This book serves as a concise introduction to some main topics in modern formal logic for undergraduates who already have some familiarity with formal languages. There are chapters on sentential and quantificational logic, modal logic, elementary set theory, a brief introduction to the incompleteness theorem, and a modern development of traditional Aristotelian Logic.
In “Proof-Theoretic Justiﬁcation of Logic”, building on work by Dummett and Prawitz, I show how to construct use-based meaning-theories for the logical constants. The assertability-conditional meaning-theory takes the meaning of the logical constants to be given by their introduction rules; the consequence-conditional meaning-theory takes the meaning of the logical constants to be given by their elimination rules. I then consider the question: given a set of introduction rules \, what are the strongest elimination rules that are validated by an (...) assertability conditional meaning-theory based on \? I prove that the intuitionistic introduction rules are the strongest rules that are validated by the intuitionistic elimination rules. I then prove that intuitionistic logic is the strongest logic that can be given either an assertability-conditional or consequence-conditional meaning-theory. In “Grounding Grounding” I discuss the notion of grounding. My discussion revolves around the problem of iterated grounding-claims. Suppose that \ grounds \; what grounds that \ grounds that \? I argue that unless we can get a satisfactory answer to this question the notion of grounding will be useless. I discuss and reject some proposed accounts of iterated grounding claims. I then develop a new way of expressing grounding, propose an account of iterated grounding-claims and show how we can develop logics for grounding. In “Is the Vagueness Argument Valid?” I argue that the Vagueness Argument in favor of unrestricted composition isn’t valid. However, if the premisses of the argument are true and the conclusion false, mereological facts fail to supervene on non-mereological facts. I argue that this failure of supervenience is an artifact of the interplay between the necessity and determinacy operators and that it does not mean that mereological facts fail to depend on non-mereological facts. I sketch a deﬂationary view of ontology to establish this. (shrink)
Review of Karel Lambert, Meinong and the Principle of Independence: Its Place in Meinong's Theory of Objects and Its Significance in Contemporary PhilosophicalLogic.
What is the rational response when confronted with a set of propositions each of which we have some reason to accept, and yet which taken together form an inconsistent class? This was, in a nutshell, the problem addressed by the Jaina logicians of classical India, and the solution they gave is, I think, of great interest, both for what it tells us about the relationship between rationality and consistency, and for what we can learn about the logical basis of (...) class='Hi'>philosophical pluralism. The Jainas claim that we can continue to reason in spite of the presence of inconsistencies, and indeed construct a many-valued logical system tailored to the purpose. My aim in this paper is to offer a new interpretation of that system and to try to draw out some of its philosophical implications. (shrink)
In this paper we present a philosophical motivation for the logics of formal inconsistency, a family of paraconsistent logics whose distinctive feature is that of having resources for expressing the notion of consistency within the object language in such a way that consistency may be logically independent of non-contradiction. We defend the view according to which logics of formal inconsistency may be interpreted as theories of logical consequence of an epistemological character. We also argue that in order to philosophically (...) justify paraconsistency there is no need to endorse dialetheism, the thesis that there are true contradictions. Furthermore, we show that mbC, a logic of formal inconsistency based on classical logic, may be enhanced in order to express the basic ideas of an intuitive interpretation of contradictions as conflicting evidence. (shrink)
Bilateralists hold that the meanings of the connectives are determined by rules of inference for their use in deductive reasoning with asserted and denied formulas. This paper presents two bilateral connectives comparable to Prior's tonk, for which, unlike for tonk, there are reduction steps for the removal of maximal formulas arising from introducing and eliminating formulas with those connectives as main operators. Adding either of them to bilateral classical logic results in an incoherent system. One way around this problem (...) is to count formulas as maximal that are the conclusion of reductio and major premise of an elimination rule and to require their removability from deductions. The main part of the paper consists in a proof of a normalisation theorem for bilateral logic. The closing sections address philosophical concerns whether the proof provides a satisfactory solution to the problem at hand and confronts bilateralists with the dilemma that a bilateral notion of stability sits uneasily with the core bilateral thesis. (shrink)
In this paper we present a philosophical motivation for the logics of formal inconsistency, a family of paraconsistent logics whose distinctive feature is that of having resources for expressing the notion of consistency within the object language in such a way that consistency may be logically independent of non- contradiction. We defend the view according to which logics of formal inconsistency may be interpreted as theories of logical consequence of an epistemological character. We also argue that in order to (...) philosophically justify paraconsistency there is no need to endorse dialetheism, the thesis that there are true contradictions. Furthermore, we argue that an intuitive reading of the bivalued semantics for the logic mbC, a logic of formal inconsistency based on classical logic, fits in well with the basic ideas of an intuitive interpretation of contradictions. On this interpretation, the acceptance of a pair of propositions A and ¬A does not mean that A is simultaneously true and false, but rather that there is conflicting evidence about the truth value of A. (shrink)
This is a review article based on William Franke's book, A Philosophy of the Unsayable. After contrasting standard "analytic" logic with its paradoxical alternative, "synthetic" logic, this article introduces three basic laws of synthetic logic that can help to clarify how it is possible to talk about the so-called "unsayable". Keeping these laws in mind as one reads a book such as Franke's enables one to understand the range of strategies one can employ in the attempt to (...) use words to evoke an experience of the unsayable. This article together with several others responding to Franke's book, and Franke's replies to the whole set of articles. (shrink)
Este livro marca o início da Série Investigação Filosófica. Uma série de livros de traduções de textos de plataformas internacionalmente reconhecidas, que possa servir tanto como material didático para os professores das diferentes subáreas e níveis da Filosofia quanto como material de estudo para o desenvolvimento pesquisas relevantes na área. Nós, professores, sabemos o quão difícil é encontrar bons materiais em português para indicarmos. E há uma certa deficiência na graduação brasileira de filosofia, principalmente em localizações menos favorecidas, com relação (...) ao conhecimento de outras línguas, como o inglês e o francês. Tentamos, então, suprir essa deficiência, ao introduzirmos traduções de textos importantes ao público de língua portuguesa, sem nenhuma finalidade comercial e meramente pela glória da filosofia. O presente volume é constituído de três traduções de verbetes importantes sobre lógica, da Enciclopédia de Filosofia da Stanford: (1) A Lógica de Aristóteles, (2) Lógica Clássica, (3) Lógica Modal. (shrink)
We present a philosophical motivation for the logics of formal inconsistency, a family of paraconsistent logics whose distinctive feature is that of having resources for expressing the notion of consistency within the object language. We shall defend the view according to which logics of formal inconsistency are theories of logical consequence of normative and epistemic character. This approach not only allows us to make inferences in the presence of contradictions, but offers a philosophically acceptable account of paraconsistency.
Philosophy of biology is often said to have emerged in the last third of the twentieth century. Prior to this time, it has been alleged that the only authors who engaged philosophically with the life sciences were either logical empiricists who sought to impose the explanatory ideals of the physical sciences onto biology, or vitalists who invoked mystical agencies in an attempt to ward off the threat of physicochemical reduction. These schools paid little attention to actual biological science, and as (...) a result philosophy of biology languished in a state of futility for much of the twentieth century. The situation, we are told, only began to change in the late 1960s and early 1970s, when a new generation of researchers began to focus on problems internal to biology, leading to the consolidation of the discipline. In this paper we challenge this widely accepted narrative of the history of philosophy of biology. We do so by arguing that the most important tradition within early twentieth-century philosophy of biology was neither logical empiricism nor vitalism, but the organicist movement that flourished between the First and Second World Wars. We show that the organicist corpus is thematically and methodologically continuous with the contemporary literature in order to discredit the view that early work in the philosophy of biology was unproductive, and we emphasize the desirability of integrating the historical and contemporary conversations into a single, unified discourse. (shrink)
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems (...) to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more 'big picture' ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics. (shrink)
In this paper we discuss three examples of the appropriation of Kuhn’s ideas in philosophy of science. First we deal with classical logical empiricism. Perhaps somewhat surprisingly, the arch-logical empiricist Carnap considered Kuhn’s socio-historical account as a useful complementation, and not as a threat of the philosophy of science of logical empiricism. As a second example we consider the attempt of the so-called struc- turalist philosophy of science to provide a “rational reconstruction” of Kuhn’s approach. Finally, we will deal with (...) Friedman’s proposal to apply Kuhn’s ideas to the formulation of a modernized, historically enlightened Kantian approach that is based on the concept of a non-apodictic constitutive and historically moving a priori. (shrink)
Buddhist philosophers have investigated the techniques and methodologies of debate and argumentation which are important aspects of Buddhist intellectual life. This was particularly the case in India, where Buddhism and Buddhist philosophy originated. But these investigations have also engaged philosophers in China, Japan, Korea and Tibet, and many other parts of the world that have been influenced by Buddhism and Buddhist philosophy. Several elements of the Buddhist tradition of philosophy are thought to be part of this investigation. -/- There are (...) interesting reasoning patterns discernible in the writings of Buddhist philosophers. For instance, the Mādhyamika philosopher Nāgārjuna presents arguments for the emptiness of all things in terms of catuṣkoṭi (four ‘corners’: roughly speaking, truth, false, both, neither). There are also the Indian vāda (debate) literature and Tibetan bsdus grwa (collected topics) that list techniques of debates. -/- The main interest here is the tradition of Buddhist philosophy, sometimes referred to as Pramāṇavāda, whose central figures are Dignāga (approx. 480–540 CE) and Dharmakīrti (6th– 7th CE) (see Dignāga and Dharmakīrti). This philosophy is understood to be the Buddhist school of logic-epistemology. ‘Pramāṇavāda’ is not a doxographical term traditionally used to refer to a recognised school of Buddhist philosophy. It is a conventional term that is sometimes used in modern literature. Nevertheless, in what follows, we think of it as a tradition within Buddhist philosophy and ‘Buddhist logic’ refers to what is developed in this tradition. -/- Buddhist logicians have systematically analysed the kind of reasoning involved in acquiring knowledge. They hold that there are valid ways to reason that are productive of knowledge. In what follows, some of the main elements of their analyses will be described. Note, however, that, while exegetical studies of Buddhist texts are important, we must step back from them and consider what is involved in taking a Buddhist approach to logic in light of modern formal logic. This analysis will be done against the backdrop of the contemporary literature on logic and related subjects in contemporary philosophy to make sense of the logical studies by Buddhist logicians. (shrink)
One logic or many? I say—many. Or rather, I say there is one logic for each way of specifying the class of all possible circumstances, or models, i.e., all ways of interpreting a given language. But because there is no unique way of doing this, I say there is no unique logic except in a relative sense. Indeed, given any two competing logical theories T1 and T2 (in the same language) one could always consider their common core, (...) T, and settle on that theory. So, given any language L, one could settle on the minimal logic T0 corresponding to the common core shared by all competitors. That would be a way of resisting relativism, as long as one is willing to redraw the bounds of logic accordingly. However, such a minimal theory T0 may be empty if the syntax of L contains no special ingredients the interpretation of which is independent of the specification of the relevant L-models. And generally—I argue—this is indeed the case. (shrink)
Many philosophers take purportedly logical cases of ground ) to be obvious cases, and indeed such cases have been used to motivate the existence of and importance of ground. I argue against this. I do so by motivating two kinds of semantic determination relations. Intuitions of logical ground track these semantic relations. Moreover, our knowledge of semantics for first order logic can explain why we have such intuitions. And, I argue, neither semantic relation can be a species of ground (...) even on a quite broad conception of what ground is. Hence, without a positive argument for taking so-called ‘logical ground’ to be something distinct from a semantic determination relation, we should cease treating logical cases as cases of ground. (shrink)
Buddhist philosophers have developed a rich tradition of logic. Buddhist material on logic that forms the Buddhist tradition of logic, however, is hardly discussed or even known. This article presents some of that material in a manner that is accessible to contemporary logicians and philosophers of logic and sets agendas for global philosophy of logic.
In spite of its significance for everyday and philosophical discourse, the explanatory connective has not received much treatment in the philosophy of logic. The present paper develops a logic for based on systematic connections between and the truth-functional connectives.
Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis (...) of the relation between this logic and other theoretical frameworks such as set theory, mereology, higher-order logic, and modal logic. The applications of plural logic rely on two assumptions, namely that this logic is ontologically innocent and has great expressive power. These assumptions are shown to be problematic. The result is a more nuanced picture of plural logic's applications than has been given thus far. Questions about the correct logic of plurals play a central role in the final chapters, where traditional plural logic is rejected in favor of a "critical" alternative. The most striking feature of this alternative is that there is no universal plurality. This leads to a novel approach to the relation between the many and the one. In particular, critical plural logic paves the way for an account of sets capable of solving the set-theoretic paradoxes. (shrink)
A natural suggestion and increasingly popular account of how to revise our logical beliefs treats revision of logic analogously to the revision of scientific theories. I investigate this approach and argue that simple applications of abductive methodology to logic result in revision-cycles, developing a detailed case study of an actual dispute with this property. This is problematic if we take abductive methodology to provide justification for revising our logical framework. I then generalize the case study, pointing to similarities (...) with more recent and popular heterodox logics such as naïve logics of truth. I use this discussion to motivate a constraint—logical partisanhood—on the uses of such methodology: roughly: both the proposed alternative and our actual background logic must be able to agree that moving to the alternative logic is no worse than staying put. (shrink)
Many philosophers have been attracted to the idea of using the logical form of a true sentence as a guide to the metaphysical grounds of the fact stated by that sentence. This paper looks at a particular instance of that idea: the widely accepted principle that disjunctions are grounded in their true disjuncts. I will argue that an unrestricted version of this principle has several problematic consequences and that it’s not obvious how the principle might be restricted in order to (...) avoid them. My suggestion is that, instead of trying to restrict the principle, we should distinguish between metaphysical and conceptual grounds and take the principle to apply exclusively to the latter. This suggestion, if correct, carries over to other prominent attempts at using logical form as a guide to ground. (shrink)
In this paper I will develop a view about the semantics of imperatives, which I term Modal Noncognitivism, on which imperatives might be said to have truth conditions (dispositionally, anyway), but on which it does not make sense to see them as expressing propositions (hence does not make sense to ascribe to them truth or falsity). This view stands against “Cognitivist” accounts of the semantics of imperatives, on which imperatives are claimed to express propositions, which are then enlisted in explanations (...) of the relevant logico-semantic phenomena. It also stands against the major competitors to Cognitivist accounts—all of which are non-truth-conditional and, as a result, fail to provide satisfying explanations of the fundamental semantic characteristics of imperatives (or so I argue). The view of imperatives I defend here improves on various treatments of imperatives on the market in giving an empirically and theoretically adequate account of their semantics and logic. It yields explanations of a wide range of semantic and logical phenomena about imperatives—explanations that are, I argue, at least as satisfying as the sorts of explanations of semantic and logical phenomena familiar from truth-conditional semantics. But it accomplishes this while defending the notion—which is, I argue, substantially correct—that imperatives could not have propositions, or truth conditions, as their meanings. (shrink)
This brief note corrects an error in one of the reduction steps in my paper 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks' published in the Journal of Applied Logics 8/2 (2021): 531-556.
We argue that the extant evidence for Stoic logic provides all the elements required for a variable-free theory of multiple generality, including a number of remarkably modern features that straddle logic and semantics, such as the understanding of one- and two-place predicates as functions, the canonical formulation of universals as quantified conditionals, a straightforward relation between elements of propositional and first-order logic, and the roles of anaphora and rigid order in the regimented sentences that express multiply general (...) propositions. We consider and reinterpret some ancient texts that have been neglected in the context of Stoic universal and existential propositions and offer new explanations of some puzzling features in Stoic logic. Our results confirm that Stoic logic surpasses Aristotle’s with regard to multiple generality, and are a reminder that focusing on multiple generality through the lens of Frege-inspired variable-binding quantifier theory may hamper our understanding and appreciation of pre-Fregean theories of multiple generality. (shrink)
Bertrand Russell, in the second of his 1914 Lowell lectures, Our Knowledge of the External World, asserted famously that ‘every philosophical problem, when it is subjected to the necessary analysis and purification, is found either to be not really philosophical at all, or else to be, in the sense in which we are using the word, logical’ (Russell 1993, p. 42). He went on to characterize that portion of logic that concerned the study of forms of propositions, (...) or, as he called them, ‘logical forms’. This portion of logic he called ‘philosophicallogic’. Russell asserted that ... some kind of knowledge of logical forms, though with most people it is not explicit, is involved in all understanding of discourse. It is the business of philosophicallogic to extract this knowledge from its concrete integuments, and to render it explicit and pure. (p. 53) Perhaps no one still endorses quite this grand a view of the role of logic and the investigation of logical form in philosophy. But talk of logical form retains a central role in analytic philosophy. Given its widespread use in philosophy and linguistics, it is rather surprising that the concept of logical form has not received more attention by philosophers than it has. The concern of this paper is to say something about what talk of logical form comes to, in a tradition that stretches back to (and arguably beyond) Russell’s use of that expression. This will not be exactly Russell’s conception. For we do not endorse Russell’s view that propositions are the bearers of logical form, or that appeal to propositions adds anything to our understanding of what talk of logical form comes to. But we will be concerned to provide an account responsive to the interests expressed by Russell in the above quotations, though one clarified of extraneous elements, and expressed precisely. For this purpose, it is important to note that the concern expressed by Russell in the above passages, as the surrounding text makes clear, is a concern not just with logic conceived narrowly as the study of logical terms, but with propositional form more generally, which includes, e.g., such features as those that correspond to the number of argument places in a propositional function, and the categories of objects which propositional.... (shrink)
The terms “model” and “model-building” have been used to characterize the field of formal philosophy, to evaluate philosophy’s and philosophical logic’s progress and to define philosophicallogic itself. A model is an idealization, in the sense of being a deliberate simplification of something relatively complex in which several important aspects are left aside, but also in the sense of being a view too perfect or excellent, not found in reality, of this thing. Paraconsistent logic is a (...) branch of philosophical logic. It is however not clear how paraconsistent logic can be seen as model-building. What exactly is modeled? In this paper I adopt the perspective of looking at a particular instance of paraconsistent logic—paranormal modal logic—which might be seen as a model of a specific kind of agent: inductive agents. After ntroducing what I call the highlevel and low-level models of inductive agents, I analyze the extent to which the above-mentioned idealizing features of model-building appear in paranormal modal logic and how they affect its philosophical significance. (shrink)
The Frege point to the effect that e.g. the clauses of conditionals are not asserted and therefore cannot be assertions is often taken to establish a dichotomy between the content of a speech act, which is propositional and belongs to logic and semantics, and its force, which belongs to pragmatics. Recently this dichotomy has been questioned by philosophers such as Peter Hanks and Francois Recanati, who propose act-theoretic accounts of propositions, argue that we can’t account for propositional unity independently (...) of the forceful acts of speakers, and respond to the Frege point by appealing to a notion of force cancellation. I argue that the notion of force cancellation is faced with a dilemma and offer an alternative response to the Frege point, which extends the act-theoretic account to logical acts such as conditionalizing or disjoining. Such higher-level acts allow us to present forceful acts while suspending commitment to them. In connecting them, a subject rather commits to an affirmation function of such acts. In contrast, the Frege point confuses a lack of commitment to what is put forward with a lack of commitment or force in what is put forward. (shrink)
Epistemic two-dimensional semantics is a theory in the philosophy of language that provides an account of meaning which is sensitive to the distinction between necessity and apriority. While this theory is usually presented in an informal manner, I take some steps in formalizing it in this paper. To do so, I define a semantics for a propositional modal logic with operators for the modalities of necessity, actuality, and apriority that captures the relevant ideas of epistemic two-dimensional semantics. I also (...) describe some properties of the logic that are interesting from a philosophical perspective, and apply it to the so-called nesting problem. (shrink)
We investigate an enrichment of the propositional modal language L with a "universal" modality ■ having semantics x ⊧ ■φ iff ∀y(y ⊧ φ), and a countable set of "names" - a special kind of propositional variables ranging over singleton sets of worlds. The obtained language ℒ $_{c}$ proves to have a great expressive power. It is equivalent with respect to modal definability to another enrichment ℒ(⍯) of ℒ, where ⍯ is an additional modality with the semantics x ⊧ ⍯φ (...) iff Vy(y ≠ x → y ⊧ φ). Model-theoretic characterizations of modal definability in these languages are obtained. Further we consider deductive systems in ℒ $_{c}$ . Strong completeness of the normal ℒ $_{c}$ logics is proved with respect to models in which all worlds are named. Every ℒ $_{c}$ -logic axiomatized by formulae containing only names (but not propositional variables) is proved to be strongly frame-complete. Problems concerning transfer of properties ([in]completeness, filtration, finite model property etc.) from ℒ to ℒ $_{c}$ are discussed. Finally, further perspectives for names in multimodal environment are briefly sketched. (shrink)
This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient (...) class='Hi'>logic texts. A renaissance in ancient logic studies occurred in the early 1950s with the publication of the landmark Aristotle’s Syllogistic by Jan Łukasiewicz, Oxford UP 1951, 2nd ed. 1957. Despite its title, it treats the logic of the Stoics as well as that of Aristotle. Łukasiewicz was a distinguished mathematical logician. He had created many-valued logic and the parenthesis-free prefix notation known as Polish notation. He co-authored with Alfred Tarski’s an important paper on metatheory of propositional logic and he was one of Tarski’s the three main teachers at the University of Warsaw. Łukasiewicz’s stature was just short of that of the giants: Aristotle, Boole, Frege, Tarski and Gödel. No mathematical logician of his caliber had ever before quoted the actual teachings of ancient logicians. -/- Not only did Łukasiewicz inject fresh hypotheses, new concepts, and imaginative modern perspectives into the field, his enormous prestige and that of the Warsaw School of Logic reflected on the whole field of ancient logic studies. Suddenly, this previously somewhat dormant and obscure field became active and gained in respectability and importance in the eyes of logicians, mathematicians, linguists, analytic philosophers, and historians. Next to Aristotle himself and perhaps the Stoic logician Chrysippus, Łukasiewicz is the most prominent figure in ancient logic studies. A huge literature traces its origins to Łukasiewicz. -/- This Ancient Logic and Its Modern Interpretations, is based on the 1973 Buffalo Symposium on Modernist Interpretations of Ancient Logic, the first conference devoted entirely to critical assessment of the state of ancient logic studies. (shrink)
The logic of indicative conditionals remains the topic of deep and intractable philosophical disagreement. I show that two influential epistemic norms—the Lockean theory of belief and the Ramsey test for conditional belief—are jointly sufficient to ground a powerful new argument for a particular conception of the logic of indicative conditionals. Specifically, the argument demonstrates, contrary to the received historical narrative, that there is a real sense in which Stalnaker’s semantics for the indicative did succeed in capturing the (...)logic of the Ramseyan indicative conditional. (shrink)
This paper presents an account of what it is for a property or relation (or ‘attribute’ for short) to be logically simple. Based on this account, it is shown, among other things, that the logically simple attributes are in at least one important way sparse. This in turn lends support to the view that the concept of a logically simple attribute can be regarded as a promising substitute for Lewis’s concept of a perfectly natural attribute. At least in part, the (...) advantage of using the former concept lies in the fact that it is amenable to analysis, where that analysis—i.e., the account put forward in this paper—requires the adoption neither of an Armstrongian theory of universals nor of a primitive notion of naturalness, fundamentality, or grounding. (shrink)
The doctrine of the Trinity is central to mainstream Christianity. But insofar as it posits “three persons” (Father, Son and Holy Spirit), who are “one God,” it appears as inconsistent as the claim that 1+1+1=1. -/- Much of the literature on “The Logical Problem of the Trinity,” as this has been called, attacks or defends Trinitarianism with little regard to the fourth century theological controversies and the late Hellenistic and early Medieval philosophical background in which it took shape. I (...) argue that this methodol- ogy, which I call “the Puzzle Approach,” produces obviously invalid arguments, and it is unclear how to repair it without collapsing into my preferred method- ology, “the Historical Approach,” which sees history as essential to the debate. I also discuss “mysterianism,” arguing that, successful or not, it has a different goal from the other approaches. I further argue that any solution from the His- torical Approach satisfies the concerns of the Puzzle Approach and mysterianism anyway. -/- I then examine the solution to the Logical Problem of the Trinity found in St. Gregory of Nyssa’s writings, both due to his place in the history of the doctrine, and his clarity in explicating what I call “the metaphysics of synergy.” I recast his solution in standard predicate logic and provide a formal proof of its consistency. I end by considering the possibilities for attacking the broader philosophical context of his defense and conclude that the prospects for doing so are dim. In any case, if there should turn out to be any problem with the doctrine of the Trinity at all, it will not be one of mere logical inconsistency in saying that “These Three are One.”. (shrink)
Modal logic is one of philosophy’s many children. As a mature adult it has moved out of the parental home and is nowadays straying far from its parent. But the ties are still there: philosophy is important to modal logic, modal logic is important for philosophy. Or, at least, this is a thesis we try to defend in this chapter. Limitations of space have ruled out any attempt at writing a survey of all the work going on (...) in our field—a book would be needed for that. Instead, we have tried to select material that is of interest in its own right or exemplifies noteworthy features in interesting ways. Here are some themes that have guided us throughout the writing: • The back-and-forth between philosophy and modal logic. There has been a good deal of give-and-take in the past. Carnap tried to use his modal logic to throw light on old philosophical questions, thereby inspiring others to continue his work and still others to criticise it. He certainly provoked Quine, who in his turn provided—and continues to provide—a healthy challenge to modal logicians. And Kripke’s and David Lewis’s philosophies are connected, in interesting ways, with their modal logic. Analytic philosophy would have been a lot different without modal logic! • The interpretation problem. The problem of providing a certain modal logic with an intuitive interpretation should not be conflated with the problem of providing a formal system with a model-theoretic semantics. An intuitively appealing model-theoretic semantics may be an important step towards solving the interpretation problem, but only a step. One may compare this situation with that in probability theory, where definitions of concepts like ‘outcome space’ and ‘random variable’ are orthogonal to questions about “interpretations” of the concept of probability. • The value of formalisation. Modal logic sets standards of precision, which are a challenge to—and sometimes a model for—philosophy. Classical philosophical questions can be sharpened and seen from a new perspective when formulated in a framework of modal logic. On the other hand, representing old questions in a formal garb has its dangers, such as simplification and distortion. • Why modal logic rather than classical (first or higher order) logic? The idioms of modal logic—today there are many!—seem better to correspond to human ways of thinking than ordinary extensional logic. (Cf. Chomsky’s conjecture that the NP + VP pattern is wired into the human brain.) In his An Essay in Modal Logic (1951) von Wright distinguished between four kinds of modalities: alethic (modes of truth: necessity, possibility and impossibility), epistemic (modes of being known: known to be true, known to be false, undecided), deontic (modes of obligation: obligatory, permitted, forbidden) and existential (modes of existence: universality, existence, emptiness). The existential modalities are not usually counted as modalities, but the other three categories are exemplified in three sections into which this chapter is divided. Section 1 is devoted to alethic modal logic and reviews some main themes at the heart of philosophical modal logic. Sections 2 and 3 deal with topics in epistemic logic and deontic logic, respectively, and are meant to illustrate two different uses that modal logic or indeed any logic can have: it may be applied to already existing (non-logical) theory, or it can be used to develop new theory. (shrink)
The result of combining classical quantificational logic with modal logic proves necessitism – the claim that necessarily everything is necessarily identical to something. This problem is reflected in the purely quantificational theory by theorems such as ∃x t=x; it is a theorem, for example, that something is identical to Timothy Williamson. The standard way to avoid these consequences is to weaken the theory of quantification to a certain kind of free logic. However, it has often been noted (...) that in order to specify the truth conditions of certain sentences involving constants or variables that don’t denote, one has to apparently quantify over things that are not identical to anything. In this paper I defend a contingentist, non-Meinongian metaphysics within a positive free logic. I argue that although certain names and free variables do not actually refer to anything, in each case there might have been something they actually refer to, allowing one to interpret the contingentist claims without quantifying over mere possibilia. (shrink)
At least since Aristotle’s famous 'sea-battle' passages in On Interpretation 9, some substantial minority of philosophers has been attracted to the doctrine of the open future--the doctrine that future contingent statements are not true. But, prima facie, such views seem inconsistent with the following intuition: if something has happened, then (looking back) it was the case that it would happen. How can it be that, looking forwards, it isn’t true that there will be a sea battle, while also being true (...) that, looking backwards, it was the case that there would be a sea battle? This tension forms, in large part, what might be called the problem of future contingents. A dominant trend in temporal logic and semantic theorizing about future contingents seeks to validate both intuitions. Theorists in this tradition--including some interpretations of Aristotle, but paradigmatically, Thomason (1970), as well as more recent developments in Belnap, et. al (2001) and MacFarlane (2003, 2014)--have argued that the apparent tension between the intuitions is in fact merely apparent. In short, such theorists seek to maintain both of the following two theses: (i) the open future: Future contingents are not true, and (ii) retro-closure: From the fact that something is true, it follows that it was the case that it would be true. It is well-known that reflection on the problem of future contingents has in many ways been inspired by importantly parallel issues regarding divine foreknowledge and indeterminism. In this paper, we take up this perspective, and ask what accepting both the open future and retro-closure predicts about omniscience. When we theorize about a perfect knower, we are theorizing about what an ideal agent ought to believe. Our contention is that there isn’t an acceptable view of ideally rational belief given the assumptions of the open future and retro-closure, and thus this casts doubt on the conjunction of those assumptions. (shrink)
Beall and Restall 2000; 2001; 2006 advocate a comprehensive pluralist approach to logic, which they call Logical Pluralism, according to which there is not one true logic but many equally acceptable logical systems. They maintain that Logical Pluralism is compatible with monism about metaphysical modality, according to which there is just one correct logic of metaphysical modality. Wyatt 2004 contends that Logical Pluralism is incompatible with monism about metaphysical modality. We first suggest that if Wyatt were right, (...) Logical Pluralism would be strongly implausible because it would get upside down a dependence relation that holds between metaphysics and logic of modality. We then argue that Logical Pluralism is prima facie compatible with monism about metaphysical modality. (shrink)
Logic and humour tend to be mutually exclusive topics. Humour plays off ambiguity, while classical logic falters over it. Formalizing puns is therefore impossible, since puns have ambiguous meanings for their components. However, I will use Independence-Friendly logic to formally encode the multiple meanings within a pun. This will show a general strategy of how to logically represent ambiguity and reveals humour as an untapped source of novel logical structure.
The starting point of this paper concerns the apparent difference between what we might call absolute truth and truth in a model, following Donald Davidson. The notion of absolute truth is the one familiar from Tarski’s T-schema: ‘Snow is white’ is true if and only if snow is white. Instead of being a property of sentences as absolute truth appears to be, truth in a model, that is relative truth, is evaluated in terms of the relation between sentences and models. (...) I wish to examine the apparent dual nature of logical truth (without dwelling on Davidson), and suggest that we are dealing with a distinction between a metaphysical and a linguistic interpretation of truth. I take my cue from John Etchemendy, who suggests that absolute truth could be considered as being equivalent to truth in the ‘right model’, i.e., the model that corresponds with the world. However, the notion of ‘model’ is not entirely appropriate here as it is closely associated with relative truth. Instead, I propose that the metaphysical interpretation of truth may be illustrated in modal terms, by metaphysical modality in particular. One of the tasks that I will undertake in this paper is to develop this modal interpretation, partly building on my previous work on the metaphysical interpretation of the law of non-contradiction (Tahko 2009). After an explication of the metaphysical interpretation of logical truth, a brief study of how this interpretation connects with some recent important themes in philosophicallogic follows. In particular, I discuss logical pluralism and propose an understanding of pluralism from the point of view of the metaphysical interpretation. (shrink)
This paper discusses three relevant logics that obey Component Homogeneity - a principle that Goddard and Routley introduce in their project of a logic of significance. The paper establishes two main results. First, it establishes a general characterization result for two families of logic that obey Component Homogeneity - that is, we provide a set of necessary and sufficient conditions for their consequence relations. From this, we derive characterization results for S*fde, dS*fde, crossS*fde. Second, the paper establishes complete (...) sequent calculi for S*fde, dS*fde, crossS*fde. Among the other accomplishments of the paper, we generalize the semantics from Bochvar, Hallden, Deutsch and Daniels, we provide a general recipe to define containment logics, we explore the single-premise/single-conclusion fragment of S*fde, dS*fde, crossS*fdeand the connections between crossS*fde and the logic Eq of equality by Epstein. Also, we present S*fde as a relevant logic of meaninglessness that follows the main philosophical tenets of Goddard and Routley, and we briefly examine three further systems that are closely related to our main logics. Finally, we discuss Routley's criticism to containment logic in light of our results, and overview some open issues. (shrink)
Analytic philosophy is sometimes said to have particularly close connections to logic and to science, and no particularly interesting or close relation to its own history. It is argued here that although the connections to logic and science have been important in the development of analytic philosophy, these connections do not come close to characterizing the nature of analytic philosophy, either as a body of doctrines or as a philosophical method. We will do better to understand analytic (...) philosophy—and its relationship to continental philosophy—if we see it as a historically constructed collection of texts, which define its key problems and concerns. It is true, however, that analytic philosophy has paid little attention to the history of the subject. This is both its strength—since it allows for a distinctive kind of creativity—and its weakness—since ignoring history can encourage a philosophical variety of “normal science.”. (shrink)
Philosophers of science often assume that logically equivalent theories are theoretically equivalent. I argue that two theses, anti-exceptionalism about logic (which says, roughly, that logic is not a priori, that it is revisable, and that it is not special or set apart from other human inquiry) and logical realism (which says, roughly, that differences in logic reflect genuine metaphysical differences in the world), make trouble for both this commitment and the closely related commitment to theories being closed (...) under logical consequence. I provide three arguments. The first two show that anti-exceptionalism about logic provides an epistemic challenge to both the closure and the equivalence claims; the third shows that logical realism provides a metaphysical challenge to both the closure and the equivalence claims. Along the way, I show that there are important methodological upshots for metaphysicians and philosophers of logic. In particular, there are lessons to be drawn about certain conceptions of naturalism as constraining the possibilities for metaphysics and the philosophy of logic. (shrink)
Logic and psychology overlap in judgment, inference and proof. The problems raised by this commonality are notoriously difficult, both from a historical and from a philosophical point of view. Sundholm has for a long time addressed these issues. His beautiful piece of work [A Century of Inference: 1837-1936] begins by summarizing the main difficulty in the usual provocative manner of the author: one can start, he says, by the act of knowledge to go to the object, as the (...) Idealist does; one can also start by the object to go to the act, in the Realist mood; never the two shall meet. He is himself inclined to accept the first perspective as the right one and he has eventually developed an original version of antirealism which starts, not from considerations about the publicity of meaning, in the manner of Dummett, but from an epistemic standpoint, trying to search in a non-Fregean tradition of analysis of judgement and cognate notions a way of founding constructivist semantics. The present paper ploughes the same field. We concentrate on the significance, for Sundholm’s program, of the perspective that has been opened by Twardowski in his important essay on acts and products (1912. (shrink)
Roman Suszko said that “Obviously, any multiplication of logical values is a mad idea and, in fact, Łukasiewicz did not actualize it.” The aim of the present paper is to qualify this ‘obvious’ statement through a number of logical and philosophical writings by Professor Jan Woleński, all focusing on the nature of truth-values and their multiple uses in philosophy. It results in a reconstruction of such an abstract object, doing justice to what Suszko held a ‘mad’ project within a (...) generalized logic of judgments. Four main issues raised by Woleński will be considered to test the insightfulness of such generalized truth-values, namely: the principle of bivalence, the logic of scepticism, the coherence theory of truth, and nothingness. (shrink)
2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive (...) modeling, and they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valued logics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valued logics. (shrink)
Judgment aggregation theory, or rather, as we conceive of it here, logical aggregation theory generalizes social choice theory by having the aggregation rule bear on judgments of all kinds instead of merely preference judgments. It derives from Kornhauser and Sager’s doctrinal paradox and List and Pettit’s discursive dilemma, two problems that we distinguish emphatically here. The current theory has developed from the discursive dilemma, rather than the doctrinal paradox, and the final objective of the paper is to give the latter (...) its own theoretical development along the line of recent work by Dietrich and Mongin. However, the paper also aims at reviewing logical aggregation theory as such, and it covers impossibility theorems by Dietrich, Dietrich and List, Dokow and Holzman, List and Pettit, Mongin, Nehring and Puppe, Pauly and van Hees, providing a uniform logical framework in which they can be compared with each other. The review goes through three historical stages: the initial paradox and dilemma, the scattered early results on the independence axiom, and the so-called canonical theorem, a collective achievement that provided the theory with its specific method of analysis. The paper goes some way towards philosophicallogic, first by briefly connecting the aggregative framework of judgment with the modern philosophy of judgment, and second by thoroughly discussing and axiomatizing the ‘general logic’ built in this framework. (shrink)
This paper starts by indicating the analysis of Hempel's conditions of adequacy for any relation of confirmation (Hempel, 1945) as presented in Huber (submitted). There I argue contra Carnap (1962, Section 87) that Hempel felt the need for two concepts of confirmation: one aiming at plausible theories and another aiming at informative theories. However, he also realized that these two concepts are conflicting, and he gave up the concept of confirmation aiming at informative theories. The main part of the paper (...) consists in working out the claim that one can have Hempel's cake and eat it too - in the sense that there is a logic of theory assessment that takes into account both of the two conflicting aspects of plausibility and informativeness. According to the semantics of this logic, a is an acceptable theory for evidence β if and only if a is both sufficiently plausible given β and sufficiently informative about β. This is spelt out in terms of ranking functions (Spohn, 1988) and shown to represent the syntactically specified notion of an assessment relation. The paper then compares these acceptability relations to explanatory and confirmatory consequence relations (Flach, 2000) as well as to nonmonotonic consequence relations (Kraus et al., 1990). It concludes by relating the plausibility-informativeness approach to Carnap's positive relevance account, thereby shedding new light on Carnap's analysis as well as solving another problem of confirmation theory. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.