Results for 'analogue gravity'

562 found
Order:
  1. Experimentation on Analogue Models.Susan G. Sterrett - 2017 - In Springer handbook of model-based science (2017). Springer. pp. 857-878.
    Summary Analogue models are actual physical setups used to model something else. They are especially useful when what we wish to investigate is difficult to observe or experiment upon due to size or distance in space or time: for example, if the thing we wish to investigate is too large, too far away, takes place on a time scale that is too long, does not yet exist or has ceased to exist. The range and variety of analogue models (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  2. On the impossibility of using analogue machines to calculate non-computable functions.Robin O. Gandy - manuscript - Translated by Aran Nayebi.
    A number of examples have been given of physical systems (both classical and quantum mechanical) which when provided with a (continuously variable) computable input will give a non-computable output. It has been suggested that these systems might allow one to design analogue machines which would calculate the values of some number-theoretic non-computable function. Analysis of the examples show that the suggestion is wrong. In Section 4 I claim that given a reasonable definition of analogue machine it will always (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. On the Limits of Experimental Knowledge.Peter Evans & Karim P. Y. Thebault - 2020 - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378 (2177).
    To demarcate the limits of experimental knowledge, we probe the limits of what might be called an experiment. By appeal to examples of scientific practice from astrophysics and analogue gravity, we demonstrate that the reliability of knowledge regarding certain phenomena gained from an experiment is not circumscribed by the manipulability or accessibility of the target phenomena. Rather, the limits of experimental knowledge are set by the extent to which strategies for what we call ‘inductive triangulation’ are available: that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. The Structure of Analog Representation.Andrew Y. Lee, Joshua Myers & Gabriel Oak Rabin - 2023 - Noûs 57 (1):209-237.
    This paper develops a theory of analog representation. We first argue that the mark of the analog is to be found in the nature of a representational system’s interpretation function, rather than in its vehicles or contents alone. We then develop the rulebound structure theory of analog representation, according to which analog systems are those that use interpretive rules to map syntactic structural features onto semantic structural features. The theory involves three degree-theoretic measures that capture three independent ways in which (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  5. Contents and Vehicles in Analog Perception.Jacob Beck - 2023 - Crítica. Revista Hispanoamericana de Filosofía 55 (163):109–127.
    Building on Christopher Peacocke’s account of analog perceptual contentand my own account of analog perceptual vehicles, I defend three claims: that theperception of magnitudes often has analog contents; that the perception of magni-tudes often has analog vehicles; and that the first claim is true in virtue of the second—that is, the analog vehicles help to ground the analog contents.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. From Analog to Digital Computing: Is Homo sapiens’ Brain on Its Way to Become a Turing Machine?Antoine Danchin & André A. Fenton - 2022 - Frontiers in Ecology and Evolution 10:796413.
    The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So it is with computing, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Quantum Analog of the Black- Scholes Formula(market of financial derivatives as a continuous weak measurement).S. I. Melnyk & I. G. Tuluzov - 2008 - Electronic Journal of Theoretical Physics (EJTP) 5 (18):95–104.
    We analyze the properties of optimum portfolios, the price of which is considered a new quantum variable and derive a quantum analog of the Black-Scholes formula for the price of financial variables in assumption that the market dynamics can by considered as its continuous weak measurement at no-arbitrage condition.
    Download  
     
    Export citation  
     
    Bookmark  
  8. On Representing Information: A Characterization of the Analog/Digital Distinction.Aldo Frigerio, Alessandro Giordani & Luca Mari - 2013 - Dialectica 67 (4):455-483.
    The common account of the analog vs digital distinction is based on features of physical systems, being related to the usage of continuous vs discrete supports respectively. It is proposed here to alternatively characterize the concepts of analog and digital as related to coding systems, of which a formal definition is given, by suggesting that the distinction refers to the strategy adopted to define the coding function: extensional in digital systems, isomorphic intensional in analog systems. This thesis is supported by (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  9. Epistemic Limitations and Precise Estimates in Analog Magnitude Representation.Justin Halberda - 2016 - In A. Baron & D. Barner (eds.), Core Knowledge and Conceptual Change. Oxford University Press. pp. 167-186.
    This chapter presents a re-understanding of the contents of our analog magnitude representations (e.g., approximate duration, distance, number). The approximate number system (ANS) is considered, which supports numerical representations that are widely described as fuzzy, noisy, and limited in their representational power. The contention is made that these characterizations are largely based on misunderstandings—that what has been called “noise” and “fuzziness” is actually an important epistemic signal of confidence in one’s estimate of the value. Rather than the ANS having noisy (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Absorbing new subjects: holography as an analog of photography.Sean F. Johnston - 2006 - Physics in Perspective 8:164-188.
    I discuss the early history of holography and explore how perceptions, applications, and forecasts of the subject were shaped by prior experience. I focus on the work of Dennis Gabor (1900–1979) in England,Yury N. Denisyuk (1927-2005) in the Soviet Union, and Emmett N. Leith (1927–2005) and Juris Upatnieks (b. 1936) in the United States. I show that the evolution of holography was simultaneously promoted and constrained by its identification as an analog of photography, an association that influenced its assessment by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Information Reflection Theory Based on Information Theories, Analog Symbolism, and the Generalized Relativity Principle.Chenguang Lu - 2023 - Comput. Sci. Math. Forum 8 (1):45.
    Reflection Theory holds that our sensations reflect physical properties, whereas Empiricism believes that sense (data), presentations, and phenomena are the ultimate existence. Lenin adhered to Reflection Theory and criticized Helmholtz’s sensory symbolism for affirming the similarity between a sensation and a physical property. By using information and color vision theories, analyzing the ostensive definition with inverted qualia, and extending the relativity principle, this paper affirms the external world’s existence independent of personal sensations. Still, it denies the similarity between a sense (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Quantum Gravity in a Laboratory?Nick Huggett, Niels S. Linnemann & Mike D. Schneider - 2023
    It has long been thought that observing distinctive traces of quantum gravity in a laboratory setting is effectively impossible, since gravity is so much weaker than all the other familiar forces in particle physics. But the quantum gravity phenomenology community today seeks to do the (effectively) impossible, using a challenging novel class of `tabletop' Gravitationally Induced Entanglement (GIE) experiments, surveyed here. The hypothesized outcomes of the GIE experiments are claimed by some (but disputed by others) to provide (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Quantum Gravity and Mereology: Not So Simple.Sam Baron & Baptiste Le Bihan - 2021 - Philosophical Quarterly 72 (1):19-40.
    A number of philosophers have argued in favour of extended simples on the grounds that they are needed by fundamental physics. The arguments typically appeal to theories of quantum gravity. To date, the argument in favour of extended simples has ignored the fact that the very existence of spacetime is put under pressure by quantum gravity. We thus consider the case for extended simples in the context of different views on the existence of spacetime. We show that the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  14. Quantum gravity, timelessness, and the contents of thought.David Braddon-Mitchell & Kristie Miller - 2019 - Philosophical Studies 176 (7):1807-1829.
    A number of recent theories of quantum gravity lack a one-dimensional structure of ordered temporal instants. Instead, according to many of these views, our world is either best represented as a single three-dimensional object, or as a configuration space composed of such three-dimensional objects, none of which bear temporal relations to one another. Such theories will be empirically self-refuting unless they can accommodate the existence of conscious beings capable of representation. For if representation itself is impossible in a timeless (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  15. (1 other version)Why gravity is not an entropic force.Shan Gao - 2010
    The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Quantum gravity, timelessness, and the folk concept of time.Andrew J. Latham & Kristie Miller - 2020 - Synthese 198 (10):9453-9478.
    What it would take to vindicate folk temporal error theory? This question is significant against a backdrop of new views in quantum gravity—so-called timeless physical theories—that claim to eliminate time by eliminating a one-dimensional substructure of ordered temporal instants. Ought we to conclude that if these views are correct, nothing satisfies the folk concept of time and hence that folk temporal error theory is true? In light of evidence we gathered, we argue that physical theories that entirely eliminate an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Quantum Gravity and Taoist Cosmology: Exploring the Ancient Origins of Phenomenological String Theory.Steven M. Rosen - 2017 - Progress in Biophysics and Molecular Biology 131:34-60.
    In the author’s previous contribution to this journal (Rosen 2015), a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current paper takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a connection between the Klein bottle, which is crucial to the theory, and the Ho-t’u, a Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the psychophysical (phenomenological) action (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. A Gravity Model analysis of Ukraine crisis impact on Germany’s trade patterns.Nguyen Manh Cuong, Noah C. Mutai & Lawrence Ibeh - 2023 - Sm3D.
    The Ukraine conflict has profoundly affected global trade and international relations, particularly for Germany, a major player in Europe and the European Union. This study utilizes a Gravity Model analysis to explore Germany’s trade network and assess the impact of the conflict on its trade partnerships.
    Download  
     
    Export citation  
     
    Bookmark  
  19. String Theory, Loop Quantum Gravity and Eternalism.Baptiste Le Bihan - 2020 - European Journal for Philosophy of Science 10:17.
    Eternalism, the view that what we regard locally as being located in the past, the present and the future equally exists, is the best ontological account of temporal existence in line with special and general relativity. However, special and general relativity are not fundamental theories and several research programs aim at finding a more fundamental theory of quantum gravity weaving together all we know from relativistic physics and quantum physics. Interestingly, some of these approaches assert that time is not (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  20. Gravity, Metaphysics or Physics ?Alfonso Leon Guillen Gomez - 2013 - International Journal of Fundamental Physical Sciences 3 (4):68 - 74.
    Gravity is the foundation of the current physical paradigm. Due to that gravity is strongly linked to the curvature of space-time, we research that it lacks of a valid physical concept of space-time, nevertheless that from the science philosophy, via substantivalism, it has tried respond. We found that is due to that the gnoseological process applied from the general relativity, necessarily us leads to metaphysic because ontologically space-time is a metaphysical entity. Thus, we arrive to the super substantivalism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Metaphysics of Quantum Gravity.Baptiste Le Bihan & Annica Vieser - 2024 - Internet Encyclopedia of Philosophy.
    Metaphysics of Quantum Gravity The metaphysics of quantum gravity explores metaphysical issues related to research programs in theoretical physics clustered under the term quantum gravity. These research programs aim at the formulation of a theory that reconciles the theory of general relativity with quantum theory. The goal is not necessarily to come up with a … Continue reading Metaphysics of Quantum Gravity →.
    Download  
     
    Export citation  
     
    Bookmark  
  22. Gravity as Entanglement. Entanglement as Gravity.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (30):1-23.
    A generalized and unifying viewpoint to both general relativity and quantum mechanics and information is investigated. It may be described as a generaliztion of the concept of reference frame from mechanics to thermodynamics, or from a reference frame linked to an element of a system, and thus, within it, to another reference frame linked to the whole of the system or to any of other similar systems, and thus, out of it. Furthermore, the former is the viewpoint of general relativity, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Is gravity, the curvature of spacetime or a quantum phenomenon.Alfonso Leon Guillen Gomez - 2014 - Journal of Advances in Physics 4 (1):194-203.
    Gravity is the curvature of spacetime, the structural property of static gravitational field, a geometric field, in curved coordinates, according the functions guv, that express geometric relations between material events. Course, general relativity is a relational theory, however, gravity, a thinking category, has symetric physical effects with matter. We use, analitic and critic method of reread the general relativity, since the perspective of the history of the science and the philosophy of the science. Our goal is driver the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Spacetime Emergence in Quantum Gravity: Functionalism and the Hard Problem.Baptiste Le Bihan - 2019 - Synthese 199 (2):371–393.
    Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantum gravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the hard problem by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  25. Gravity is a quantum force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, from general to particular, breaks the law of inertia of Galilei since recovers apparently the rectilinear uniform movement but not the repose state, unless the bodies have undergone their collapse, although, the curved (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Gravity is a force.Alfonso Leon Guillen Gomez - manuscript
    The General Relativity understands gravity like inertial movement of the free fall of the bodies in curved spacetime of Lorentz. The law of inertia of Newton would be particular case of the inertial movement of the bodies in the spacetime flat of Euclid. But, in the step, of the particular to the general, breaks the law of inertia of Galilei since recovers the rectilinear uniform movement but not the repose state, unless the bodies have undergone their union, although, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Adaptation and its Analogues: Biological Categories for Biosemantics.Hajo Greif - 2021 - Studies in History and Philosophy of Science Part A 90:298-307.
    “Teleosemantic” or “biosemantic” theories form a strong naturalistic programme in the philosophy of mind and language. They seek to explain the nature of mind and language by recourse to a natural history of “proper functions” as selected-for effects of language- and thought-producing mechanisms. However, they remain vague with respect to the nature of the proposed analogy between selected-for effects on the biological level and phenomena that are not strictly biological, such as reproducible linguistic and cultural forms. This essay critically explores (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Epistemology of Quantum Gravity.Nicolae Sfetcu - manuscript
    Quantum gravity has required the consideration of fundamental epistemological questions, which can be identified in philosophy with the mind-body problem and the problem of free will. These questions influenced the epistemology of quantum mechanics in the form of von Neumann's "psycho-physical parallelism" and the subsequent analysis of the thesis by Wigner that "the collapse of the wave packet" occurs in the mind of the "observer". Quantum gravity in cosmology involves the problem of the experimenter's freedom to change local (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29.  93
    Is Teleparallel Gravity Really Equivalent to General Relativity?Luciano Combi & Gustavo E. Romero - 2017 - Analen der Physik 530 (1):1700175/1-11.
    An axiomatization of the so-called Teleparallel Equivalent to General Relativity is presented. A set of formal and semantic postulates are elaborated from where the physical meaning of various key concepts of the theory are clarified. These concepts include those of inertia, Lorentz and diffeomorphism invariance, and reference frame. It is shown that Teleparallel Gravity admits a wider representation of space-time than General Relativity, allowing to define properties of the gravitational field such as energy and momentum that are usually considered (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Compositionality and constituent structure in the analogue mind.Sam Clarke - 2023 - Philosophical Perspectives 37 (1):90-118.
    I argue that analogue mental representations possess a canonical decomposition into privileged constituents from which they compose. I motivate this suggestion, and rebut arguments to the contrary, through reflection on the approximate number system, whose representations are widely expected to have an analogue format. I then argue that arguments for the compositionality and constituent structure of these analogue representations generalize to other analogue mental representations posited in the human mind, such as those in early vision and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Harmonic Gravity. Herapteon - manuscript
    The model proposed in this conjecture of harmonic gravity regards the universe as an immense harmonic oscillator, whose movement creates nodal volumes where vibration is canceled. In these nodal volumes, matter is gathered after being guided by the vibrational movement. This is where the density is concentrated. The web-like structure of galaxy filaments suggests a phenomenon that resembles a progression to Chladni-esque figures. The large void areas engulfed by these filaments are the places where vibration manifests in all its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. (4 other versions)Concatenated quantum gravity papers 1.Paul Merriam & M. A. Z. Habeeb - manuscript
    The first purpose of this series of articles is to introduce case studies on how current AI models can be used in the development of a possible theory of quantum gravity, their limitations, and the role the researcher has in steering the development in the right direction, even highlighting the errors, weaknesses and strengths of the whole process. The second is to introduce the new Presentist Fragmentalist ontology as a framework and use it for developing theories of quantum (...) and speculate on achieving a TOE. We emphasize it is necessary for the researcher to check everything in these articles for themselves. While there are many good ideas in this series of papers, the AI is known to make even arithmetic and algebraic mistakes. To select just five apparently good ideas, there is a causal interaction tensor Cαβγδ(F1, F2) that encodes the causal relationship and the strength of the (possibly non-local) interaction between two fragments of reality (formed by each quantum system). There is a quantitative prediction for a testable table-top experiment. There is an explanation of how spacetime emerges from the fragments and their interactions. There is an explicit account of the double-slit experiment. And there is an explanation how this theory accommodates dark matter and dark energy simultaneously. We explore ideas, equations they lead to, concrete calculations, and give corrections along the way. While these are generally morally right within this framework they must be checked by the researcher. Given this caveat, we believe we have made significant progress with the PF interpretation in developing a theory of quantum gravity and pointing out a possible path to a TOE. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Presentism and quantum gravity.Bradley Monton - 2006 - In Dennis Geert Bernardus Johan Dieks (ed.), The ontology of spacetime. Boston: Elsevier.
    There is a philosophical tradition of arguing against presentism, the thesis that only presently existing things exist, on the basis of its incompatibility with fundamental physics. I grant that presentism is incompatible with special and general relativity, but argue that presentism is not incompatible with quantum gravity, because there are some theories of quantum gravity that utilize a fixed foliation of spacetime. I reply to various objections to this defense of presentism, and point out a flaw in Gödel's (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  34. Gravity as Archimedes? Thrust and a Bifurcation in that Theory.Mayeul Arminjon - 2004 - Foundations of Physics 34 (11):1703-1724.
    Euler’s interpretation of Newton’s gravity (NG) as Archimedes’ thrust in a fluid ether is presented in some detail. Then a semi-heuristic mechanism for gravity, close to Euler’s, is recalled and compared with the latter. None of these two ‘‘gravitational ethers’’ can obey classical mechanics. This is logical since the ether defines the very reference frame, in which mechanics is defined. This concept is used to build a scalar theory of gravity: NG corresponds to an incompressible ether, a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Quantum Gravity As the Unification of General Relativity & Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-3.
    A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the in-variance “within – out of” of the same system.
    Download  
     
    Export citation  
     
    Bookmark  
  36. Inter-theory Relations in Quantum Gravity: Correspondence, Reduction and Emergence.Karen Crowther - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:74-85.
    Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  37. The true Nature of Gravity, Anti-gravity and Vacuum.Juris Bogdanovs - manuscript
    Understanding Gravity correctly has a pivotal importance if we would like to understand Anti-gravity. Famously, with the existing theories for Gravity we cannot achieve that. While exploring questions related to Gravity, I realized that it demands reconsidering the nature of Vacuum. For this reason, in this article you will find not only alternative description of the nature of Vacuum, but I also will provide the idea to test it with results that will prove beyond any doubt (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Fakeons, quantum gravity and the correspondence principle.Damiano Anselmi - manuscript
    The correspondence principle made of unitarity, locality and renormalizability has been very successful in quantum field theory. Among the other things, it helped us build the standard model. However, it also showed important limitations. For example, it failed to restrict the gauge group and the matter sector in a powerful way. After discussing its effectiveness, we upgrade it to make room for quantum gravity. The unitarity assumption is better understood, since it allows for the presence of physical particles as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Geometric model of gravity, counterfactual solar mass, and the Pioneer anomalies.Andrew Holster - manuscript
    This study analyses the predictions of the General Theory of Relativity (GTR) against a slightly modified version of the standard central mass solution (Schwarzschild solution). It is applied to central gravity in the solar system, the Pioneer spacecraft anomalies (which GTR fails to predict correctly), and planetary orbit distances and times, etc (where GTR is thought consistent.) -/- The modified gravity equation was motivated by a theory originally called ‘TFP’ (Time Flow Physics, 2004). This is now replaced by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Concatenated Quantum Gravity papers 5 8292024.P. Merriam & M. A. Z. Habeeb - manuscript
    There are extensive discussions of the 5D AdS metric that arises naturally from a metric that accounts for the A-series, the B-series, and x^a; black holes, including their information, entropy, temperature, energy, and energy density; the Big Bang; the finitude of singularities here; inflation; AdS/CFT and dS; symmetry groups of this theory of gravity not including and including those of the standard model, with evaluations of how integrated and how plausible they are; how the theory of quantum gravity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Have we Lost Spacetime on the Way? Narrowing the Gap between General Relativity and Quantum Gravity.Baptiste Le Bihan & Niels Siegbert Linnemann - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 65 (C):112-121.
    Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that most approaches (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  42. The world is either digital or analogue.Francesco Berto & Jacopo Tagliabue - 2014 - Synthese 191 (3):481-497.
    We address an argument by Floridi (Synthese 168(1):151–178, 2009; 2011a), to the effect that digital and analogue are not features of reality, only of modes of presentation of reality. One can therefore have an informational ontology, like Floridi’s Informational Structural Realism, without commitment to a supposedly digital or analogue world. After introducing the topic in Sect. 1, in Sect. 2 we explain what the proposition expressed by the title of our paper means. In Sect. 3, we describe Floridi’s (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  43. On quantum gravity.Sydney Ernest Grimm - manuscript
    The force of gravity is the result of the creation of matter within vacuum space by the structure of the basic quantum fields. The scalar vectors of the flat Higgs field lost their symmetry and the result are scalar vectors from everywhere around in vacuum space that point in the direction of the created matter. Gravity shows to be a push force and is equal to Newtonian gravity (except the concept of a pull force).
    Download  
     
    Export citation  
     
    Bookmark  
  44. General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes to be seen as informational in a generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Unified Equation of Gravity and QM: The Case of non-Relativistic Motion.Abuzaid Samir - 2014 - AL-Mukhatabat 11.
    We propose to simplify the problem of the unified theory of Quantum-Gravity through dealing first with the simple case of non-relativistic equations of Gravity and Quantum Mechanics. We show that unification of the two non-relativistic formalisms can be achieved through the joined classical and Quantum postulate that every natural body is composed of N identical final particles. This includes the current 'elementary' particles of the standard model such as quarks, photons, gluons, etc. Furthermore, we show that this opens (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Mathematical Nature of Gravity, Which General Relativity Says is Space-Time : Topology Unites With the Matrix, E=mc2, Advanced Waves, Wick Rotation, Dark Matter & Higher Dimensions.Rodney Bartlett - manuscript
    General Relativity says gravity is a push caused by space-time's curvature. Combining General Relativity with E=mc2 results in distances being totally deleted from space-time/gravity by future technology, and in expansion or contraction of the universe as a whole being eliminated. The road to these conclusions has branches shining light on supersymmetry and superconductivity. This push of gravitational waves may be directed from intergalactic space towards galaxy centres, helping to hold galaxies together and also creating supermassive black holes. Together (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. A Curiosity about Newtonian Gravity v. 2.0.Paul Merriam - manuscript
    We give a very curious curiosity about Newtonian Gravity.
    Download  
     
    Export citation  
     
    Bookmark  
  48. Gravity and gravitational tests.Nicolae Sfetcu - manuscript
    Theories in science in general, and in physics in particular, are confirmed (temporarily) by experiments that verify the assertions and predictions of theories, thus laying the groundwork for scientific knowledge. Francis Bacon was the first to support the concept of a crucial experiment, which can decide the validity of a hypothesis or theory. Later, Newton argued that scientific theories are directly induced by experimental results and observations, excluding untested hypotheses. DOI: 10.13140/RG.2.2.33549.08167.
    Download  
     
    Export citation  
     
    Bookmark  
  49. A Curiosity about Newtonian Gravity.Paul Merriam - manuscript
    We give a very curious curiosity about Newtonian gravity.
    Download  
     
    Export citation  
     
    Bookmark  
  50.  84
    Are geometrical trinity of gravity underdetermined?Yitong Zhou - manuscript
    General relativity (GR) describes gravity through the curvature of spacetime. However, there are two equivalents of GR that describe flat spacetimes with gravitational effects attributed to torison or non-metricity. These theories, together with GR, are known as the geometrical trinity of gravity and are said to present a case of underdetermination by Wolf et al. (2024). In this article, I argue against this stance by examining the empirical equivalence and possible interpretations of the trinity. I propose a unifying (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 562