Results for 'axiom of choice'

963 found
Order:
  1. The Axiom of choice in Quine's New Foundations for Mathematical Logic.Ernst P. Specker - 1954 - Journal of Symbolic Logic 19 (2):127-128.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  2. Sufficient Reason & The Axiom of Choice, an Ontological Proof for One Unique Transcendental God for Every Possible World.Assem Hamdy - manuscript
    Chains of causes appear when the existence of God is discussed. It is claimed by some that these chains must be finite and terminated by God. But these chains seem endless through our knowledge search. This endlessness for the physical reasons for any world event expresses the greatness and complexity of God’s creation and so the transcendence of God. So, only we can put our hands on physical reasons in an endless forage for knowledge. Yet, the endlessness of the physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Hume’s Principle, Bad Company, and the Axiom of Choice.Sam Roberts & Stewart Shapiro - 2023 - Review of Symbolic Logic 16 (4):1158-1176.
    One prominent criticism of the abstractionist program is the so-called Bad Company objection. The complaint is that abstraction principles cannot in general be a legitimate way to introduce mathematical theories, since some of them are inconsistent. The most notorious example, of course, is Frege’s Basic Law V. A common response to the objection suggests that an abstraction principle can be used to legitimately introduce a mathematical theory precisely when it is stable: when it can be made true on all sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Russell’s method of analysis and the axioms of mathematics.Lydia Patton - 2017 - In Sandra Lapointe & Christopher Pincock (eds.), Innovations in the History of Analytical Philosophy. London, United Kingdom: Palgrave-Macmillan. pp. 105-126.
    In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. (1 other version)Cantor, Choice, and Paradox.Nicholas DiBella - 2024 - The Philosophical Review 133 (3):223-263.
    I propose a revision of Cantor’s account of set size that understands comparisons of set size fundamentally in terms of surjections rather than injections. This revised account is equivalent to Cantor's account if the Axiom of Choice is true, but its consequences differ from those of Cantor’s if the Axiom of Choice is false. I argue that the revised account is an intuitive generalization of Cantor’s account, blocks paradoxes—most notably, that a set can be partitioned into (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Infinity, Choice, and Hume's Principle.Stephen Mackereth - forthcoming - Journal of Philosophical Logic.
    It has long been known that in the context of axiomatic second-order logic (SOL), Hume's Principle (HP) is mutually interpretable with "the universe is Dedekind infinite" (DI). I offer a more fine-grained analysis of the logical strength of HP, measured by deductive implications rather than interpretability. The main result is that HP is not deductively conservative over SOL + DI. That is, SOL + HP proves additional theorems in the language of pure second-order logic that are not provable from SOL (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. High-Order Metaphysics as High-Order Abstractions and Choice in Set Theory.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (21):1-3.
    The link between the high-order metaphysics and abstractions, on the one hand, and choice in the foundation of set theory, on the other hand, can distinguish unambiguously the “good” principles of abstraction from the “bad” ones and thus resolve the “bad company problem” as to set theory. Thus it implies correspondingly a more precise definition of the relation between the axiom of choice and “all company” of axioms in set theory concerning directly or indirectly abstraction: the principle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can be generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.
    The concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. The isomorphism of Minkowski space and the separable complex Hilbert space and its physical interpretation.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier:SSRN) 13 (31):1-3.
    An isomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That isomorphism can be interpreted physically as the invariance between a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting another way for proving it, more concise and meaningful physically. Mathematically, the isomorphism means the invariance to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Cognition according to Quantum Information: Three Epistemological Puzzles Solved.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (20):1-15.
    The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. Quantum in-variance designates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. (1 other version)The Wonder of Colors and the Principle of Ariadne.Walter Carnielli & Carlos di Prisco - 2017 - In Walter Carnielli & Carlos di Prisco (eds.), The Wonder of Colors and the Principle of Ariadne. Cham: Springer. pp. 309-317.
    The Principle of Ariadne, formulated in 1988 ago by Walter Carnielli and Carlos Di Prisco and later published in 1993, is an infinitary principle that is independent of the Axiom of Choice in ZF, although it can be consistently added to the remaining ZF axioms. The present paper surveys, and motivates, the foundational importance of the Principle of Ariadne and proposes the Ariadne Game, showing that the Principle of Ariadne, corresponds precisely to a winning strategy for the Ariadne (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Duality and Infinity.Guillaume Massas - 2024 - Dissertation, University of California, Berkeley
    Many results in logic and mathematics rely on techniques that allow for concrete, often visual, representations of abstract concepts. A primary example of this phenomenon in logic is the distinction between syntax and semantics, itself an example of the more general duality in mathematics between algebra and geometry. Such representations, however, often rely on the existence of certain maximal objects having particular properties such as points, possible worlds or Tarskian first-order structures. -/- This dissertation explores an alternative to such representations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. The Banach-Tarski Paradox.Ulrich Meyer - 2023 - Logique Et Analyse 261:41–53.
    Emile Borel regards the Banach-Tarski Paradox as a reductio ad absurdum of the Axiom of Choice. Peter Forrest instead blames the assumption that physical space has a similar structure as the real numbers. This paper argues that Banach and Tarski's result is not paradoxical and that it merely illustrates a surprising feature of the continuum: dividing a spatial region into disjoint pieces need not preserve volume.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum mechanics proposes (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. A System of Axioms for Minkowski Spacetime.Lorenzo Cocco & Joshua Babic - 2020 - Journal of Philosophical Logic 50 (1):149-185.
    We present an elementary system of axioms for the geometry of Minkowski spacetime. It strikes a balance between a simple and streamlined set of axioms and the attempt to give a direct formalization in first-order logic of the standard account of Minkowski spacetime in Maudlin and Malament. It is intended for future use in the formalization of physical theories in Minkowski spacetime. The choice of primitives is in the spirit of Tarski : a predicate of betwenness and a four (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time is what generates choices (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  29. Extensive Measurement in Social Choice.Jacob M. Nebel - 2024 - Theoretical Economics 19 (4):1581-1618.
    Extensive measurement is the standard measurement-theoretic approach for constructing a ratio scale. It involves the comparison of objects that can be concatenated in an additively representable way. This paper studies the implications of extensively measurable welfare for social choice theory. We do this in two frameworks: an Arrovian framework with a fixed population and no interpersonal comparisons, and a generalized framework with variable populations and full interpersonal comparability. In each framework we use extensive measurement to introduce novel domain restrictions, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Is Mass at Rest One and the Same? A Philosophical Comment: on the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a bit. The invariance (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. The Identity of Logic and the World in Terms of Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (21):1-4.
    One can construct a mapping between Hilbert space and the class of all logic if the latter is defined as the set of all well-orderings of some relevant set (or class). That mapping can be further interpreted as a mapping of all states of all quantum systems, on the one hand, and all logic, on the other hand. The collection of all states of all quantum systems is equivalent to the world (the universe) as a whole. Thus that mapping establishes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Free Will in Human Behavior and Physics.Vasil Penchev - 2020 - Labor and Social Relations 30 (6):185-196.
    If the concept of “free will” is reduced to that of “choice” all physical world shares the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly a certain goal, and the choice is only the mean, by which the aim can be achieved or not by the one who determines the target. Thus, for example, an electron has always a choice but not free will unlike a human possessing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Librationist cum classical theories of sets.Frode Bjørdal - manuscript
    The focus in this essay will be upon the paradoxes, and foremostly in set theory. A central result is that the librationist set theory £ extension \Pfund $\mathscr{HR}(\mathbf{D})$ of \pounds \ accounts for \textbf{Neumann-Bernays-Gödel} set theory with the \textbf{Axiom of Choice} and \textbf{Tarski's Axiom}. Moreover, \Pfund \ succeeds with defining an impredicative manifestation set $\mathbf{W}$, \emph{die Welt}, so that \Pfund$\mathscr{H}(\mathbf{W})$ %is a model accounts for Quine's \textbf{New Foundations}. Nevertheless, the points of view developed support the view that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. (1 other version)Time and Information in the Foundations of Physics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (25):1-12.
    The paper justifies the following theses: The totality can found time if the latter is axiomatically represented by its “arrow” as a well-ordering. Time can found choice and thus information in turn. Quantum information and its units, the quantum bits, can be interpreted as their generalization as to infinity and underlying the physical world as well as the ultimate substance of the world both subjective and objective. Thus a pathway of interpretation between the totality via time, order, choice, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. The Quantity of Quantum Information and Its Metaphysics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (18):1-6.
    The quantum information introduced by quantum mechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Cyclic Mechanics: the Principle of Cyclicity.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (16):1-35.
    Cyclic mechanic is intended as a suitable generalization both of quantum mechanics and general relativity apt to unify them. It is founded on a few principles, which can be enumerated approximately as follows: 1. Actual infinity or the universe can be considered as a physical and experimentally verifiable entity. It allows of mechanical motion to exist. 2. A new law of conservation has to be involved to generalize and comprise the separate laws of conservation of classical and relativistic mechanics, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. The temporal foundation of the principle of maximal entropy.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (11):1-3.
    The principle of maximal entropy (further abbreviated as “MaxEnt”) can be founded on the formal mechanism, in which future transforms into past by the mediation of present. This allows of MaxEnt to be investigated by the theory of quantum information. MaxEnt can be considered as an inductive analog or generalization of “Occam’s razor”. It depends crucially on choice and thus on information just as all inductive methods of reasoning. The essence shared by Occam’s razor and MaxEnt is for the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Coherent choice functions without Archimedeanity.Enrique Miranda & Arthur Van Camp - 2022 - In Thomas Augustin, Fabio Gagliardi Cozman & Gregory Wheeler (eds.), Reflections on the Foundations of Probability and Statistics: Essays in Honor of Teddy Seidenfeld. Springer.
    We study whether it is possible to generalise Seidenfeld et al.’s representation result for coherent choice functions in terms of sets of probability/utility pairs when we let go of Archimedeanity. We show that the convexity property is necessary but not sufficient for a choice function to be an infimum of a class of lexicographic ones. For the special case of two-dimensional option spaces, we determine the necessary and sufficient conditions by weakening the Archimedean axiom.
    Download  
     
    Export citation  
     
    Bookmark  
  43. Towards an Objective Theory of Rationality.Leslie Allan - manuscript
    Drawing on insights from Imre Lakatos' seminal work on theories of rationality, Leslie Allan develops seven criteria for rational theory choice that avoid presuming the rationality of the scientific enterprise. He shows how his axioms of rationality follow from the general demands of an objectivist epistemology. Allan concludes by considering two weighty objections to his framework.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (besides the above (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. A trilemma for the lexical utility model of the precautionary principle.H. Orri Stefánsson - 2024 - Philosophical Studies 181 (12):3271-3287.
    Bartha and DesRoches (Synthese 199(3–4):8701–8740, 2021) and Steel and Bartha (Risk Analysis 43(2):260–268, 2023) argue that we should understand the precautionary principle as the injunction to maximise lexical utilities. They show that the lexical utility model has important pragmatic advantages. Moreover, the model has the theoretical advantage of satisfying all axioms of expected utility theory except continuity. In this paper I raise a trilemma for any attempt at modelling the precautionary principle with lexical utilities: it permits choice cycles or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Topological Games, Supertasks, and (Un)determined Experiments.Thomas Mormann - manuscript
    The general aim of this paper is to introduce some ideas of the theory of infinite topological games into the philosophical debate on supertasks. First, we discuss the elementary aspects of some infinite topological games, among them the Banach-Mazur game.Then it is shown that the Banach-Mazur game may be conceived as a Newtonian supertask.In section 4 we propose to conceive physical experiments as infinite games. This leads to the distinction between determined and undetermined experiments and the problem of how it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Berkeley’s Best System: An Alternative Approach to Laws of Nature.Walter Ott - 2019 - Journal of Modern Philosophy 1 (1):4.
    Contemporary Humeans treat laws of nature as statements of exceptionless regularities that function as the axioms of the best deductive system. Such ‘Best System Accounts’ marry realism about laws with a denial of necessary connections among events. I argue that Hume’s predecessor, George Berkeley, offers a more sophisticated conception of laws, equally consistent with the absence of powers or necessary connections among events in the natural world. On this view, laws are not statements of regularities but the most general rules (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 963