” that identifies and differentiates the human animal from the nonhuman animal. However, to date his work has not received any reception in the field of biomedical ethics. In this paper, I examine what Derrida’s thought about this limit might (...) mean for the use/misuse/abuse of animals in contemporary biomedical research. For this, I review Derrida’s analysis and examine what it implies for scientific responsibility, introducing what I have coined the “Incompleteness Theorem of Bioethics.”. (shrink)
As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper summarises ENVO’s motivation, (...) content, structure, adoption, and governance approach. (shrink)
Michael Shermer recently attacked Freeman Dyson for putting forward the claim that there might be something in paranormal claims after all. Whilst I agree with Shermer on many points, I do think you can put forward a plausible theory as to why the Natural Sciences may not describe all phenomena, and that the undescribed phenomena might well be called 'paranormal' because of it. In this paper I will put forward the view that the language of the Natural Sciences may (...) not be descriptive of all things in the world but that this does not mean that the undescribed items are in anyway 'spooky.'. (shrink)
This classic collection of essays, first published in 1968, represents H.L.A. Hart's landmark contribution to the philosophy of criminal responsibility and punishment. Unavailable for ten years, this new edition reproduces the original text, adding a new critical introduction by John Gardner, a leading contemporary criminal law theorist.
The scope and reach of information, driven by the explosive growth of information technologies and content types, has expanded dramatically over the past 30 years. The consequences of these changes to records and information management (RIM) professionals are profound, necessitating not only specialized knowledge but added responsibilities. RIM professionals require a professional ethics to guide them in their daily practice and to form a basis for developing and implementing organizational policies, and Mooradian’s new book provides a rigorous outline of such (...) an ethics. Taking an authoritative principles/rules based approach to the subject, this book comprehensively addresses •the structure of ethics, outlining principles, moral rules, judgements, and exceptions; •ethical reasoning, from meaning and logic to dilemmas and decision methods; •the ethical core of RIM, discussing key topics such as organizational context, the positive value of accountability, conflicts of interest, and confidentiality; •important ethical concerns like copyright and intellectual property, whistleblowing, information leaks, disclosure, and privacy; and •the relationship between RIM ethics and information governance. -/- An essential handbook for information professionals who manage records, archives, data, and other content, this book is also an ideal teaching text for students of information ethics . (shrink)
Contemporary Islam presents Europe in particular with a political and moral challenge: Moderate-progressive Muslims and radical fundamentalist Muslims present differing visions of the relation of politics and religion and, consequently, differing interpretations of freedom of expression. There is evident public concern about Western “political correctness,” when law or policy accommodates censorship of speech allegedly violating religious sensibilities. Referring to the thought of philosopher Baruch Spinoza, and accounting for the Universal Declaration of Human Rights, the Universal Islamic Declaration of Human Rights, (...) and various empirical studies on the religious convictions of Muslims, it is argued here that: (1) sovereign European state powers should be especially cautious of legal censorship of speech allegedly violating Muslim religious sensibilities; and (2) instead of legal moves to censorship, European states should defer to the principle of separation of religion and state (political authority). Further, a reasonable interpretation of Islamic jurisprudence allows that matters of religious difference may be engaged and resolved by appeal to private conscience and ethical judgment, rather than by appeal to public law per se. In so far as they are 1 representative of contemporary scholarship, the interpretative positions of Ziad Elmarsafy, Jacques Derrida, and Nasr Abū Zayd are presented in illustration of this latter point. (shrink)
Introduction In 2013, Dr. J. Muizelaar and Dr. R. Schrot, two neurosurgeons at the University of California Davis Medical Center (UCDMC), were found guilty of research misconduct due to failure to comply with institutional policies as well as Food and Drug Administration (FDA) regulations governing human subjects research. At issue here, however, is the difference between research and innovative therapy in the clinical setting of patient care where clinical judgment is reasonably to be privileged. Methods The UCDMC investigative document is (...) reviewed along with standard literature on clinical ethics and clinical data about glioblastoma multiforme (GBM) cancer. Results In this paper I argue that, by tendentiously focusing on policies, regulations, and procedures governing human subjects research, the UCDMC investigation failed to account for the centrality of clinical judgment and clinical ethics pertinent to judicious review of this matter, especially given the unique clinical context of terminally ill patients having exhausted standard care treatment options for glioblastoma multiforme (GBM) cancer. Conclusions The UCDMC investigation raises serious problems for clinicians who are engaged in innovative therapy in the clinical setting, requiring a regulatory framework separate from the normal Institutional Review Board (IRB) process. (shrink)
Whether Albert Camus’s “existentialist” thought expresses an “ethics” is a subject of disagreement among commentators. Yet, there can be no reading of Camus’s philosophical and literary works without recognizing that he was engaged in the post-WW2 period with two basic questions: How must we think? What must we do? If his thought presents us with an ethics, even if not systematic, it seems to be present in his ideas of “remaking” both man and world that are central to his The (...) Myth of Sisyphus and The Rebel. Curiously, however, this apparent recommendation is ambiguous for the fact that while Camus proposes as much he does so “comme si,” i.e., form a perspective of “as if.” A clarification of this qualification is presented here in the light of the fact that Camus rejects any nihilist project that countenances either suicide or murder. Thereby one may argue that Camus indeed has an ethics that remains pertinent to today. (shrink)
This report by the WHO Consultative Group on Equity and Universal Health Coverage addresses how countries can make fair progress towards the goal of universal coverage. It explains the relevant tradeoffs between different desirable ends and offers guidance on how to make these tradeoffs.
Martin Heidegger is often credited as having offered one of the most thorough phenomenological investigations of the nature of boredom. In his 1929–1930 lecture course, The Fundamental Concepts of Metaphysics: World, Finitude, Solitude, he goes to great lengths to distinguish between three different types of boredom and to explicate their respective characters. Within the context of his discussion of one of these types of boredom, profound boredom [tiefe Langweile], Heidegger opposes much of the philosophical and literary tradition on boredom insofar (...) as he articulates how the experience of boredom can be existentially beneficial to us. In this chapter, we undertake a study of the nature of profound boredom with the aim of investigating its place within contemporary psychological and philosophical research on boredom. Although boredom used to be a neglected emotional experience, it is no more. Boredom’s causal antecedents, effects, experiential profile, and neurophysiological correlates have become topics of active study; as a consequence, a proliferation of claims and findings about boredom has ensued. Such a situation provides an opportunity to scrutinize Heidegger’s claims and to try to understand them both on their own terms and in light of our contemporary understanding of boredom. (shrink)
Phenomenology, perhaps more than any other single movement in philosophy, has been key in bringing emotions to the foreground of philosophical consideration. This is in large part due to the ways in which emotions, according to phenomenological analyses, are revealing of basic structures of human existence. Indeed, it is partly and, according to some phenomenologists, even primarily through our emotions that the world is disclosed to us, that we become present to and make sense of ourselves, and that we relate (...) to and engage with others. A phenomenological study of emotions is thus meant not only to help us to understand ourselves, but also to allow us to see and to make sense of the meaningfulness of our worldly and social existence.Within the last few decades, the emotions have re-emerged more generally as a topic of great philosophical interest and importance. Philosophers, along with psychologists, cognitive scientists, and neuroscientists have engaged in inter- and intra-disciplina .. (shrink)
This study aims to make for a better understanding of the term 'Aspects' in linguistic theory. Its most current application is found in studies on Slavonic languages. In the abundant literature on the contrast between the Durative (or Imperfective) Aspect and the Nondurative (or Perfective) Aspect, their occurrence has been taken to be restricted to Slavonic and some other languages, generally speaking to languages whose Verbal systems are morphologically characte.rized with regard to this opposition. The central hypothesis of transformational-generative theory (...) that a dis- tinction should be made between the deep structure and the surface structure of a language, entails the possibility for morphological systematicity to be nothing more than a manifestation of a general or even universal re- gularity expressed, for example, in the syntactic component of grammers of other languages. It will be shown in this study that the opposition between the two Aspects is present in Dutch, and as can be seen from the translated material, also in English, and that it should be described as the expression of regularities of a primarily syntactic-semantic nature. (shrink)
A moderately risk averse person may turn down a 50/50 gamble that either results in her winning $200 or losing $100. Such behaviour seems rational if, for instance, the pain of losing $100 is felt more strongly than the joy of winning $200. The aim of this paper is to examine an influential argument that some have interpreted as showing that such moderate risk aversion is irrational. After presenting an axiomatic argument that I take to be the strongest case for (...) the claim that moderate risk aversion is irrational, I show that it essentially depends on an assumption that those who think that risk aversion can be rational should be skeptical of. Hence, I conclude that risk aversion need not be irrational. (shrink)
It has recently been argued that indeterminacy and indeterminism make most ordinary counterfactuals false. I argue that a plausible way to avoid such counterfactual skepticism is to postulate the existence of primitive modal facts that serve as truth-makers for counterfactual claims. Moreover, I defend a new theory of ‘might’ counterfactuals, and develop assertability and knowledge criteria to suit such unobservable ‘counterfacts’.
As someone who wishes his own book to succeed, I am grateful for a review with such high praise from a well-known classical liberal. As a critical rationalist who wishes to learn from his mistakes, I am grateful for Norman Barry’s thoughtful criticisms. The only way that I can hope to try to repay these and appreciate their full force is by doing my best to reply to them.
This book is a translation of W.V. Quine's Kant Lectures, given as a series at Stanford University in 1980. It provide a short and useful summary of Quine's philosophy. There are four lectures altogether: I. Prolegomena: Mind and its Place in Nature; II. Endolegomena: From Ostension to Quantification; III. Endolegomena loipa: The forked animal; and IV. Epilegomena: What's It all About? The Kant Lectures have been published to date only in Italian and German translation. The present book is filled out (...) with the translator's critical Introduction, "The esoteric Quine?" a bibliography based on Quine's sources, and an Index for the volume. (shrink)
La cobertura universal de salud está en el centro de la acción actual para fortalecer los sistemas de salud y mejorar el nivel y la distribución de la salud y los servicios de salud. Este documento es el informe fi nal del Grupo Consultivo de la OMS sobre la Equidad y Cobertura Universal de Salud. Aquí se abordan los temas clave de la justicia (fairness) y la equidad que surgen en el camino hacia la cobertura universal de salud. Por lo (...) tanto, el informe es pertinente para cada agente que infl uye en ese camino y en particular para los gobiernos, ya que se encargan de supervisar y guiar el progreso hacia la cobertura universal de salud. (shrink)
In a recent essay, Donald Dripps advanced what he calls a “commodification theory” of rape, offered as an alternative to understanding rape in terms of lack of consent. Under the “commodification theory,” rape is understood as the expropriation of sexual services, i.e., obtaining sex through “illegitimate” means. One aim of Dripps's effort was to show the inadequacy of consent approaches to understanding rape. Robin West, while accepting Dripps's critique of consent theories, criticizes Dripps's commodification approach. In its place, West suggests (...) a more phenomenological approach. The author argues that neither Dripps nor West offers convincing critiques of consent-based theories; the alternatives they offer presuppose the vitality of a consent-based approach to understanding rape; and that both Dripps and West consistently conflate more general moral and political issues with that of the nature of rape. (shrink)
Friedrich Wilhelm Joseph von Schelling (1775-1854) is often thought of as a “philosopher’s philosopher,” with a specialist rather than generalist appeal. One reason for Schelling’s lack of popularity is that he is something of a problem case for traditional narratives about the history of philosophy. Although he is often slotted in as a stepping stone on the intellectual journey from Kant to Hegel, any attention to his ideas will show that he does not fit this role very well. His later (...) philosophy suggests a materialism and empiricism that puts him outside of idealism proper; his connection with the romantic movement suggests an aestheticism that challenges traditional philosophy as such; and his mysticism allies him with medieval, pre-critical philosophies considered antiquated by the 19th century. And if Schelling was not entirely at home with his contemporaries, he seems, on the face of it, to have fared little better with his future: there has been no Schelling school, he has had no followers. No historical trajectory announces Schelling as its point of departure. -/- And yet Schelling’s influence has been an extraordinary one. He has inspired physicists, physicians, theologians, historians and poets. A wildly diverse set of philosophers have claimed that their ideas have resonance with his. Perhaps the question of Schelling’s influence can be approached by looking at what Kant says about works of genius -- that they should give rise to inspiration, not imitation. Paradoxically, to imitate genius is not to produce an imitation but a new creative work. Whether or not Schelling should be strictly viewed as a genius, Kant’s notion suggests a sense in which Schelling should be understood as a “philosopher’s philosopher”; he inspired creativity, not repetition. In this perspective, the lack of a “Schelling school” is a sign of strength; Schelling is continually being rediscovered, and his works have retained a fresh and untimely character. If Schelling does not have any obvious historical successors, it is because his influence cannot be charted by the usual methods. New philosophical tools are needed in order to understand his philosophical significance, his impact on contemporary thought and relevance for contemporary concerns. (shrink)
Schopenhauer is famously abusive toward his philosophical contemporary and rival, Friedrich William Joseph von Schelling. This chapter examines the motivations for Schopenhauer’s immoderate attitude and the substance behind the insults. It looks carefully at both the nature of the insults and substantive critical objections Schopenhauer had to Schelling’s philosophy, both to Schelling’s metaphysical description of the thing-in-itself and Schelling’s epistemic mechanism of intellectual intuition. It concludes that Schopenhauer’s substantive criticism is reasonable and that Schopenhauer does in fact avoid Schelling’s errors: (...) still, the vehemence of the abuse is best perhaps explained by the proximity of their philosophies, not the distance. Indeed, both are developing metaphysics of will with full and conflicted awareness of the Kantian epistemic strictures against metaphysics. In view of this, Schopenhauer is particularly concerned to mark his own project as legitimate by highlighting the manner in which he avoids Schelling’s errors. (shrink)
‘Romanticism’ is one of the more hotly contested terms in the history of ideas. There is a singular lack of consensus as to its meaning, unity, and historical extension, and many attempts to fix the category of romanticism very quickly become blurry. As a result, the great historian of ideas, Arthur Lovejoy, famously concludes that: ‘the word ‘romantic’ has come to mean so many things that, by itself, it means nothing. It has ceased to perform the function of a verbal (...) sign’ But his pessimistic advice has not stopped scholars from trying to define romanticism. If anything, it has brought renewed vigour to the determination with which critics try to pinpoint the term. There are several approaches to take, for those who attempt to do so. One class of critics tries to enumerate the features shared by the authors and texts generally considered romantic. An alternative approach would try to identify the fundamental unity that informs romanticism and gives rise to the empirical commonalities. But what would this essential feature be? Both of these approaches take an external perspective on romanticism, seeing it as the object of inquiry. An alternative approach, which we will pursue, looks at romantic subjects, and romanticism as a self-constituting category, rather than merely as an externally imposed one. In other words, we will take as basic neither an (empirical) array of candidate properties constituting romanticism, nor a supposed underlying (rationalist) essence from which properties can be derived, but rather we will focus on how the romantics themselves took up the idea of romanticism and transformed it into a self-conscious movement. We will treat the question of romanticism with respect to England, but above all Germany. Although romantic movements arose and flourished elsewhere in Europe (and in France in particular), German and English romanticism were uniquely theoretically sophisticated and philosophically nuanced. (shrink)
I argue, first, that the deprived individuals whose predicaments Nussbaum cites as examples of "adaptive preference" do not in fact prefer the conditions of their lives to what we should regard as more desirable alternatives, indeed that we believe they are badly off precisely because they are not living the lives they would prefer to live if they had other options and were aware of them. Secondly, I argue that even where individuals in deprived circumstances acquire tastes for conditions that (...) we regard as bad, they are typically better off having their acquired preferences satisfied. If they are badly off it is because they cannot get what we and they, would regard as more desirable alternatives. Preference utilitarianism explains why individuals in such circumstances are badly off whether they have adapted to their deprived circumstances or not. Even if they prefer the conditions of their lives to all other available alternatives, most would prefer alternatives that are not available to them which would, on the preferentist account, make them better off. And that, on the preferentist account, is the basis for a radical critique of unjust institutions that limit people's options and prevent them from getting what they want. (shrink)
If I were asked to put forward an ethical principle which I considered to be especially certain, it would be that no one can be responsible, in the properly ethical sense, for the conduct of another. Responsibility belongs essentially to the individual. The implications of this principle are much more far-reaching than is evident at first, and reflection upon them may lead many to withdraw the assent which they might otherwise be very ready to accord to this view of responsibility. (...) But if the difficulties do appear to be insurmountable, and that, very certainly, does not seem to me to be the case, then the proper procedure will be, not to revert to the barbarous notion of collective or group responsibility, but to give up altogether the view that we are accountable in any distinctively moral sense. (shrink)
Philosophers have long been interested in a series of interrelated questions about natural kinds. What are they? What role do they play in science and metaphysics? How do they contribute to our epistemic projects? What categories count as natural kinds? And so on. Owing, perhaps, to different starting points and emphases, we now have at hand a variety of conceptions of natural kinds—some apparently better suited than others to accommodate a particular sort of inquiry. Even if coherent, this situation isn’t (...) ideal. My goal in this article is to begin to articulate a more general account of ‘natural kind phenomena’. While I do not claim that this account should satisfy everyone—it is built around a certain conception of the epistemic role of kinds and has an obvious pragmatic flavour—I believe that it has the resources to go further than extant alternatives, in particular the homeostatic property cluster view of kinds. (shrink)
This book examines the legal and moral theory behind the law of evidence and proof, arguing that only by exploring the nature of responsibility in fact-finding can the role and purpose of much of the law be fully understood. Ho argues that the court must not only find the truth to do justice, it must do justice in finding the truth.
The Bayesian maxim for rational learning could be described as conservative change from one probabilistic belief or credence function to another in response to newinformation. Roughly: ‘Hold fixed any credences that are not directly affected by the learning experience.’ This is precisely articulated for the case when we learn that some proposition that we had previously entertained is indeed true (the rule of conditionalisation). But can this conservative-change maxim be extended to revising one’s credences in response to entertaining propositions or (...) concepts of which one was previously unaware? The economists Karni and Vierø (2013, 2015) make a proposal in this spirit. Philosophers have adopted effectively the same rule: revision in response to growing awareness should not affect the relative probabilities of propositions in one’s ‘old’ epistemic state. The rule is compelling, but only under the assumptions that its advocates introduce. It is not a general requirement of rationality, or so we argue. We provide informal counterexamples. And we show that, when awareness grows, the boundary between one’s ‘old’ and ‘new’ epistemic commitments is blurred. Accordingly, there is no general notion of conservative change in this setting. (shrink)
In this paper, I will reread the history of molecular genetics from a psychoanalytical angle, analysing it as a case history. Building on the developmental theories of Freud and his followers, I will distinguish four stages, namely: (1) oedipal childhood, notably the epoch of model building (1943–1953); (2) the latency period, with a focus on the development of basic skills (1953–1989); (3) adolescence, exemplified by the Human Genome Project, with its fierce conflicts, great expectations and grandiose claims (1989–2003) and (4) (...) adulthood (2003–present) during which revolutionary research areas such as molecular biology and genomics have achieved a certain level of normalcy—have evolved into a normal science. I will indicate how a psychoanalytical assessment conducted in this manner may help us to interpret and address some of the key normative issues that have been raised with regard to molecular genetics over the years, such as ‘relevance’, ‘responsible innovation’ and ‘promise management’. (shrink)
Accounts of the concepts of function and dysfunction have not adequately explained what factors determine the line between low‐normal function and dysfunction. I call the challenge of doing so the line‐drawing problem. Previous approaches emphasize facts involving the action of natural selection (Wakefield 1992a, 1999a, 1999b) or the statistical distribution of levels of functioning in the current population (Boorse 1977, 1997). I point out limitations of these two approaches and present a solution to the line‐drawing problem that builds on the (...) second one. (shrink)
This paper aims at showing that the generative-semantic framework is not essential to the proposal in H.J. Verkuyl On the Compositional Nature of the Aspects Reidel:Dordrecht 1972. Compositionality can be shown to be neutral as to the then-difference between generative-semantic and the interpretive-semantic branch of transformational grammar.
The propensity interpretation of fitness (PIF) is commonly taken to be subject to a set of simple counterexamples. We argue that three of the most important of these are not counterexamples to the PIF itself, but only to the traditional mathematical model of this propensity: fitness as expected number of offspring. They fail to demonstrate that a new mathematical model of the PIF could not succeed where this older model fails. We then propose a new formalization of the PIF that (...) avoids these (and other) counterexamples. By producing a counterexample-free model of the PIF, we call into question one of the primary motivations for adopting the statisticalist interpretation of fitness. In addition, this new model has the benefit of being more closely allied with contemporary mathematical biology than the traditional model of the PIF. (shrink)
Presence as ordinarily understood requires spatio-temporal proximity. If however Christ’s presence in the Eucharist is understood in this way it would take a miracle to secure multiple location and an additional miracle to cover it up so that the presence of Christ where the Eucharist was celebrated made no empirical difference. And, while multiple location is logically possible, such metaphysical miracles—miracles of distinction without difference, which have no empirical import—are problematic. I propose an account of Eucharist according to which Christ (...) is indeed really and objectively present in the religiously required sense, without benefit of metaphysical miracles. According to the proposed account, which draws upon Searle’s discussion of “social ontology” in The Construction of Social Reality and The Making of the Social World, the presence of Christ in the Eucharist is an institutional fact. I argue that such an account satisfies the requirements for a real presence doctrine. (shrink)
Similarly to other accounts of disease, Christopher Boorse’s Biostatistical Theory (BST) is generally presented and considered as conceptual analysis, that is, as making claims about the meaning of currently used concepts. But conceptual analysis has been convincingly critiqued as relying on problematic assumptions about the existence, meaning, and use of concepts. Because of these problems, accounts of disease and health should be evaluated not as claims about current meaning, I argue, but instead as proposals about how to define and use (...) these terms in the future, a methodology suggested by Quine and Carnap. I begin this article by describing problems with conceptual analysis and advantages of “philosophical explication,” my favored approach. I then describe two attacks on the BST that also question the entire project of defining “disease.” Finally, I defend the BST as a philosophical explication by showing how it could define useful terms for medical science and ethics. (shrink)
Many philosophers are impressed by the progress achieved by physical sciences. This has had an especially deep effect on their ontological views: it has made many of them physicalists. Physicalists believe that everything is physical: more precisely, that all entities, properties, relations, and facts are those which are studied by physics or other physical sciences. They may not all agree with the spirit of Rutherford's quoted remark that 'there is physics; and there is stamp-collecting',' but they all grant physical science (...) a unique ontological authority: the authority to tell us what there is. Physicalism is now almost orthodox in much philosophy, notably in much recent philosophy of mind. But although often invoked, it is rarely explicitly defined. It should be. The claim that everything is physical is not as clear as it seems. In this paper, we examine a number of proposed definitions of physicalism and reasons for being a physicalist. We will argue both that physicalism lacks a clear and credible definition, and that in no non-vacuous interpretation is it true. We are concerned here only with physicalism as a doctrine about the empirical world. In particular, it should not be confused with nominalism, the doctrine that there are no universals.2 Nominalism and physicalism are quite independent doctrines. Believers in universals may as consistently assert as deny that the only properties and relations are those studied by physical science. And nominalists may with equal consistency assert or deny that physical science could provide enough predicates to describe the world. That is the question which concerns physicalists, not whether physical predicates name real universals. (We will for brevity write as if they do, but we do not need that assumption.). (shrink)
The scientific community, we hold, often provides society with knowledge—that the HIV virus causes AIDS, that anthropogenic climate change is underway, that the MMR vaccine is safe. Some deny that we have this knowledge, however, and work to undermine it in others. It has been common to refer to such agents as “denialists”. At first glance, then, denialism appears to be a form of skepticism. But while we know that various denialist strategies for suppressing belief are generally effective, little is (...) known about which strategies are most effective. We see this as an important first step toward their remediation. This paper leverages the approximate comparison to various forms of philosophical skepticism to design an experimental test of the efficacy of four broad strategies of denial at suppressing belief in specific scientific claims. Our results suggest that assertive strategies are more effective at suppressing belief than questioning strategies. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.