Results for 'Prime Numbers, Prime Patterning, Mathematical Language, Non-dimensional Relationships, Logic, Number Theory,'

951 found
Order:
  1. The SignalGlyph Project and Prime Numbers.Michael Joseph Winkler - 2021 - In Michael Winkler (ed.), The Image of Language. Northeast, NY: Artists Books Editions. pp. 158-163.
    An excerpt of "The SignalGlyph Project and Prime Numbers" (a chapter of the book THE IMAGE OF LANGUAGE) that attempts to illustrate how dimensional limitations of mathematical language have obscured recognition of the system of patterning in the distribution of prime numbers.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Set Theory INC# Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part.II) Hyper inductive definitions.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (4):22.
    In this paper intuitionistic set theory INC# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  97
    Analyzing the Zeros of the Riemann Zeta Function Using Set-Theoretic and Sweeping Net Methods.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:15.
    The Riemann zeta function ζ(s) is a central object in number theory and complex analysis, defined for complex variables and intimately connected to the distribution of prime numbers through its zeros. The famous Riemann Hypothesis conjectures that all non-trivial zeros of the zeta function lie on the critical line Re(s) = 1 2 . In this paper, we explore the Riemann zeta function through the lens of set-theoretic and sweeping net methods, leveraging creative comparisons of specific sets to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  62
    Foundations of Mathematics.Kliment Babushkovski - manuscript
    Analytical philosophy defines mathematics as an extension of logic. This research will restructure the progress in mathematical philosophy made by analytical thinkers like Wittgenstein, Russell, and Frege. We are setting up a new theory of mathematics and arithmetic’s familiar to Wittgenstein’s philosophy of language. The analytical theory proposed here proves that mathematics can be defined with non-logical terms, like numbers, theorems, and operators. We’ll explain the role of the arithmetical operators and geometrical theorems to be foundational in mathematics. Our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Recapture Results and Classical Logic.Camillo Fiore & Lucas Rosenblatt - 2023 - Mind 132 (527):762–788.
    An old and well-known objection to non-classical logics is that they are too weak; in particular, they cannot prove a number of important mathematical results. A promising strategy to deal with this objection consists in proving so-called recapture results. Roughly, these results show that classical logic can be used in mathematics and other unproblematic contexts. However, the strategy faces some potential problems. First, typical recapture results are formulated in a purely logical language, and do not generalize nicely to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. A theory of truth for a class of mathematical languages and an application.S. Heikkilä - manuscript
    In this paprer a class of so called mathematically acceptable (shortly MA) languages is introduced First-order formal languages containing natural numbers and numerals belong to that class. MA languages which are contained in a given fully interpreted MA language augmented by a monadic predicate are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of these languages. MTT makes them fully interpreted MA languages which posses their own truth predicates, yielding consequences to philosophy of mathematics. MTT (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Remarks on the Geometry of Complex Systems and Self-Organization.Luciano Boi - 2012 - In Vincenzo Fano, Enrico Giannetto, Giulia Giannini & Pierluigi Graziani (eds.), Complessità e Riduzionismo. ISONOMIA - Epistemologica Series Editor. pp. 28-43.
    Let us start by some general definitions of the concept of complexity. We take a complex system to be one composed by a large number of parts, and whose properties are not fully explained by an understanding of its components parts. Studies of complex systems recognized the importance of “wholeness”, defined as problems of organization (and of regulation), phenomena non resolvable into local events, dynamics interactions in the difference of behaviour of parts when isolated or in higher configuration, etc., (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. The Physical Numbers: A New Foundational Logic-Numerical Structure For Mathematics And Physics.Gomez-Ramirez Danny A. J. - manuscript
    The boundless nature of the natural numbers imposes paradoxically a high formal bound to the use of standard artificial computer programs for solving conceptually challenged problems in number theory. In the context of the new cognitive foundations for mathematics' and physics' program immersed in the setting of artificial mathematical intelligence, we proposed a refined numerical system, called the physical numbers, preserving most of the essential intuitions of the natural numbers. Even more, this new numerical structure additionally possesses the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Generation of Biological Patterns and Form: Some Physical, Mathematical and Logical Aspects.Alfred Gierer - 1981 - Progress in Biophysics and Molecular Biology 37 (1):1-48.
    While many different mechanisms contribute to the generation of spatial order in biological development, the formation of morphogenetic fields which in turn direct cell responses giving rise to pattern and form are of major importance and essential for embryogenesis and regeneration. Most likely the fields represent concentration patterns of substances produced by molecular kinetics. Short range autocatalytic activation in conjunction with longer range “lateral” inhibition or depletion effects is capable of generating such patterns (Gierer and Meinhardt, 1972). Non-linear reactions are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. Aristotle's Theory of Predication.Mohammad Ghomi - manuscript
    Predication is a lingual relation. We have this relation when a term is said (λέγεται) of another term. This simple definition, however, is not Aristotle’s own definition. In fact, he does not define predication but attaches his almost in a new field used word κατηγορεῖσθαι to λέγεται. In a predication, something is said of another thing, or, more simply, we have ‘something of something’ (ἓν καθ᾿ ἑνὸς). (PsA. , A, 22, 83b17-18) Therefore, a relation in which two terms are posited (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The Self and Its World: Husserlian Contributions to a Metaphysics of Einstein’s Theory of Relativity and Heisenberg’s Indeterminacy Principle in Quantum Physics.Maria Eliza Cruz - manuscript
    This paper centers on the implicit metaphysics beyond the Theory of Relativity and the Principle of Indeterminacy – two revolutionary theories that have changed 20th Century Physics – using the perspective of Husserlian Transcedental Phenomenology. Albert Einstein (1879-1955) and Werner Heisenberg (1901-1976) abolished the theoretical framework of Classical (Galilean- Newtonian) physics that has been complemented, strengthened by Cartesian metaphysics. Rene Descartes (1596- 1850) introduced a separation between subject and object (as two different and self- enclosed substances) while Galileo and Newton (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. DDL unlimited: Dynamic doxastic logic for introspective agents.Sten Lindström & Wlodek Rabinowicz - 1999 - Erkenntnis 50 (2-3):353-385.
    The theories of belief change developed within the AGM-tradition are not logics in the proper sense, but rather informal axiomatic theories of belief change. Instead of characterizing the models of belief and belief change in a formalized object language, the AGM-approach uses a natural language — ordinary mathematical English — to characterize the mathematical structures that are under study. Recently, however, various authors such as Johan van Benthem and Maarten de Rijke have suggested representing doxastic change within a (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  14. The ontology of number.Jeremy Horne - manuscript
    What is a number? Answering this will answer questions about its philosophical foundations - rational numbers, the complex numbers, imaginary numbers. If we are to write or talk about something, it is helpful to know whether it exists, how it exists, and why it exists, just from a common-sense point of view [Quine, 1948, p. 6]. Generally, there does not seem to be any disagreement among mathematicians, scientists, and logicians about numbers existing in some way, but currently, in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Logic-Language-Ontology.Urszula B. Wybraniec-Skardowska - 2022 - Cham, Switzerland: Springer Nature, Birkhäuser, Studies in Universal Logic series.
    The book is a collection of papers and aims to unify the questions of syntax and semantics of language, which are included in logic, philosophy and ontology of language. The leading motif of the presented selection of works is the differentiation between linguistic tokens (material, concrete objects) and linguistic types (ideal, abstract objects) following two philosophical trends: nominalism (concretism) and Platonizing version of realism. The opening article under the title “The Dual Ontological Nature of Language Signs and the Problem of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Heuristics of String Theory.Nicolae Sfetcu - manuscript
    Since string theory has not been able to explain phenomena to date, it may seem that this confirms Feyerabend's view that there is no "method" of science. And yet, string theory is still the most active research program for quantum gravity. But, compared to other non-falsifiable theories, this has something extra, especially mathematical language, with a clear logic of deductions. Up to a point it can reproduce classical gauge theories and general relativity. And there is hope that in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Logical Realism: A Tale of Two Theories.Gila Sher - 2024 - In Sophia Arbeiter & Juliette Kennedy (eds.), The Philosophy of Penelope Maddy. Springer.
    The paper compares two theories of the nature of logic: Penelope Maddy's and my own. The two theories share a significant element: they both view logic as grounded not just in the mind (language, concepts, conventions, etc.), but also, and crucially, in the world. But the two theories differ in significant ways as well. Most distinctly, one is an anti-holist, "austere naturalist" theory while the other is a non-naturalist "foundational-holistic" theory. This methodological difference affects their questions, goals, orientations, the scope (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Human reasoning and cognitive science.Keith Stenning & Michiel van Lambalgen - 2008 - Boston, USA: MIT Press.
    In the late summer of 1998, the authors, a cognitive scientist and a logician, started talking about the relevance of modern mathematical logic to the study of human reasoning, and we have been talking ever since. This book is an interim report of that conversation. It argues that results such as those on the Wason selection task, purportedly showing the irrelevance of formal logic to actual human reasoning, have been widely misinterpreted, mainly because the picture of logic current in (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  19. Maths, Logic and Language.Tetsuaki Iwamoto - 2018 - Geneva: Logic Forum.
    A work on the philosophy of mathematics (2017) -/- ‘Number’, such a simple idea, and yet it fascinated and absorbed the greatest proportion of human geniuses over centuries, not to mention the likes of Pythagoras, Euclid, Newton, Leibniz, Descartes and countless maths giants like Euler, Gauss and Hilbert, etc.. Einstein thought of pure maths as the poetry of logical ideas, the exactitude of which, although independent of experience, strangely seems to benefit the study of the objects of reality. And, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20.  61
    The Book of Phenomenological Velocity: Algebraic Techniques for Gestalt Cosmology, Transcendental Relativity and Quantum Mechanics.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:380.
    If you have enjoyed any of the 7 (seven) other books I have published over 20 years, including literally thousands of pages of mathematical and topological concepts, Python programs and conceptually expanding papers, please consider buying this book for $20.00 on google play books. -/- Introduction: -/- Though the following pages provide extensive exposition and dedicated descriptions of the phenomenological velocity formulas, theory and mystery, I thought it appropriate to write this introduction as a partial explanation for what phenomenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21.  62
    COMPLEXITY VALUATIONS: A GENERAL SEMANTIC FRAMEWORK FOR PROPOSITIONAL LANGUAGES.Juan Pablo Jorge, Hernán Luis Vázquez & Federico Holik - forthcoming - Actas Del Xvii Congreso Dr. Antonio Monteiro.
    A general mathematical framework, based on countable partitions of Natural Numbers [1], is presented, that allows to provide a Semantics to propositional languages. It has the particularity of allowing both the valuations and the interpretation Sets for the connectives to discriminate complexity of the formulas. This allows different adequacy criteria to be used to assess formulas associated with the same connective, but that differ in their complexity. The presented method can be adapted potentially infinite number of connectives and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Non‐Classical Knowledge.Ethan Jerzak - 2017 - Philosophy and Phenomenological Research 98 (1):190-220.
    The Knower paradox purports to place surprising a priori limitations on what we can know. According to orthodoxy, it shows that we need to abandon one of three plausible and widely-held ideas: that knowledge is factive, that we can know that knowledge is factive, and that we can use logical/mathematical reasoning to extend our knowledge via very weak single-premise closure principles. I argue that classical logic, not any of these epistemic principles, is the culprit. I develop a consistent theory (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Observability of Turing Machines: a refinement of the theory of computation.Yaroslav Sergeyev & Alfredo Garro - 2010 - Informatica 21 (3):425–454.
    The Turing machine is one of the simple abstract computational devices that can be used to investigate the limits of computability. In this paper, they are considered from several points of view that emphasize the importance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is performed on the interrelations between mechanical computations and their mathematical descriptions emerging when a human (the researcher) starts to describe a Turing machine (the object of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. Filosofia Analitica e Filosofia Continentale.Sergio Cremaschi (ed.) - 1997 - 50018 Scandicci, Metropolitan City of Florence, Italy: La Nuova Italia.
    ● Sergio Cremaschi, The non-existing Island. The chapter discusses how the cleavage between the Continental and the Anglo-American philosophies originated, the (self-)images of both philosophical worlds, the converging rediscoveries from the Seventies, and recent ecumenic or anti-ecumenic strategies. I argue that pragmatism provides an important counter-instance to the familiar self-images and the fashionable ecumenic or anti-ecumenic strategies. The conclusions are: (i) the only place where Continental philosophy exists (as Euro-Communism one decade ago) is America; (ii) less obviously, also analytic philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  26. What Does it Mean that PRIMES is in P: Popularization and Distortion Revisited.Boaz Miller - 2009 - Social Studies of Science 39 (2):257-288.
    In August 2002, three Indian computer scientists published a paper, ‘PRIMES is in P’, online. It presents a ‘deterministic algorithm’ which determines in ‘polynomial time’ if a given number is a prime number. The story was quickly picked up by the general press, and by this means spread through the scientific community of complexity theorists, where it was hailed as a major theoretical breakthrough. This is although scientists regarded the media reports as vulgar popularizations. When the paper (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. Why Numbers Are Sets.Eric Steinhart - 2002 - Synthese 133 (3):343-361.
    I follow standard mathematical practice and theory to argue that the natural numbers are the finite von Neumann ordinals. I present the reasons standardly given for identifying the natural numbers with the finite von Neumann's (e.g., recursiveness; well-ordering principles; continuity at transfinite limits; minimality; and identification of n with the set of all numbers less than n). I give a detailed mathematical demonstration that 0 is { } and for every natural number n, n is the set (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  28. Paraconsistency: Logic and Applications.Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.) - 2012 - Dordrecht, Netherland: Springer.
    A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  29. Deontic Logic and Ethics.Shyam Nair - forthcoming - In Gabbay, John Horty, Xavier Parent, Ron van der Meyden & Leon van der Torre (eds.), Handbook of Deontic Logic and Normative System, Volume 2. College Publications.
    Though there have been productive interactions between moral philosophers and deontic logicians, there has also been a tradition of neglecting the insights that the fields can offer one another. The most sustained interactions between moral philosophers and deontic logicians have notbeen systematic but instead have been scattered across a number of distinct and often unrelated topics. This chapter primarily focuses on three topics. First, we discuss the “actualism/possibilism” debate which, very roughly, concerns the relevance of what one will do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. (1 other version)Riemann, Metatheory, and Proof, Rev.3.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The work provides comprehensively definitive, unconditional proofs of Riemann's hypothesis, Goldbach's conjecture, the 'twin primes' conjecture, the Collatz conjecture, the Newcomb-Benford theorem, and the Quine-Putnam Indispensability thesis. The proofs validate holonomic metamathematics, meta-ontology, new number theory, new proof theory, new philosophy of logic, and unconditional disproof of the P/NP problem. The proofs, metatheory, and definitions are also confirmed and verified with graphic proof of intrinsic enabling and sustaining principles of reality.
    Download  
     
    Export citation  
     
    Bookmark  
  31. Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  32. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  33. Intuitionistic Modal Algebras.Sergio A. Celani & Umberto Rivieccio - 2024 - Studia Logica 112 (3):611-660.
    Recent research on algebraic models of _quasi-Nelson logic_ has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a _nucleus_. Among these various algebraic structures, for which we employ the umbrella term _intuitionistic modal algebras_, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Set Theory INC_{∞^{#}}^{#} Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part III).Hyper inductive definitions. Application in transcendental number theory.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (8):43.
    Main results are: (i) number e^{e} is transcendental; (ii) the both numbers e+π and e-π are irrational.
    Download  
     
    Export citation  
     
    Bookmark  
  36. (9 other versions)Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science.Plamen L. Simeonov, Edwin Brezina, Ron Cottam, Andreé C. Ehresmann, Arran Gare, Ted Goranson, Jaime Gomez-­‐Ramirez, Brian D. Josephson, Bruno Marchal, Koichiro Matsuno, Robert S. Root-­Bernstein, Otto E. Rössler, Stanley N. Salthe, Marcin Schroeder, Bill Seaman & Pridi Siregar - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andrée C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 328-427.
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37.  57
    The Nuances of Deprogramming Zeros.Parker Emmerson - 2024 - Journal of Liberated Mathematics.
    Description In this paper, we propose an advanced mathematical framework centered around the Energy Number Field (E), which fundamentally avoids the conventional concept of zero by introducing a neutral ele- ment, νE. Through this approach, we redefine core mathematical constructs, including limits, continuity, differentiation, integration, and series summation, ensuring they operate seamlessly within a zero-less paradigm. We address and redefine matrix operations, topology, metric spaces, and complex analysis, aligning them with the principles of E. Additionally, we explore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. What is Logical Form?Ernie Lepore & Kirk Ludwig - 2002 - In Gerhard Preyer & Georg Peter (eds.), Logical Form and Language. Oxford, England: Oxford University Press.
    This paper articulates and defends a conception of logical form as semantic form revealed by a compositional meaning theory. On this conception, the logical form of a sentence is determined by the semantic types of its primitive terms and their mode of combination as it relates to determining under what conditions it is true. We develop this idea in the framework of truth-theoretic semantics. We argue that the semantic form of a declarative sentence in a language L is revealed by (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  39. The Mereological Foundation of Megethology.Massimiliano Carrara & Enrico Martino - 2016 - Journal of Philosophical Logic 45 (2):227-235.
    In Mathematics is megethology. Philosophia Mathematica, 1, 3–23) David K. Lewis proposes a structuralist reconstruction of classical set theory based on mereology. In order to formulate suitable hypotheses about the size of the universe of individuals without the help of set-theoretical notions, he uses the device of Boolos’ plural quantification for treating second order logic without commitment to set-theoretical entities. In this paper we show how, assuming the existence of a pairing function on atoms, as the unique assumption non expressed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. A New Logic, a New Information Measure, and a New Information-Based Approach to Interpreting Quantum Mechanics.David Ellerman - 2024 - Entropy Special Issue: Information-Theoretic Concepts in Physics 26 (2).
    The new logic of partitions is dual to the usual Boolean logic of subsets (usually presented only in the special case of the logic of propositions) in the sense that partitions and subsets are category-theoretic duals. The new information measure of logical entropy is the normalized quantitative version of partitions. The new approach to interpreting quantum mechanics (QM) is showing that the mathematics (not the physics) of QM is the linearized Hilbert space version of the mathematics of partitions. Or, putting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Dimensional theoretical properties of some affine dynamical systems.Jörg Neunhäuserer - 1999 - Dissertation,
    In this work we study dimensional theoretical properties of some a±ne dynamical systems. By dimensional theoretical properties we mean Hausdor® dimension and box- counting dimension of invariant sets and ergodic measures on theses sets. Especially we are interested in two problems. First we ask whether the Hausdor® and box- counting dimension of invariant sets coincide. Second we ask whether there exists an ergodic measure of full Hausdor® dimension on these invariant sets. If this is not the case we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Σ01 soundness isn’t enough: Number theoretic indeterminacy’s unsavory physical commitments.Sharon Berry - 2023 - British Journal for the Philosophy of Science 74 (2):469-484.
    It’s sometimes suggested that we can (in a sense) settle the truth-value of some statements in the language of number theory by stipulation, adopting either φ or ¬φ as an additional axiom. For example, in Clarke-Doane (2020b) and a series of recent APA presentations, Clarke-Doane suggests that any Σ01 sound expansion of our current arithmetical practice would express a truth. In this paper, I’ll argue that (given a certain popular assumption about the model-theoretic representability of languages like ours) we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Logic, Form and Matter.Barry Smith & David Murray - 1981 - Aristotelian Society Supplementary Volume 55 (1):47 - 74.
    It is argued, on the basis of ideas derived from Wittgenstein's Tractatus and Husserl's Logical Investigations, that the formal comprehends more than the logical. More specifically: that there exist certain formal-ontological constants (part, whole, overlapping, etc.) which do not fall within the province of logic. A two-dimensional directly depicting language is developed for the representation of the constants of formal ontology, and means are provided for the extension of this language to enable the representation of certain materially necessary relations. (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  47. Computational logic. Vol. 1: Classical deductive computing with classical logic. 2nd ed.Luis M. Augusto - 2022 - London: College Publications.
    This is the 3rd edition. Although a number of new technological applications require classical deductive computation with non-classical logics, many key technologies still do well—or exclusively, for that matter—with classical logic. In this first volume, we elaborate on classical deductive computing with classical logic. The objective of the main text is to provide the reader with a thorough elaboration on both classical computing – a.k.a. formal languages and automata theory – and classical deduction with the classical first-order predicate calculus (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the limits of computation, theism and the universe as computer-the ultimate Turing Theorem.Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization Michael Starks 3rd Ed. (2017).
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50.  42
    The Math of Liberation: A New Language for Balancing Within (Second Edition) (Book 3 in Series).Parker Emmerson - 2022
    For praising Jehovah (Yahowah is Yeshua Ben Joseph) do I publish these mathematical gesturing forms by His graciousness. The Book of Eternity proposes a new, mathematical balancing language in which the logic stems from infinity instead of zero. The designation of the balance comes from the location at which different meanings of infinity linguistically balance with each other and provides a way for people to continue extrapolating forms and functions that logically would follow. This balancing at oneness is (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 951