n the spatialized Prisoner’s Dilemma, players compete against their immediate neighbors and adopt a neighbor’s strategy should it prove locally superior. Fields of strategies evolve in the manner of cellular automata (Nowak and May, 1993; Mar and St. Denis, 1993a,b; Grim 1995, 1996). Often a question arises as to what the eventual outcome of an initial spatial configuration of strategies will be: Will a single strategy prove triumphant in the sense of progressively conquering more and more territory without opposition, or (...) will an equilibrium of some small number of strategies emerge? Here it is shown, for finite configurations of Prisoner’s Dilemma strategies embedded in a given infinite background, that such questions are formally undecidable: there is no algorithm or effective procedure which, given a specification of a finite configuration, will in all cases tell us whether that configuration will or will not result in progressive conquest by a single strategy when embedded in the given field. The proof introduces undecidability into decision theory in three steps: by (1) outlining a class of abstract machines with familiar undecidability results, by (2) modelling these machines within a particular family of cellular automata, carrying over undecidability results for these, and finally by (3) showing that spatial configurationns of Prisoner’s Dilemma strategies will take the form of such cellular automata. (shrink)
Stephen Barker presents a novel approach to solving semantic paradoxes, including the Liar and its variants and Curry’s paradox. His approach is based around the concept of alethic undecidability. His approach, if successful, renders futile all attempts to assign semantic properties to the paradoxical sentences, whilst leaving classical logic fully intact. And, according to Barker, even the T-scheme remains valid, for validity is not undermined by undecidable instances. Barker’s approach is innovative and worthy of further consideration, particularly by those (...) of us who aim to find a solution without logical revisionism. As it stands, however, the approach is unsuccessful, as I shall demonstrate below. (shrink)
It is often alleged that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) (...) if a mathematical hypothesis is absolutely undecidable, then it is indeterminate. I shall argue that on no understanding of absolute undecidability could one hope to establish all of (a)–(c). However, I will identify one understanding of absolute undecidability on which one might hope to establish both (a) and (c) to the exclusion of (b). This suggests that a new style of mathematical antirealism deserves attention—one that does not depend on familiar epistemological or ontological concerns. The key idea behind this view is that typical mathematical hypotheses are indeterminate because they are relevantly similar to CH. (shrink)
The unreduced solution to the arbitrary interaction problem, absent in the standard theory framework, reveals many equally real and mutually incompatible system configurations, or "realizations". This is the essence of universal dynamic undecidability, or multivaluedness, and the ensuing causal randomness (unpredictability), non-computability, irreversible time flow (evolution, emergence), and dynamic complexity of every real system, object, or process. This creative undecidability of real-world dynamics provides causal explanations for "quantum mysteries", relativity postulates, cosmological problems, and the huge efficiency of high-complexity (...) phenomena, such as life, intelligence, and consciousness, giving rise to extended applications, far beyond the critical limits of usual science paradigm. (shrink)
Some have suggested that certain classical physical systems have undecidable long-term behavior, without specifying an appropriate notion of decidability over the reals. We introduce such a notion, decidability in (or d- ) for any measure , which is particularly appropriate for physics and in some ways more intuitive than Ko's (1991) recursive approximability (r.a.). For Lebesgue measure , d- implies r.a. Sets with positive -measure that are sufficiently "riddled" with holes are never d- but are often r.a. This explicates Sommerer (...) and Ott's (1996) claim of uncomputable behavior in a system with riddled basins of attraction. Furthermore, it clarifies speculations that the stability of the solar system (and similar systems) may be undecidable, for the invariant tori established by KAM theory form sets that are not d-. (shrink)
A natural problem from elementary arithmetic which is so strongly undecidable that it is not even Trial and Error decidable (in other words, not decidable in the limit) is presented. As a corollary, a natural, elementary arithmetical property which makes a difference between intuitionistic and classical theories is isolated.
I use the principle of truth-maker maximalism to provide a new solution to the semantic paradoxes. According to the solution, AUS, its undecidable whether paradoxical sentences are grounded or ungrounded. From this it follows that their alethic status is undecidable. We cannot assert, in principle, whether paradoxical sentences are true, false, either true or false, neither true nor false, both true and false, and so on. AUS involves no ad hoc modification of logic, denial of the T-schema's validity, or obvious (...) revenge. (shrink)
Chaitin’s incompleteness result related to random reals and the halting probability has been advertised as the ultimate and the strongest possible version of the incompleteness and undecidability theorems. It is argued that such claims are exaggerations.
معمولا تصور می شود که عدم امکان ، بی کامل بودن ، پارامونشتها ، Undecidability ، اتفاقی ، قابلیت های مختلف ، پارادوکس ، عدم قطعیت و محدودیت های دلیل ، مسائل فیزیکی و ریاضی علمی و یا با داشتن کمی یا هیچ چیز در مشترک. من پیشنهاد می کنم که آنها تا حد زیادی مشکلات فلسفی استاندارد (به عنوان مثال ، بازی های زبان) که عمدتا توسط ویتگنشتاین بیش از 80 سال پیش حل و فصل شد. -/- "آنچه (...) ما وسوسه می گویند" در چنین موردی است ، البته ، نه فلسفه ، اما آن مواد خام است. بنابراین ، برای مثال ، چه ریاضیدان تمایل به در مورد عینیت و واقعیت حقایق ریاضی می گویند ، فلسفه ریاضیات نیست ، اما چیزی برای درمان فلسفی است. ویتگنشتاین PI ۲۳۴ -/- "فلاسفه به طور مداوم به روش علم قبل از چشم خود را ببینید و irresistibly وسوسه به درخواست و پاسخ به سوالات در علم راه می کند. این گرایش ، منبع واقعی متافیزیک است و فیلسوف را به تاریکی کامل هدایت می کند.» ویتگنشتاین -/- من ارائه خلاصه ای از برخی از یافته های عمده ای از دو نفر از برجسته ترین دانش آموزان از رفتار دوران مدرن ، لودویگ ویتگنشتاین و جان سرل ، در ساختار منطقی از قصدمندی (ذهن ، زبان ، رفتار) ، با توجه به عنوان نقطه شروع من کشف بنیادی ویتگنشتاین-که همه مشکلات فلسفی آن یکسان هستند-ابهامات در مورد چگونگی استفاده از زبان در یک چارچوب خاص ، و به همین ترتیب تمام راه حل ها یکسان هستند-به دنبال چگونه زبان را می توان در زمینه مورد استفاده قرار گیرد به طوری که حقیقت آن شرایط (شرایط رضایت یا COS) روشن است. مشکل اساسی این است که می توان هر چیزی می گویند، اما یکی نمی تواند به معنای (دولت از COS برای) هر گفته های خودسرانه و معنی تنها در یک زمینه بسیار خاص ممکن است. -/- من برخی از نوشته های چند تن از مفسران عمده در این مسائل از نظر Wittgensteinian در چارچوب دیدگاه مدرن از دو سیستم اندیشه (به عنوان "فکر سریع ، تفکر آهسته ') ، استفاده از جدول جدید قصدمندی سیستم های جدید دوگانه نامگذاری. من نشان می دهم که این یک اکتشافی قدرتمند برای توصیف ماهیت واقعی این مسائل علمی ، فیزیکی یا ریاضی است که واقعا بهترین هستند به عنوان مشکلات فلسفی استاندارد چگونه زبان مورد استفاده قرار گیرد (بازی های زبان در ویتگنشتاین اصطلاحات). -/- این مشاجره من است که جدول از معنایی (عقلانیت ، ذهن ، فکر ، زبان ، شخصیت و غیره) که ویژگی های برجسته در اینجا توصیف بیشتر یا کمتر با دقت ، و یا حداقل به عنوان یک اکتشافی برای ، چگونه ما فکر می کنیم و رفتار ، و پس از آن را شامل نمی صرفا فلسفه و روانشناسی ، اما هر چیز دیگری (تاریخ ، ادبیات ، ریاضیات ، سیاست و غیره). توجه داشته باشید به خصوص که قصدمندی و عقلانیت به عنوان من (همراه با سرل ، ویتگنشتاین و دیگران) آن را مشاهده کنید ، شامل هر دو آگاهانه سیستم زبانی ، 2 و ناخودآگاه خودکار سیستم پیش زبانی 1 اقدامات یا رفلکس. (shrink)
To eliminate incompleteness, undecidability and inconsistency from formal systems we only need to convert the formal proofs to theorem consequences of symbolic logic to conform to the sound deductive inference model. -/- Within the sound deductive inference model there is a (connected sequence of valid deductions from true premises to a true conclusion) thus unlike the formal proofs of symbolic logic provability cannot diverge from truth.
The title of the present book suggests that scientific results obtained in mathematics and quantum physics can be in some way related to the question of the existence of God. This seems possible to us, because it is our conviction that reality in all its dimensions is intelligible. The really impressive progress in science and technology demonstrates that we can trust our intellect, and that nature is not offering us a collection of meaningless absurdities. We first of all intend to (...) show with results taken from mathematics and quantum physics: Mathematical Undecidability: man will never have a universal method to solve any mathematical problem. In arithmetic there always will be unsolved, solvable problems. Quantum Nonlocality: certain phenomena in nature seem to imply the existence of correlations based on faster-than-light influences. These influences, however, are not accessible to manipulation by man for use in, for example, faster than light communication. In the various contributions pieces of a puzzle are offered, which suggest that there exists more than the world of phenomena around us. The results discussed point to intelligent and unobservable causes governing the world. One is led to perceive the shade of a reality which many people would call God. (shrink)
Spinoza distinguishes between causation that is external, as in A causing B where A is external to B, and causation that is internal, where C causes itself (causa sui), without any involvement of anything external to C. External causation is easy to understand, but self causation is not. This note explores an approach to self-causation based upon Gödelian undecidability and draws upon ideas from an earlier study of Gödel’s proof and the quantum measurement problem (Zwick, 1978).
In ‘Godel’s Way’ three eminent scientists discuss issues such as undecidability, incompleteness, randomness, computability and paraconsistency. I approach these issues from the Wittgensteinian viewpoint that there are two basic issues which have completely different solutions. There are the scientific or empirical issues, which are facts about the world that need to be investigated observationally and philosophical issues as to how language can be used intelligibly (which include certain questions in mathematics and logic), which need to be decided by looking (...) at how we actually use words in particular contexts. When we get clear about which language game we are playing, these topics are seen to be ordinary scientific and mathematical questions like any others. Wittgenstein’s insights have seldom been equaled and never surpassed and are as pertinent today as they were 80 years ago when he dictated the Blue and Brown Books. In spite of its failings—really a series of notes rather than a finished book—this is a unique source of the work of these three famous scholars who have been working at the bleeding edges of physics, math and philosophy for over half a century. Da Costa and Doria are cited by Wolpert (see below or my articles on Wolpert and my review of Yanofsky’s ‘The Outer Limits of Reason’) since they wrote on universal computation, and among his many accomplishments, Da Costa is a pioneer in paraconsistency. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019), The Logical Structure of Human Behavior (2019), and Suicidal Utopian Delusions in the 21st Century 4th ed (2019) . (shrink)
In this paper, we investigate the expressiveness of the variety of propositional interval neighborhood logics , we establish their decidability on linearly ordered domains and some important subclasses, and we prove the undecidability of a number of extensions of PNL with additional modalities over interval relations. All together, we show that PNL form a quite expressive and nearly maximal decidable fragment of Halpern–Shoham’s interval logic HS.
In ‘Godel’s Way’ three eminent scientists discuss issues such as undecidability, incompleteness, randomness, computability and paraconsistency. I approach these issues from the Wittgensteinian viewpoint that there are two basic issues which have completely different solutions. There are the scientific or empirical issues, which are facts about the world that need to be investigated observationally and philosophical issues as to how language can be used intelligibly (which include certain questions in mathematics and logic), which need to be decided by looking (...) at how we actually use words in particular contexts. When we get clear about which language game we are playing, these topics are seen to be ordinary scientific and mathematical questions like any others. Wittgenstein’s insights have seldom been equaled and never surpassed and are as pertinent today as they were 80 years ago when he dictated the Blue and Brown Books. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019), The Logical Structure of Human Behavior (2019), and Suicidal Utopian Delusions in the 21st Century 4th ed (2019). (shrink)
The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (i.e. uncorrelated measurement (...) settings, as in 't Hooft's cellular automaton interpretation of quantum mechanics). The main point is that Bell and others did not exploit the full empirical content of quantum mechanics, which consists of long series of outcomes of repeated measurements (idealized as infinite binary sequences): their arguments only used the long-run relative frequencies derived from such series, and hence merely asked hidden variable theories to reproduce single-case Born probabilities defined by certain entangled bipartite states. If we idealize binary outcome strings of a fair quantum coin flip as infinite sequences, quantum mechanics predicts that these typically (i.e. almost surely) have a property called 1-randomness in logic, which is much stronger than uncomputability. This is the key to my claim, which is admittedly based on a stronger (yet compelling) notion of determinism than what is common in the literature on hidden variable theories. (shrink)
The halting theorem counter-examples present infinitely nested simulation (non-halting) behavior to every simulating halt decider. The pathological self-reference of the conventional halting problem proof counter-examples is overcome. The halt status of these examples is correctly determined. A simulating halt decider remains in pure simulation mode until after it determines that its input will never reach its final state. This eliminates the conventional feedback loop where the behavior of the halt decider effects the behavior of its input.
The Sleeping Beauty problem remains controversial with disagreement between so-called Halfers and Thirders, although the Thirders appear to be leading these days. I analyze three popular arguments for the Thirder position, including the long-run frequency argument, Egla’s ‘symmetry’ argument, and new-information arguments, and find problems with each. The long-run frequency argument is almost unequivocally thought to strongly support Thirders, but in formalizing the argument for an arbitrary number of repetitions, I show that the expected proportion of Heads-Awakenings for a single-trial (...) experiment is unambiguously 1/2. My criticisms of Elga’s symmetry argument and the new-information arguments point to subtle misalignments between the narrative/causal description of thought-experiments and the mathematical probability expressions and theory we use to describe these narratives. I end with distinguishing two varieties of possibility—a dynamic forward type and static historical type—that help clarify the Sleeping Beauty problem, nullify the main criticism against Lewis’s Halfer argument, and have applicability to probability theory in general. (shrink)
Karen Barad’s Meeting the Universe Halfway relies on mutually incompatible grounding gestures, one of which describes the relationality of an always already material-discursive reality, while the other seeks to ground this relation one-sidedly in matter. These two materialisms derive from the gesture she borrows from the New Materialist (and other related) fields, which posits her work as an advance over the history of “representationalism” and “social constructivism.” In turn, this one-sided materialism produces a skewed reading of the quantum mechanical phenomena (...) with which she engages. Her attempt to create an ontological (not epistemological) interpretation of quantum mechanics proves deconstructible. Instead, a science of undecidability or science of quant à helps us to understand debates among scientists and philosophers over the completeness or incompleteness of quantum mechanics and its epistemological or ontological status – by demonstrating that these questions will necessarily remain unresolved. (shrink)
By making a slight refinement to the halt status criterion measure that remains consistent with the original a halt decider may be defined that correctly determines the halt status of the conventional halting problem proof counter-examples. This refinement overcomes the pathological self-reference issue that previously prevented halting decidability.
This is an explanation of a key new insight into the halting problem provided in the language of software engineering. Technical computer science terms are explained using software engineering terms. -/- To fully understand this paper a software engineer must be an expert in the C programming language, the x86 programming language, exactly how C translates into x86 and what an x86 process emulator is. No knowledge of the halting problem is required.
The halting theorem counter-examples present infinitely nested simulation (non-halting) behavior to every simulating halt decider. Whenever the pure simulation of the input to simulating halt decider H(x,y) never stops running unless H aborts its simulation H correctly aborts this simulation and returns 0 for not halting.
A Simulating Halt Decider (SHD) computes the mapping from its input to its own accept or reject state based on whether or not the input simulated by a UTM would reach its final state in a finite number of simulated steps. -/- A halt decider (because it is a decider) must report on the behavior specified by its finite string input. This is its actual behavior when it is simulated by the UTM contained within its simulating halt decider while this (...) SHD remains in UTM mode. (shrink)
Dalam ' Godel ' s Way ' tiga ilmuwan terkemuka membahas isu seperti undecidability, ketidaklengkapan, kekasaran, komputasi dan paraconsistency. Saya mendekati masalah ini dari sudut pandang Wittgensteinian bahwa ada dua masalah dasar yang memiliki solusi yang sama sekali berbeda. Ada masalah ilmiah atau empiris, yang merupakan fakta tentang dunia yang perlu diselidiki masalah observationally dan filosofis mengenai bagaimana bahasa dapat digunakan secara jelas (yang mencakup pertanyaan tertentu dalam matematika dan logika), yang perlu diputuskan dengan mencarit bagaimana kita benar-benar menggunakan (...) kata dalam konteks tertentu. Ketika kita mendapatkan jelas tentang mana permainan bahasa yang kita bermain, topik ini dipandang sebagai pertanyaan ilmiah dan matematika biasa seperti orang lain. Wawasan Wittgenstein jarang sama dan tidak pernah melampaui dan seperti yang berkaitan dengan hari ini karena mereka 80 tahun yang lalu ketika dia mendikte buku Blue and Brown. Terlepas dari kegagalan-benar serangkaian catatan daripada buku selesai-ini adalah sumber yang unik dari pekerjaan tiga sarjana terkenal yang telah bekerja di tepi berdarah fisika, matematika dan filsafat selama lebih dari setengah abad. Da Costa dan Doria dikutip oleh Wolpert (Lihat di bawah atau artikel saya di Wolpert dan saya review yanofsky's ' The Outer batas dari alasan ') karena mereka menulis di Universal komputasi, dan di antara banyak prestasi, da Costa adalah pelopor dalam paraconsistency. -/- Mereka yang ingin komprehensif up to date kerangka perilaku manusia dari dua systEMS tampilan modern dapat berkonsultasi buku saya 'struktur Logis filsafat, psikologi, mind dan bahasa dalam Ludwig wittgenstein dan John Searle ' 2nd Ed (2019). Mereka yang tertarik pada tulisan saya lebih mungkin melihat 'berbicara monyet--filsafat, psikologi, ilmu, agama dan politik di planet yang ditakdirkan--artikel dan review 2006-2019 3rd ed (2019) dan bunuh diri utopian delusi di 21st Century 4th Ed (2019) . (shrink)
Em "Godel's Way", três cientistas eminentes discutem questões como a undecidability, incompletude, aleatoriedade, computabilidade e paraconsistência. Eu abordar estas questões do ponto de vista Wittgensteinian que existem duas questões básicas que têm soluções completamente diferentes. Há as questões científicas ou empíricas, que são fatos sobre o mundo que precisam ser investigados observacionalmente e questões filosóficas sobre como a linguagem pode ser usada inteligìvelmente (que incluem certas questões em matemática e lógica), que precisam ser decidido por olhar uma como nós (...) realmente usar palavras em contextos específicos. Quando nós começ claros sobre que jogo da língua nós estamos jogando, estes tópicos são vistos para ser perguntas científicas e matemáticas ordinárias como qualquer outro. As idéias de Wittgenstein raramente foram igualadas e nunca ultrapassaram e são tão pertinentes hoje como eram 80 anos atrás, quando ele ditou os livros azul e marrom. Apesar de suas falhas-realmente uma série de notas em vez de um livro acabado-esta é uma fonte única do trabalho destes três estudiosos famosos que têm trabalhado nas bordas sangrantes da física, matemática e filosofia por mais de meio século. Da costa e Doria são citados por Wolpert (veja abaixo ou meus artigos sobre Wolpert e minha revisão de Yanofsky ' s "os limites exteriores da razão") desde que escreveu sobre a computação universal, e entre suas muitas realizações, da costa é um pioneiro em a paraconsistência. Aqueles que desejam um quadro até à data detalhado para o comportamento humano da opinião moderna dos dois sistemas consultar meu livros Falando Macacos 3ª Ed (2019), A Estrutura Lógica da Filosofia, Psicologia, Mente e Linguagem em Ludwig Wittgenstein e John Searle 2a Ed (2019), Suicídio Pela Democracia,4aEd(2019), Entendendo as Conexões entre Ciência, Filosofia, Psicologia, Religião, Política e Economia Artigos e Análises 2006-2019 (2019), Ilusões Utópicas Suicidas no 21St século 5a Ed (2019), A Estrutura Lógica do Comportamento Humano (2019), e A Estrutura Lógica da Consciência (2019) y outras. (shrink)
'Godel's Way'에서 세 명의 저명한 과학자들은 부정성, 불완전성, 임의성, 계산성 및 파라불일치와 같은 문제에 대해 논의합니다. 나는 완전히 다른 해결책을 가지고 두 가지 기본 문제가 있다는 비트 겐슈타인의 관점에서 이러한 문제에 접근. 과학적 또는 경험적 문제가 있다, 관찰 하 고 철학적 문제 언어를 어떻게 이해할 수 있는 (수학 및 논리에 특정 질문을 포함) 에 대 한 조사 해야 하는 세계에 대 한 사실,우리가 실제로 특정 컨텍스트에서 단어를 사용 하는 방법을 보고 하 여 결정 될 필요가. 우리가 어떤 언어 게임을 하고 (...) 있는지 명확히 알 면, 이 주제는 다른 언어와 마찬가지로 평범한 과학적이고 수학적 질문으로 보입니다. 비트겐슈타인의 통찰력은 거의 동등하지 않았고 결코 능가하지 않았으며, 그가 블루와 브라운 북을 지시했을 때 80 년 전과 마찬가지로 오늘날과 관련이 있습니다. 완성된 책이 아닌 일련의 노트가 실패했음에도 불구하고, 이것은 반세기 이상 물리학, 수학, 철학의 출혈 가장자리에서 일해온 이 세 명의 유명한 학자들의 작품의 독특한 원천입니다. 다 코스타와 도리아는 울퍼트에 의해 인용된다 (그들은 보편적 인 계산에 쓴 이후 울퍼트와 야노프스키의 '이성의 외부 한계'에 대한 내 리뷰에, 대한 내 리뷰) 그리고 그의 많은 업적 중, 다 코스타는 파라 불일치의 선구자입니다. 현대 의 두 systems보기에서인간의 행동에 대한 포괄적 인 최신 프레임 워크를 원하는 사람들은 내 책을 참조 할 수 있습니다'철학의 논리적 구조, 심리학, 민d와 루드비히 비트겐슈타인과 존 Searle의언어' 2nd ed (2019). 내 글의 더 많은 관심있는 사람들은 '이야기 원숭이를 볼 수 있습니다-철학, 심리학, 과학, 종교와 운명 행성에 정치 - 기사 및 리뷰 2006-2019 3 rd 에드 (2019) 및 21st 세기 4번째 에드 (2019) 및 기타에서 자살 유토피아 망상. (shrink)
Hal ini sering berpikir bahwa kemustahilan, ketidaklengkapan, Paraconsistency, Undecidability, Randomness, komputasi, Paradox, ketidakpastian dan batas alasan yang berbeda ilmiah fisik atau matematika masalah memiliki sedikit atau tidak ada dalam Umum. Saya menyarankan bahwa mereka sebagian besar masalah filosofis standar (yaitu, Permainan bahasa) yang sebagian besar diselesaikan oleh Wittgenstein lebih dari 80years yang lalu. -/- "Apa yang kita ' tergoda untuk mengatakan ' dalam kasus seperti ini, tentu saja, bukan filsafat, tetapi bahan baku. Jadi, misalnya, apa yang seorang matematikawan cenderung (...) mengatakan tentang objektivitas dan realitas fakta matematika, bukan filsafat matematika, tetapi sesuatu untuk pengobatan filosofis. " Wittgenstein PI 234 -/- "Filsuf terus melihat metode ilmu di depan mata mereka dan tak tertahankan tergoda untuk bertanya dan menjawab pertanyaan dalam cara ilmu tidak. Kecenderungan ini adalah sumber nyata metafisika dan memimpin filsuf menjadi gelap gulita. " Wittgenstein -/- Aku memberikan ringkasan singkat dari beberapa temuan utama dari dua siswa yang paling terkemuka perilaku zaman modern, Ludwig Wittgenstein dan John Searle, pada struktur Logis intensionality (pikiran, bahasa, perilaku), mengambil sebagai titik awal Penemuan fundamental Wittgenstein – bahwa semua masalah ' filosofis ' adalah sama — kebingungan tentang bagaimana menggunakan bahasa dalam konteks tertentu, sehingga semua solusi sama — melihat bagaimana bahasa dapat digunakan dalam konteks yang menjadi masalah sehingga kebenaranNya kondisi (kondisi kepuasan atau COS) jelas. Masalah dasar adalah bahwa seseorang dapat mengatakan apa-apa, tetapi orang tidak dapat berarti (negara yang jelas cos untuk) sembarang ucapan dan makna hanya mungkin dalam konteks yang sangat spesifik. -/- Saya membedah beberapa tulisan dari beberapa komentator utama pada isu ini dari sudut pandang Wittgensteinian dalam kerangka perspektif modern dari dua sistem pemikiran (Dipopulerkan sebagai ' berpikir cepat, berpikir lambat '), mempekerjakan meja baru intensionality dan baru sistem ganda nomenklatur. Saya menunjukkan bahwa ini adalah heuristik yang kuat untuk menggambarkan sifat sebenarnya dari hal ini ilmiah, fisik atau matematika masalah yang benar-benar terbaik didekati sebagai masalah filosofis standar bagaimana bahasa yang akan digunakan (permainan bahasa di Wittgenstein's terminologi). -/- Ini adalah pendapat saya bahwa tabel intensionality (rasionalitas, pikiran, pikiran, bahasa, kepribadian dll) yang fitur mencolok di sini menggambarkan lebih atau kurang akurat, atau setidaknya berfungsi sebagai heuristic untuk, bagaimana kita berpikir dan berperilaku, dan sehingga mencakup tidak hanya filsafat dan psikologi, tetapi segala sesuatu yang lain (sejarah, sastra, matematika, politik dll). Perhatikan terutama bahwa intensionalitas dan rasionalitas sebagai I (bersama dengan Searle, Wittgenstein dan lain-lain) melihatnya, mencakup baik sistem linguistik pertimbangan sadar 2 dan tidak disadari otomatis sistem prelinguistik 1 tindakan atau refleks. (shrink)
В «Godel's Way» три видных ученых обсуждают такие вопросы, как неплатежеспособность, неполнота, случайность, вычислительность и последовательность. Я подхожу к этим вопросам с точки зрения Витгенштейна, что есть две основные проблемы, которые имеют совершенно разные решения. Есть научные или эмпирические вопросы, которые являются факты о мире, которые должны быть исследованы наблюдений и философские вопросы о том, как язык может быть использован внятно (которые включают в себя определенные вопросы в математике и логике), которые должны быть решены, глядят, как мы на самом деле (...) использовать слова в конкретных контекстах. Когда мы получаем ясно о том, какой языковой игре мы играем, эти темы рассматриваются как обычные научные и математические вопросы, как и любые другие. Идеи Витгенштейна редко были равны и никогда не превосходили и столь же уместно сегодня, как они были 80 лет назад, когда он диктовал Blue и Браун Книги. Несмотря на свои недостатки, на самом деле серия заметок, а не готовой книги, это уникальный источник работы этих трех известных ученых, которые работают на кровотечения края физики, математики и философии на протяжении более полувека. Da Costa и Doria процитированы Wolpert (см. ниже или мои статьи на Wolpert и моем просмотрении Yanofsky 'Внешние пределы разума') в виду того что они написали на всеобщихвычислениях,, и среди его много выполнений, Da Costa пионер в paraconsistency. Те, кто желает всеобъемлющего до современных рамок для человеческого поведения из современных двух systEms зрения могут проконсультироваться с моей книгой"Логическая структура философии, психологии, Минd иязык в Людвиг Витгенштейн и Джон Сирл" второй ред (2019). Те, кто заинтересован в более моих сочинений могут увидеть "Говоря обезьян - Философия, психология, наука, религия и политика на обреченной планете - Статьи и обзоры 2006-2019 3-й ed (2019) и suicidal утопических заблуждений в 21-мst веке 4-й ed (2019) th и другие. (shrink)
Nel 'Godel's Way' tre eminenti scienziati discutono questioni come l'indecidibilità, l'incompletezza, la casualità, la computabilità e la paracoerenza. Affronto questi problemi dal punto di vista di Wittgensteinian che ci sono due questioni fondamentali che hanno soluzioni completamente diverse. Ci sono le questioni scientifiche o empiriche, che sono fatti sul mondo che devono essere studiati in modo osservante e filosofico su come il linguaggio può essere usato in modo intelligibilmente (che include alcune domande in matematica e logica), che devono essere decise (...) cercando un modo in cui usiamoeffettivamente le parole in particolari contesti. Quando arriviamo a sapere su quale gioco di lingua stiamo giocando, questi argomenti sono visti come domande scientifiche e matematiche ordinarie come tutti gli altri. Le intuizioni di Wittgenstein sono state raramente eguagliate e mai superate e sono pertinenti oggi come lo erano 80 anni fa, quando ha dettato i Libri Blu e Marrone. Nonostante le sue mancanze - in realtà una serie di note piuttosto che un libro finito - questa è una fonte unica del lavoro di questi tre famosi studiosi che hanno lavorato ai bordi sanguinanti della fisica, della matematica e della filosofia per oltre mezzo secolo. Da Costa e Doria sono citati da Wolpert (vedi sotto o i miei articoli su Wolpert e la mia recensione di 'I limiti esterni della ragione' di Yanofsky) dal momento che hanno scritto sul calcolo universale, e tra i suoi numerosi successi, Da Costa è un pioniere della paracoerenza. Coloro che desiderano un quadro aggiornato completo per il comportamento umano dalla moderna vista a due systems possono consultare il mio libro 'La struttura logica dellafilosofia, psicologia, Mind e il linguaggio in Ludwig Wittgenstein e John Searle' 2nd ed (2019). Coloro che sono interessati a più dei miei scritti possono vedere 'TalkingMonkeys--Filosofia, Psicologia, Scienza, Religione e Politica su un Pianeta Condannato--Articoli e Recensioni 2006-2019 3rd ed (2019) e Suicidal Utopian Delusions nel 21st Century 4th ed (2019) . (shrink)
'गोडेल के रास्ते' में तीन प्रख्यात वैज्ञानिकों ने अनिर्णय, अपूर्णता, यादृच्छिकता, गणनाऔरता और परासंगति जैसे मुद्दों पर चर्चा की। मैं Wittgensteinian दृष्टिकोण से इन मुद्दों दृष्टिकोण है कि वहाँ दो बुनियादी मुद्दों जो पूरी तरह से अलग समाधान है. वहाँ वैज्ञानिक या अनुभवजन्य मुद्दों, जो दुनिया के बारे में तथ्य है कि अवलोकन और दार्शनिक मुद्दों की जांच की जरूरत है के रूप में कैसे भाषा intelligibly इस्तेमाल किया जा सकता है (जो गणित और तर्क में कुछ सवाल शामिल हैं), (...) जो की जरूरत है एकटी कैसे हम वास्तव में विशेष संदर्भों में शब्दों का उपयोग देख कर फैसला किया. जब हम जो भाषा खेल हम खेल रहे हैं के बारे में स्पष्ट हो, इन विषयों को किसी भी अन्य की तरह साधारण वैज्ञानिक और गणितीय सवाल देखा जाता है. है Wittgenstein अंतर्दृष्टि शायद ही कभी बराबर किया गया है और कभी नहीं पार कर रहे हैं और के रूप में आज के रूप में प्रासंगिक हैं के रूप में वे 80 साल पहले थे जब वह ब्लू और ब्राउन पुस्तकें हुक्म दिया. अपनी असफलताओं के बावजूद-वास्तव में एक समाप्त पुस्तक के बजाय नोटों की एक श्रृंखला-यह इन तीन प्रसिद्ध विद्वानों के काम का एक अनूठा स्रोत है जो आधे से अधिक सदी से भौतिकी, गणित और दर्शन के खून बह रहा किनारों पर काम कर रहे हैं। दा कोस्टा और डोरिया Wolpert द्वारा उद्धृत कर रहे हैं (नीचे देखें या Wolpert पर मेरे लेख और Yanofsky 'कारण की बाहरी सीमा' की मेरी समीक्षा) के बाद से वे सार्वभौमिक गणना पर लिखा था, और उनके कई उपलब्धियों के बीच, दा कोस्टा में अग्रणी है paraconsistency. आधुनिक दो systems दृश्यसे मानव व्यवहार के लिए एक व्यापक अप करने के लिए तारीख रूपरेखा इच्छुक लोगों को मेरी पुस्तक 'दर्शन, मनोविज्ञान, मिनडी और लुडविगमें भाषा की तार्किक संरचना से परामर्श कर सकते हैं Wittgenstein और जॉन Searle '2 एड (2019). मेरे लेखन के अधिक में रुचि रखने वालों को देख सकते हैं 'बात कर रहेबंदर- दर्शन, मनोविज्ञान, विज्ञान, धर्म और राजनीति पर एक बर्बाद ग्रह --लेख और समीक्षा 2006-2019 3 एड (2019) और आत्मघाती यूटोपियान भ्रम 21st मेंसदी 4वें एड (2019) . (shrink)
En ' Godel’s Way ', tres eminentes científicos discuten temas como la indecisión, la incompleta, la aleatoriedad, la computabilidad y la paraconsistencia. Me acerco a estas cuestiones desde el punto de vista de Wittgensteinian de que hay dos cuestiones básicas que tienen soluciones completamente diferentes. Existen las cuestiones científicas o empíricas, que son hechos sobre el mundo que necesitan ser investigados observacionalmente y cuestiones filosóficas en cuanto a cómo el lenguaje se puede utilizar inteligiblemente (que incluyen ciertas preguntas en matemáticas (...) y lógica), que necesitan decidirse por unt cómo realmente usar palabras en contextos concretos. Cuando tenemos claro sobre qué juego de idiomas estamos jugando, estos temas son vistos como preguntas científicas y matemáticas ordinarias como cualquier otra. Las percepciones de Wittgenstein rara vez se han igualado y nunca superado y son tan pertinentes hoy como lo fueron hace 80 años cuando dictó los libros azul y marrón. A pesar de sus fallas — realmente una serie de notas en lugar de un libro terminado —, esta es una fuente única de la obra de estos tres eruditos famosos que han estado trabajando en los bordes sangrantes de la física, las matemáticas y la filosofía durante más de medio siglo. Da Costa y Doria son citados por Wolpert (ver abajo o mis artículos sobre Wolpert y mi reseña de ' los límites de la razón ' de Yanofsky) desde que escribieron en el cómputo universal, y entre sus muchos logros, da Costa es pionera en paraconsistencia. Aquellos que deseen un marco completo hasta la fecha para el comportamiento humano de la moderna dos sistemas punto de vista puede consultar mi libros Talking Monkeys 3ª ed (2019), Estructura Logica de Filosofia, Psicología, Mente y Lenguaje en Ludwig Wittgenstein y John Searle 2a ed (2019), Suicidio pela Democracia 4ª ed (2019), La Estructura Logica del Comportamiento Humano (2019), The Logical Structure de la Conciencia (2019, Entender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política y Economía y Delirios Utópicos Suicidas en el siglo 21 5ª ed (2019), Observaciones sobre Imposibilidad, Incompletitud, Paraconsistencia, Indecidibilidad, Aleatoriedad, Computabilidad, Paradoja e Incertidumbre en Chaitin, Wittgenstein,. (shrink)
En ' Godel’s Way ', tres eminentes científicos discuten temas como la indecisión, la incompleta, la aleatoriedad, la computabilidad y la paracoherencia. Me acerco a estas cuestiones desde el punto de vista de Wittgensteinian de que hay dos cuestiones básicas que tienen soluciones completamente diferentes. Existen las cuestiones científicas o empíricas, que son hechos sobre el mundo que necesitan ser investigados Observacionalmente y cuestiones filosóficas en cuanto a cómo el lenguaje se puede utilizar inteligiblemente (que incluyen ciertas preguntas en matemáticas (...) y lógica), que necesitan decidirse por unt cómo realmente usar palabras en contextos concretos. Cuando tenemos claro sobre qué juego de idiomas estamos jugando, estos temas son vistos como preguntas científicas y matemáticas ordinarias como cualquier otra. Las percepciones de Wittgenstein rara vez se han igualado y nunca superado y son tan pertinentes hoy como lo fueron hace 80 años cuando dictó los libros azul y marrón. A pesar de sus fallas — realmente una serie de notas en lugar de un libro terminado —, esta es una fuente única de la obra de estos tres eruditos famosos que han estado trabajando en los bordes sangrantes de la física, las matemáticas y la filosofía durante más de medio siglo. Da Costa y Doria son citados por Wolpert (ver abajo o mis artículos sobre Wolpert y mi reseña de ' los límites de la razón ' de Yanofsky) desde que escribieron en el cómputo universal, y entre sus muchos logros, da Costa es pionera en paraconsistencia. -/- Aquellos que deseen un marco completo hasta la fecha para el comportamiento humano de la moderna dos sistemas punta da vista puede consultar mi libro 'La estructura lógica de la filosofía, la psicología, la mente y lenguaje en Ludwig Wittgenstein y John Searle ' 2a ED (2019). Los interesados en más de mis escritos pueden ver 'Monos parlantes--filosofía, psicología, ciencia, religión y política en un planeta condenado--artículos y reseñas 2006-2019 3rd ED (2019) y Delirios utópicos suicidas en el siglo 21 4a Ed (2019) y otras. (shrink)
Dans 'Godel’s Way', trois éminents scientifiques discutent de questions telles que l’indécidabilité, l’incomplétude, le hasard, la calculabilité et la paraconsistence. J’aborde ces questions du point de vue de Wittgensteinian selon lesquelles il y a deux questions fondamentales qui ont des solutions complètement différentes. Il y a les questions scientifiques ou empiriques, qui sont des faits sur le monde qui doivent être étudiés de manière observationnelle et philosophique quant à la façon dont le langage peut être utilisé intelligiblement (qui incluent certaines (...) questions en mathématiques et en logique), qui doivent être décidés en regardant un comment nous utilisons réellement des mots dans des contextes particuliers. Lorsque nous obtenons clair sur le jeu de langue que nous jouons, ces sujets sont considérés comme des questions scientifiques et mathématiques ordinaires comme les autres. Les idées de Wittgenstein ont rarement été égalées et jamais dépassées et sont aussi pertinentes aujourd’hui qu’elles l’étaient il y a 80 ans lorsqu’il a dicté les Livres Bleus et Brown. Malgré ses défauts, vraiment une série de notes plutôt qu’un livre fini, c’est une source unique du travail de ces trois savants célèbres qui travaillent aux confins de la physique, des mathématiques et de la philosophie depuis plus d’un demi-siècle. Da Costa et Doria sont cités par Wolpert (voir ci-dessous ou mes articles sur Wolpert et mon examen de Yanofsky 'The Outer Limits of Reason') depuis qu’ils ont écrit sur le calcul universel, et parmi ses nombreuses réalisations, Da Costa est un pionnier dans la paraconsistence. -/- Ceux qui souhaitent un cadre complet à jour pour le comportement humain de la vue moderne de deux système peuvent consulter mon livre 'The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle' 2nd ed (2019). Ceux qui s’intéressent à plus de mes écrits peuvent voir «Talking Monkeys --Philosophie, Psychologie, Science, Religion et Politique sur une planète condamnée --Articles et revues 2006-2019 » 3e ed (2019) et Suicidal Utopian Delusions in the 21st Century 4th ed (2019) et autres. (shrink)
There is no uniquely standard concept of an effectively decidable set of real numbers or real n-tuples. Here we consider three notions: decidability up to measure zero [M.W. Parker, Undecidability in Rn: Riddled basins, the KAM tori, and the stability of the solar system, Phil. Sci. 70(2) (2003) 359–382], which we abbreviate d.m.z.; recursive approximability [or r.a.; K.-I. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991]; and decidability ignoring boundaries [d.i.b.; W.C. Myrvold, The decision problem for entanglement, in: (...) R.S. Cohen et al. (Eds.), Potentiality, Entanglement, and Passion-at-a-Distance: Quantum Mechanical Studies fo Abner Shimony, Vol. 2, Kluwer Academic Publishers, Great Britain, 1997, pp. 177–190]. Unlike some others in the literature, these notions apply not only to certain nice sets, but to general sets in Rn and other appropriate spaces. We consider some motivations for these concepts and the logical relations between them. It has been argued that d.m.z. is especially appropriate for physical applications, and on Rn with the standard measure, it is strictly stronger than r.a. [M.W. Parker, Undecidability in Rn: Riddled basins, the KAM tori, and the stability of the solar system, Phil. Sci. 70(2) (2003) 359–382]. Here we show that this is the only implication that holds among our three decidabilities in that setting. Under arbitrary measures, even this implication fails. Yet for intervals of non-zero length, and more generally, convex sets of non-zero measure, the three concepts are equivalent. (shrink)
Pluralists maintain that there is more than one truth property in virtue of which bearers are true. Unfortunately, it is not yet clear how they diagnose the liar paradox or what resources they have available to treat it. This chapter considers one recent attempt by Cotnoir (2013b) to treat the Liar. It argues that pluralists should reject the version of pluralism that Cotnoir assumes, discourse pluralism, in favor of a more naturalized approach to truth predication in real languages, which should (...) be a desideratum on any successful pluralist conception. Appealing to determination pluralism instead, which focuses on truth properties, it then proposes an alternative treatment to the Liar that shows liar sentences to be undecidable. (shrink)
I give a detailed review of 'The Outer Limits of Reason' by Noson Yanofsky 403(2013) from a unified perspective of Wittgenstein and evolutionary psychology. I indicate that the difficulty with such issues as paradox in language and math, incompleteness, undecidability, computability, the brain and the universe as computers etc., all arise from the failure to look carefully at our use of language in the appropriate context and hence the failure to separate issues of scientific fact from issues of how (...) language works. I discuss Wittgenstein's views on incompleteness, paraconsistency and undecidability and the work of Wolpert on the limits to computation. -/- Those wishing a comprehensive up to date account of Wittgenstein, Searle and their analysis of behavior from the modern two systems view may consult my article The Logical Structure of Philosophy, Psychology, Mind and Language as Revealed in Wittgenstein and Searle (2016). Those interested in all my writings in their most recent versions may download from this site my e-book ‘Philosophy, Human Nature and the Collapse of Civilization Michael Starks (2016)- Articles and Reviews 2006-2016’ by Michael Starks First Ed. 662p (2016). -/- All of my papers and books have now been published in revised versions both in ebooks and in printed books. -/- Talking Monkeys: Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B071HVC7YP. -/- The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle--Articles and Reviews 2006-2016 (2017) https://www.amazon.com/dp/B071P1RP1B. -/- Suicidal Utopian Delusions in the 21st century: Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B0711R5LGX . (shrink)
On page 14 of "Reconceptions in Philosophy and Other Arts and Sciences" (section 4 of chapter 1) by Nelson Goodman and Catherine Z. Elgin is written: “Since ‘blue’ and ‘green’ are interdefinable with ‘grue’ and ‘bleen’, the question of which pair is basic and which pair derived is entirely a question of which pair we start with”. This paper points out that an example of interdefinability is also that one about the predicate “grueb”, which is a predicate that applies to (...) an object if the object either is green and examined before time b, or is non-green and not examined before time b. The three predicates “green”, “grueb”, “examined before time b” are interdefinable. According to Goodman, since the predicates “blue” and “green” are interdefinable with the predicates “grue” and “bleen”, “if we can tell which objects are blue and which objects are green, we can tell which ones are grue and which ones are bleen” [pages 12-13 of “Reconceptions in Philosophy and Other Arts and Sciences”]. But , even though the predicates “green” and “examined before time b” are interdefinable, being able to tell if an object is green does not imply being able to tell if an object is examined before time b. The interdefinability among three elements is a type of interdefinability present, for example, also among the logical connectives. Another example of interdefinability is that one about a decidable predicate PD, which is interdefinable with an undecidable predicate PU: therefore even though we can tell whether an object is PD and whether an object is non-PD, we cannot tell whether an object is PU (since PU is an undecidable predicate) and whether an object is non-PU. Although the predicates PD and PU are interdefinable, the possibility to determine whether an object is PD does not imply the possibility to determine whether an object is PU (since PU is an undecidable predicate). Similarly, although the predicates “green” and “grue” are interdefinable, the possibility to determine whether an object is “green” even in absence of temporal information does not imply the possibility to determine whether an object is “grue” even in absence of temporal information. These and other examples about “grue” and “bleen” point out that even in case two predicates are interdefinable, the possibility to apply a predicate P does not imply the possibility to apply a predicate interdefinable with P. And that the possibility to apply the predicate “green” without having temporal information does not imply the possibility to apply the predicate “grue” without having temporal information. According to Goodman, if it is possible to determine if an object is green without needing temporal information, then it is also possible to determine if an object is grue without needing temporal information. But, knowing that an object is both green and grue implies temporal information: in fact, we know by definition that a grue object can only be: 1) either green (in case the object is examined before time t); 2) or blue (in case the object is not examined before time t). Thus, knowing that an object is both grue and green, we know that we are faced with case 1, the case of a grue object that is green and examined before time t. Then the paper points out why the Goodman-Kripke paradox is a paradox about meaning that cannot have repercussions on induction. Finally the paper points out why Hume’s problem is a problem different from Goodman’s paradox and requires a specific treatment. (shrink)
We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...) to the compound formulas of PA over N---I_PA(N; SV ) and I_PA(N; SC). We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both I_PA(N; SV ) and I_PA(N; SC). We then show: (a) that if we assume the satisfaction and truth of the compound formulas of PA are always non-finitarily decidable under I_PA(N; SV ), then this assignment corresponds to the classical non-finitary putative standard interpretation I_PA(N; S) of PA over the domain N; and (b) that the satisfaction and truth of the compound formulas of PA are always finitarily decidable under the assignment I_PA(N; SC), from which we may finitarily conclude that PA is consistent. We further conclude that the appropriate inference to be drawn from Goedel's 1931 paper on undecidable arithmetical propositions is that we can define PA formulas which---under interpretation---are algorithmically verifiable as always true over N, but not algorithmically computable as always true over N. We conclude from this that Lucas' Goedelian argument is validated if the assignment I_PA(N; SV ) can be treated as circumscribing the ambit of human reasoning about `true' arithmetical propositions, and the assignment I_PA(N; SC) as circumscribing the ambit of mechanistic reasoning about `true' arithmetical propositions. (shrink)
It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than (...) as a motley of pieces assembled by the random processes of natural selection. “Gödel shows us an unclarity in the concept of ‘mathematics’, which is indicated by the fact that mathematics is taken to be a system” and we can say (contra nearly everyone) that is all that Gödel and Chaitin show. Wittgenstein commented many times that ‘truth’ in math means axioms or the theorems derived from axioms, and ‘false’ means that one made a mistake in using the definitions, and this is utterly different from empirical matters where one applies a test. Wittgenstein often noted that to be acceptable as mathematics in the usual sense, it must be useable in other proofs and it must have real world applications, but neither is the case with Godel’s Incompleteness. Since it cannot be proved in a consistent system (here Peano Arithmetic but a much wider arena for Chaitin), it cannot be used in proofs and, unlike all the ‘rest’ of PA it cannot be used in the real world either. As Rodych notes “…Wittgenstein holds that a formal calculus is only a mathematical calculus (i.e., a mathematical language-game) if it has an extra- systemic application in a system of contingent propositions (e.g., in ordinary counting and measuring or in physics) …” Another way to say this is that one needs a warrant to apply our normal use of words like ‘proof’, ‘proposition’, ‘true’, ‘incomplete’, ‘number’, and ‘mathematics’ to a result in the tangle of games created with ‘numbers’ and ‘plus’ and ‘minus’ signs etc., and with -/- ‘Incompleteness’ this warrant is lacking. Rodych sums it up admirably. “On Wittgenstein’s account, there is no such thing as an incomplete mathematical calculus because ‘in mathematics, everything is algorithm [and syntax] and nothing is meaning [semantics]…” -/- I make some brief remarks which note the similarities of these ‘mathematical’ issues to economics, physics, game theory, and decision theory. -/- Those wishing further comments on philosophy and science from a Wittgensteinian two systems of thought viewpoint may consult my other writings -- Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019), The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle 2nd ed (2019), Suicide by Democracy 4th ed (2019), The Logical Structure of Human Behavior (2019), The Logical Structure of Consciousness (2019, Understanding the Connections between Science, Philosophy, Psychology, Religion, Politics, and Economics and Suicidal Utopian Delusions in the 21st Century 5th ed (2019), Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal-Sharrock and Yanofsky (2019), and The Logical Structure of Philosophy, Psychology, Sociology, Anthropology, Religion, Politics, Economics, Literature and History (2019). (shrink)
I give a detailed review of 'The Outer Limits of Reason' by Noson Yanofsky from a unified perspective of Wittgenstein and evolutionary psychology. I indicate that the difficulty with such issues as paradox in language and math, incompleteness, undecidability, computability, the brain and the universe as computers etc., all arise from the failure to look carefully at our use of language in the appropriate context and hence the failure to separate issues of scientific fact from issues of how language (...) works. I discuss Wittgenstein's views on incompleteness, paraconsistency and undecidability and the work of Wolpert on the limits to computation. To sum it up: The Universe According to Brooklyn---Good Science, Not So Good Philosophy. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019) and Suicidal Utopian Delusions in the 21st Century 4th ed (2019) . (shrink)
Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine – (...) Is continuality universal? – Diffeomorphism and velocity – Einstein’s general principle of relativity – „Mach’s principle“ – The Skolemian relativity of the discrete and the continuous – The counterexample in § 6 of their paper – About the classical tautology which is untrue being replaced by the statements about commeasurable quantum-mechanical quantities – Logical hidden parameters – The undecidability of the hypothesis about hidden parameters – Wigner’s work and и Weyl’s previous one – Lie groups, representations, and psi-function – From a qualitative to a quantitative expression of relativity − psi-function, or the discrete by the random – Bartlett’s approach − psi-function as the characteristic function of random quantity – Discrete and/ or continual description – Quantity and its “digitalized projection“ – The idea of „velocity−probability“ – The notion of probability and the light speed postulate – Generalized probability and its physical interpretation – A quantum description of macro-world – The period of the as-sociated de Broglie wave and the length of now – Causality equivalently replaced by chance – The philosophy of quantum information and religion – Einstein’s thesis about “the consubstantiality of inertia ant weight“ – Again about the interpretation of complex velocity – The speed of time – Newton’s law of inertia and Lagrange’s formulation of mechanics – Force and effect – The theory of tachyons and general relativity – Riesz’s representation theorem – The notion of covariant world line – Encoding a world line by psi-function – Spacetime and qubit − psi-function by qubits – About the physical interpretation of both the complex axes of a qubit – The interpretation of the self-adjoint operators components – The world line of an arbitrary quantity – The invariance of the physical laws towards quantum object and apparatus – Hilbert space and that of Minkowski – The relationship between the coefficients of -function and the qubits – World line = psi-function + self-adjoint operator – Reality and description – Does a „curved“ Hilbert space exist? – The axiom of choice, or when is possible a flattening of Hilbert space? – But why not to flatten also pseudo-Riemannian space? – The commutator of conjugate quantities – Relative mass – The strokes of self-movement and its philosophical interpretation – The self-perfection of the universe – The generalization of quantity in quantum physics – An analogy of the Feynman formalism – Feynman and many-world interpretation – The psi-function of various objects – Countable and uncountable basis – Generalized continuum and arithmetization – Field and entanglement – Function as coding – The idea of „curved“ Descartes product – The environment of a function – Another view to the notion of velocity-probability – Reality and description – Hilbert space as a model both of object and description – The notion of holistic logic – Physical quantity as the information about it – Cross-temporal correlations – The forecasting of future – Description in separable and inseparable Hilbert space – „Forces“ or „miracles“ – Velocity or time – The notion of non-finite set – Dasein or Dazeit – The trajectory of the whole – Ontological and onto-theological difference – An analogy of the Feynman and many-world interpretation − psi-function as physical quantity – Things in the world and instances in time – The generation of the physi-cal by mathematical – The generalized notion of observer – Subjective or objective probability – Energy as the change of probability per the unite of time – The generalized principle of least action from a new view-point – The exception of two dimensions and Fermat’s last theorem. (shrink)
L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...) fondamentali per la ricerca di nuovi assiomi in matematica. L’articolo fornisce un quadro generale dei risultati matematici fondamentali, e un’analisi di alcune delle questioni filosofiche connesse al Problema del Continuo. (shrink)
Physical dimensions like “mass”, “length”, “charge”, represented by the symbols [M], [L], [Q], are not numbers, but used as numbers to perform dimensional analysis in particular, and to write the equations of physics in general, by the physicist. The law of excluded middle falls short of explaining the contradictory meanings of the same symbols. The statements like “m tends to 0”, “r tends to 0”, “q tends to 0”, used by the physicist, are inconsistent on dimensional grounds because “m”, “r”, (...) “q” represent quantities with physical dimensions of [M], [L], [Q] respectively and “0” represents just a number—devoid of physical dimension. Consequently, due to the involvement of the statement “q tends to 0'', where q is the test charge” in the definition of electric field leads to either circular reasoning or a contradiction regarding the experimental verification of the smallest charge in the Millikan–Fletcher oil drop experiment. Considering such issues as problematic, by choice, I make an inquiry regarding the basic language in terms of which physics is written, with an aim of exploring how truthfully the verbal statements can be converted to the corresponding physico-mathematical expressions, where “physico-mathematical” signifies the involvement of physical dimensions. Such investigation necessitates an explanation by demonstration of “self inquiry”, “middle way”, “dependent origination”, “emptiness/relational existence”, which are certain terms that signify the basic tenets of Buddhism. In light of such demonstration I explain my view of “definition”; the relations among quantity, physical dimension and number; meaninglessness of “zero quantity” and the associated logico-linguistic fallacy; difference between unit and unity. Considering the importance of the notion of electric field in physics, I present a critical analysis of the definitions of electric field due to Maxwell and Jackson, along with the physico-mathematical conversions of the verbal statements. The analysis of Jackson’s definition points towards an expression of the electric field as an infinite series due to the associated “limiting process” of the test charge. However, it brings out the necessity of a postulate regarding the existence of charges, which nevertheless follows from the definition of quantity. Consequently, I explain the notion of undecidable charges that act as the middle way to resolve the contradiction regarding the Millikan–Fletcher oil drop experiment. In passing, I provide a logico-linguistic analysis, in physico-mathematical terms, of two verbal statements of Maxwell in relation to his definition of electric field, which suggests Maxwell’s conception of dependent origination of distance and charge ) and that of emptiness in the context of relative vacuum. This work is an appeal for the dissociation of the categorical disciplines of logic and physics and on the large, a fruitful merger of Eastern philosophy and Western science. Nevertheless, it remains open to how the reader relates to this work, which is the essence of emptiness. (shrink)
Modal logic is one of philosophy’s many children. As a mature adult it has moved out of the parental home and is nowadays straying far from its parent. But the ties are still there: philosophy is important to modal logic, modal logic is important for philosophy. Or, at least, this is a thesis we try to defend in this chapter. Limitations of space have ruled out any attempt at writing a survey of all the work going on in our field—a (...) book would be needed for that. Instead, we have tried to select material that is of interest in its own right or exemplifies noteworthy features in interesting ways. Here are some themes that have guided us throughout the writing: • The back-and-forth between philosophy and modal logic. There has been a good deal of give-and-take in the past. Carnap tried to use his modal logic to throw light on old philosophical questions, thereby inspiring others to continue his work and still others to criticise it. He certainly provoked Quine, who in his turn provided—and continues to provide—a healthy challenge to modal logicians. And Kripke’s and David Lewis’s philosophies are connected, in interesting ways, with their modal logic. Analytic philosophy would have been a lot different without modal logic! • The interpretation problem. The problem of providing a certain modal logic with an intuitive interpretation should not be conflated with the problem of providing a formal system with a model-theoretic semantics. An intuitively appealing model-theoretic semantics may be an important step towards solving the interpretation problem, but only a step. One may compare this situation with that in probability theory, where definitions of concepts like ‘outcome space’ and ‘random variable’ are orthogonal to questions about “interpretations” of the concept of probability. • The value of formalisation. Modal logic sets standards of precision, which are a challenge to—and sometimes a model for—philosophy. Classical philosophical questions can be sharpened and seen from a new perspective when formulated in a framework of modal logic. On the other hand, representing old questions in a formal garb has its dangers, such as simplification and distortion. • Why modal logic rather than classical (first or higher order) logic? The idioms of modal logic—today there are many!—seem better to correspond to human ways of thinking than ordinary extensional logic. (Cf. Chomsky’s conjecture that the NP + VP pattern is wired into the human brain.) In his An Essay in Modal Logic (1951) von Wright distinguished between four kinds of modalities: alethic (modes of truth: necessity, possibility and impossibility), epistemic (modes of being known: known to be true, known to be false, undecided), deontic (modes of obligation: obligatory, permitted, forbidden) and existential (modes of existence: universality, existence, emptiness). The existential modalities are not usually counted as modalities, but the other three categories are exemplified in three sections into which this chapter is divided. Section 1 is devoted to alethic modal logic and reviews some main themes at the heart of philosophical modal logic. Sections 2 and 3 deal with topics in epistemic logic and deontic logic, respectively, and are meant to illustrate two different uses that modal logic or indeed any logic can have: it may be applied to already existing (non-logical) theory, or it can be used to develop new theory. (shrink)
In this paper, we present an intelligent tutoring system developed to help students in learning Computer Theory. The Intelligent tutoring system was built using ITSB authoring tool. The system helps students to learn finite automata, pushdown automata, Turing machines and examines the relationship between these automata and formal languages, deterministic and nondeterministic machines, regular expressions, context free grammars, undecidability, and complexity. During the process the intelligent tutoring system gives assistance and feedback of many types in an intelligent manner according (...) to the behavior of the student. An evaluation of the intelligent tutoring system has revealed reasonably acceptable results in terms of its usability and learning abilities are concerned. (shrink)
Deductive inference is usually regarded as being “tautological” or “analytical”: the information conveyed by the conclusion is contained in the information conveyed by the premises. This idea, however, clashes with the undecidability of first-order logic and with the (likely) intractability of Boolean logic. In this article, we address the problem both from the semantic and the proof-theoretical point of view. We propose a hierarchy of propositional logics that are all tractable (i.e. decidable in polynomial time), although by means of (...) growing computational resources, and converge towards classical propositional logic. The underlying claim is that this hierarchy can be used to represent increasing levels of “depth” or “informativeness” of Boolean reasoning. Special attention is paid to the most basic logic in this hierarchy, the pure “intelim logic”, which satisfies all the requirements of a natural deduction system (allowing both introduction and elimination rules for each logical operator) while admitting of a feasible (quadratic) decision procedure. We argue that this logic is “analytic” in a particularly strict sense, in that it rules out any use of “virtual information”, which is chiefly responsible for the combinatorial explosion of standard classical systems. As a result, analyticity and tractability are reconciled and growing degrees of computational complexity are associated with the depth at which the use of virtual information is allowed. (shrink)
I argue with my friends a lot. That is, I offer them reasons to believe all sorts of philosophical conclusions. Sadly, despite the quality of my arguments, and despite their apparent intelligence, they don’t always agree. They keep insisting on principles in the face of my wittier and wittier counterexamples, and they keep offering their own dull alleged counterexamples to my clever principles. What is a philosopher to do in these circumstances? (And I don’t mean get better friends.) One popular (...) answer these days is that I should, to some extent, defer to my friends. If I look at a batch of reasons and conclude p, and my equally talented friend reaches an incompatible conclusion q, I should revise my opinion so I’m now undecided between p and q. I should, in the preferred lingo, assign equal weight to my view as to theirs. This is despite the fact that I’ve looked at their reasons for concluding q and found them wanting. If I hadn’t, I would have already concluded q. The mere fact that a friend (from now on I’ll leave off the qualifier ‘equally talented and informed’, since all my friends satisfy that) reaches a contrary opinion should be reason to move me. Such a position is defended by Richard Feldman (2006a, 2006b), David Christensen (2007) and Adam Elga (forthcoming). This equal weight view, hereafter EW, is itself a philosophical position. And while some of my friends believe it, some of my friends do not. (Nor, I should add for your benefit, do I.) This raises an odd little dilemma. If EW is correct, then the fact that my friends disagree about it means that I shouldn’t be particularly confident that it is true, since EW says that I shouldn’t be too confident about any position on which my friends disagree. But, as I’ll argue below, to consistently implement EW, I have to be maximally confident that it is true. So to accept EW, I have to inconsistently both be very confident that it is true and not very confident that it is true. This seems like a problem, and a reason to not accept EW.. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.