In this manuscript, published here for the first time, Tarski explores the concept of logical notion. He draws on Klein's Erlanger Programm to locate the logical notions of ordinary geometry as those invariant under all transformations of space. Generalizing, he explicates the concept of logical notion of an arbitrary discipline.
Tarski’s pioneering work on truth has been thought by some to motivate a robust, correspondence-style theory of truth, and by others to motivate a deflationary attitude toward truth. I argue that Tarski’s work suggests neither; if it motivates any contemporary theory of truth, it motivates conceptual primitivism, the view that truth is a fundamental, indefinable concept. After outlining conceptual primitivism and Tarski’s theory of truth, I show how the two approaches to truth share much in common. While (...)Tarski does not explicitly accept primitivism, the view is open to him, and fits better with his formal work on truth than do correspondence or deflationary theories. Primitivists, in turn, may rely on Tarski’s insights in motivating their own perspective on truth. I conclude by showing how viewing Tarski through the primitivist lens provides a fresh response to some familiar charges from Putnam and Etchemendy. (shrink)
Many commentators on Alfred Tarski have, following Hartry Field, claimed that Tarski's truth-definition was motivated by physicalism—the doctrine that all facts, including semantic facts, must be reducible to physical facts. I claim, instead, that Tarski did not aim to reduce semantic facts to physical ones. Thus, Field's criticism that Tarski's truth-definition fails to fulfill physicalist ambitions does not reveal Tarski to be inconsistent, since Tarski's goal is not to vindicate physicalism. I argue that (...) class='Hi'>Tarski's only published remarks that speak approvingly of physicalism were written in unusual circumstances: Tarski was likely attempting to appease an audience of physicalists that he viewed as hostile to his ideas. In later sections I develop positive accounts of: (1) Tarski's reduction of semantic concepts; (2) Tarski's motivation to develop formal semantics in the particular way he does; and (3) the role physicalism plays in Tarski's thought. (shrink)
Alfred Tarski seems to endorse a partial conception of truth, the T-schema, which he believes might be clarified by the application of empirical methods, specifically citing the experimental results of Arne Næss (1938a). The aim of this paper is to argue that Næss’ empirical work confirmed Tarski’s semantic conception of truth, among others. In the first part, I lay out the case for believing that Tarski’s T-schema, while not the formal and generalizable Convention-T, provides a partial account (...) of truth that may be buttressed by an examination of the ordinary person’s views of truth. Then, I address a concern raised by Tarski’s contemporaries who saw Næss’ results as refuting Tarski’s semantic conception. Following that, I summarize Næss’ results. Finally, I will contend with a few objections that suggest a strict interpretation of Næss’ results might recommend an overturning of Tarski’s theory. (shrink)
Alfred Tarski was one of the greatest logicians of the twentieth century. His influence comes not merely through his own work but from the legion of students who pursued his projects, both in Poland and Berkeley. This chapter focuses on three key areas of Tarski's research, beginning with his groundbreaking studies of the concept of truth. Tarski's work led to the creation of the area of mathematical logic known as model theory and prefigured semantic approaches in the (...) philosophy of language and philosophical logic, such as Kripke's possible worlds semantics for modal logic. We also examine the paradoxical decomposition of the sphere known as the Banach–Tarski paradox. Finally we examine Tarski's work on decidable and undecidable theories, which he carried out in collaboration with students such as Mostowski, Presburger, Robinson and others. (shrink)
This article is a translation of the paper in Polish (Alfred Tarski - człowiek, który zdefiniował prawdę) published in Ruch Filozoficzny 4 (4) (2007). It is a personal Alfred Tarski memories based on my stay in Berkeley and visit the Alfred Tarski house for the invitation of Janusz Tarski.
This article is a characteristic of Alfred Tarski's profile, seen from a personal perspective after a long visit to Berkeley, at the invitation of Jan Tarski, in the house where Alfred Tarski lived. It takes into account the scientific achievements and research results of Tarski, as well as certain impressions of the author of these memories concerning the exotic life of this great Polish logician and mathematician of the 20th century.
Alfred Tarski was a nominalist. But he published almost nothing on his nominalist views, and until recently the only sources scholars had for studying Tarski’s nominalism were conversational reports from his friends and colleagues. However, a recently-discovered archival resource provides the most detailed information yet about Tarski’s nominalism. Tarski spent the academic year 1940-41 at Harvard, along with many of the leading lights of scientific philosophy: Carnap, Quine, Hempel, Goodman, and (for the fall semester) Russell. This (...) group met frequently to discuss logical and philosophical topics of shared interest. At these meetings, Carnap took dictation notes, which are now stored in the Archives of Scientific Philosophy. Interestingly, and somewhat surprisingly, the plurality of notes covers a proposal Tarski presents for a nominalist language of unified science. This chapter addresses the following questions about this project. What, precisely, is Tarski’s nominalist position? What rationales are given for Tarski’s nominalist stance—and are these rationales defensible? Finally, how is Tarskian nominalism of 1941 related to current nominalist projects? (shrink)
Tarski’s Convention T—presenting his notion of adequate definition of truth (sic)—contains two conditions: alpha and beta. Alpha requires that all instances of a certain T Schema be provable. Beta requires in effect the provability of ‘every truth is a sentence’. Beta formally recognizes the fact, repeatedly emphasized by Tarski, that sentences (devoid of free variable occurrences)—as opposed to pre-sentences (having free occurrences of variables)—exhaust the range of significance of is true. In Tarski’s preferred usage, it is part (...) of the meaning of true that attribution of being true to a given thing presupposes the thing is a sentence. Beta’s importance is further highlighted by the fact that alpha can be satisfied using the recursively definable concept of being satisfied by every infinite sequence, which Tarski explicitly rejects. Moreover, in Definition 23, the famous truth-definition, Tarski supplements “being satisfied by every infinite sequence” by adding the condition “being a sentence”. Even where truth is undefinable and treated by Tarski axiomatically, he adds as an explicit axiom a sentence to the effect that every truth is a sentence. Surprisingly, the sentence just before the presentation of Convention T seems to imply that alpha alone might be sufficient. Even more surprising is the sentence just after Convention T saying beta “is not essential”. Why include a condition if it is not essential? Tarski says nothing about this dissonance. Considering the broader context, the Polish original, the German translation from which the English was derived, and other sources, we attempt to determine what Tarski might have intended by the two troubling sentences which, as they stand, are contrary to the spirit, if not the letter, of several other passages in Tarski’s corpus. (shrink)
Hilary Putnam's famous arguments criticizing Tarski's theory of truth are evaluated. It is argued that they do not succeed to undermine Tarski's approach. One of the arguments is based on the problematic idea of a false instance of T-schema. The other ignores various issues essential for Tarski's setting such as language-relativity of truth definition.
This paper describes Tarski’s project of rehabilitating the notion of truth, previously considered dubious by many philosophers. The project was realized by providing a formal truth definition, which does not employ any problematic concept.
In the early 20th century, scepticism was common among philosophers about the very meaningfulness of the notion of truth – and of the related notions of denotation, definition etc. (i.e., what Tarski called semantical concepts). Awareness was growing of the various logical paradoxes and anomalies arising from these concepts. In addition, more philosophical reasons were being given for this aversion.1 The atmosphere changed dramatically with Alfred Tarski’s path-breaking contribution. What Tarski did was to show that, assuming that (...) the syntax of the object language is specified exactly enough, and that the metatheory has a certain amount of set theoretic power,2 one can explicitly define truth in the object language. And what can be explicitly defined can be eliminated. It follows that the defined concept cannot give rise to any inconsistencies (that is, paradoxes). This gave new respectability to the concept of truth and related notions. Nevertheless, philosophers’ judgements on the nature and philosophical relevance of Tarski’s work have varied. It is my aim here to review and evaluate some threads in this debate. (shrink)
Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in volume, but most of the Aristotelian corpus is not about (...) logic, whereas virtually everything written by Tarski concerns logic more or less directly. There is no doubt that Tarski wrote more on logic than any other author; he started publishing on logic in 1921 at the age of 20 and continued until his death at the age of 82. Two of his works appeared posthumously [Hist. Philos. Logic 7 (1986), no. 2, 143--154; MR0868748 (88b:03010); Tarski and Givant, A formalization of set theory without variables, Amer. Math. Soc., Providence, RI, 1987; MR0920815 (89g:03012)]. Tarski's voluminous writings were widely scattered in numerous journals, some quite rare. It has been extremely difficult to study the development of Tarski's thought and to trace the interconnections and interdependence of his various papers. Thanks to the present collection all this has changed, and it is likely that the increased accessibility of Tarski's papers will have the effect of increasing Tarski's already enormous influence. (shrink)
This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for (...) implication. The general introduction rule for negation has a similar form. Maximal formulas with implication or negation as main operator require reduction procedures of a more intricate kind not present in normalisation for intuitionist logic. (shrink)
Both Tarski and Gödel “prove” that provability can diverge from Truth. When we boil their claim down to its simplest possible essence it is really claiming that valid inference from true premises might not always derive a true consequence. This is obviously impossible.
The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...) and Skolem. Itinerary V surveys the work in logic connected to the Hilbert school, and itinerary V deals specifically with consistency proofs and metamathematics, including the incompleteness theorems. Itinerary VII traces the development of intuitionistic and many-valued logics. Itinerary VIII surveys the development of semantical notions from the early work on axiomatics up to Tarski's work on truth. (shrink)
This paper discusses the history of the confusion and controversies over whether the definition of consequence presented in the 11-page 1936 Tarski consequence-definition paper is based on a monistic fixed-universe framework?like Begriffsschrift and Principia Mathematica. Monistic fixed-universe frameworks, common in pre-WWII logic, keep the range of the individual variables fixed as the class of all individuals. The contrary alternative is that the definition is predicated on a pluralistic multiple-universe framework?like the 1931 Gödel incompleteness paper. A pluralistic multiple-universe framework recognizes (...) multiple universes of discourse serving as different ranges of the individual variables in different interpretations?as in post-WWII model theory. In the early 1960s, many logicians?mistakenly, as we show?held the ?contrary alternative? that Tarski 1936 had already adopted a Gödel-type, pluralistic, multiple-universe framework. We explain that Tarski had not yet shifted out of the monistic, Frege?Russell, fixed-universe paradigm. We further argue that between his Principia-influenced pre-WWII Warsaw period and his model-theoretic post-WWII Berkeley period, Tarski's philosophy underwent many other radical changes. (shrink)
The conventional notion of a formal system is adapted to conform to the sound deductive inference model operating on finite strings. Finite strings stipulated to have the semantic value of Boolean true provide the sound deductive premises. Truth preserving finite string transformation rules provide the valid deductive inference. Sound deductive conclusions are the result of these finite string transformation rules.
If the conclusion of the Tarski Undefinability Theorem was that some artificially constrained limited notions of a formal system necessarily have undecidable sentences, then Tarski made no mistake within his assumptions. When we expand the scope of his investigation to other notions of formal systems we reach an entirely different conclusion showing that Tarski's assumptions were wrong.
In this paper the importance of Tarski's truth definition is evaluated like a productive resource to criticize Nietzsche's nihilistic view and any pragmatic understanding of truth.
We discuss misinformation about “the liar antinomy” with special reference to Tarski’s 1933 truth-definition paper [1]. Lies are speech-acts, not merely sentences or propositions. Roughly, lies are statements of propositions not believed by their speakers. Speakers who state their false beliefs are often not lying. And speakers who state true propositions that they don’t believe are often lying—regardless of whether the non-belief is disbelief. Persons who state propositions on which they have no opinion are lying as much as those (...) who state propositions they believe to be false. Not all lies are statements of false propositions—some lies are true; some have no truth-value. People who only occasionally lie are not liars: roughly, liars repeatedly and habitually lie. Some half-truths are statements intended to mislead even though the speakers “interpret” the sentences used as expressing true propositions. Others are statements of propositions believed by the speakers to be questionable but without revealing their supposed problematic nature. The two “formulations” of “the antinomy of the liar” in [1], pp.157–8 and 161–2, have nothing to do with lying or liars. The first focuses on an “expression” Tarski calls ‘c’, namely the following. -/- c is not a true sentence -/- The second focuses on another “expression”, also called ‘c’, namely the following. -/- for all p, if c is identical with the sentence ‘p’, then not p -/- Without argumentation or even discussion, Tarski implies that these strange “expressions” are English sentences. [1] Alfred Tarski, The concept of truth in formalized languages, pp. 152–278, Logic, Semantics, Metamathematics, papers from 1923 to 1938, ed. John Corcoran, Hackett, Indianapolis 1983. -/- https://www.academia.edu/12525833/Sentence_Proposition_Judgment_Statement_and_Fact_Speaking_about_th e_Written_English_Used_in_Logic. (shrink)
CORCORAN REVIEWS THE 4 VOLUMES OF TARSKI’S COLLECTED PAPERS Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in (...) volume, but most of the Aristotelian corpus is not about logic, whereas virtually everything written by Tarski concerns logic more or less directly. There is no doubt that Tarski wrote more on logic than any other author; he started publishing on logic in 1921 at the age of 20 and continued until his death at the age of 82. (shrink)
The generalized conclusion of the Tarski and Gödel proofs: All formal systems of greater expressive power than arithmetic necessarily have undecidable sentences. Is not the immutable truth that Tarski made it out to be it is only based on his starting assumptions. -/- When we reexamine these starting assumptions from the perspective of the philosophy of logic we find that there are alternative ways that formal systems can be defined that make undecidability inexpressible in all of these formal (...) systems. (shrink)
Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.details
I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
Philosopher’s judgements on the philosophical value of Tarski’s contributions to the theory of truth have varied. For example Karl Popper, Rudolf Carnap, and Donald Davidson have, in their different ways, celebrated Tarski’s achievements and have been enthusiastic about their philosophical relevance. Hilary Putnam, on the other hand, pronounces that “[a]s a philosophical account of truth, Tarski’s theory fails as badly as it is possible for an account to fail.” Putnam has several alleged reasons for his dissatisfaction,1 but (...) one of them, the one I call the modal objection (cf. Raatikainen 2003), has been particularly influential. In fact, very similar objections have been presented over and over again in the literature. Already in 1954, Arthur Pap had criticized Tarski’s account with a similar argument (Pap 1954). Moreover, both Scott Soames (1984) and John Etchemendy (1988) use, with an explicit reference to Putnam, similar modal arguments in relation to Tarski. Richard Heck (1997), too, shows some sympathy for such considerations. Simon Blackburn (1984, Ch. 8) has put forward a related argument against Tarski. Recently, Marian David has criticized Tarski’s truth definition with an analogous argument as well (David 2004, p. 389-390).2 This line of argument is thus apparently one of the most influential critiques of Tarski. It is certainly worthy of serious attention. Nevertheless, I shall argue that, given closer scrutiny, it does not present such an acute problem for the Tarskian approach to truth as many philosophers think. But I also believe that it is important to understand clearly why this is so. Moreover, I think that a careful consideration of the issue illuminates certain important but somewhat neglected aspects of the Tarskian approach. (shrink)
The Bounds of Logic presents a new philosophical theory of the scope and nature of logic based on critical analysis of the principles underlying modern Tarskian logic and inspired by mathematical and linguistic development. Extracting central philosophical ideas from Tarski’s early work in semantics, Sher questions whether these are fully realized by the standard first-order system. The answer lays the foundation for a new, broader conception of logic. By generally characterizing logical terms, Sher establishes a fundamental result in semantics. (...) Her development of the notion of logicality for quantifiers and her work on branching are of great importance for linguistics. Sher outlines the boundaries of the new logic and points out some of the philosophical ramifications of the new view of logic for such issues as the logicist thesis, ontological commitment, the role of mathematics in logic, and the metaphysical underpinning of logic. She proposes a constructive definition of logical terms, reexamines and extends the notion of branching quantification, and discusses various linguistic issues and applications. (shrink)
Gómez-Torrente’s papers have made important contributions to vindicate Tarski’s model-theoretic account of the logical properties in the face of Etchemendy’s criticisms. However, at some points his vindication depends on interpreting the Tarskian account as purportedly modally deflationary, i.e., as not intended to capture the intuitive modal element in the logical properties, that logical consequence is (epistemic or alethic) necessary truth-preservation. Here it is argued that the views expressed in Tarski’s seminal work do not support this modally deflationary interpretation, (...) even if Tarski himself was sceptical about modalities. (shrink)
What is a logical constant? The question is addressed in the tradition of Tarski's definition of logical operations as operations which are invariant under permutation. The paper introduces a general setting in which invariance criteria for logical operations can be compared and argues for invariance under potential isomorphism as the most natural characterization of logical operations.
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to (...) be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. -/- Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. -/- However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. -/- The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion. (shrink)
Kit Fine has reawakened a puzzle about variables with a long history in analytic philosophy, labeling it “the antinomy of the variable”. Fine suggests that the antinomy demands a reconceptualization of the role of variables in mathematics, natural language semantics, and first-order logic. The difficulty arises because: (i) the variables ‘x’ and ‘y’ cannot be synonymous, since they make different contributions when they jointly occur within a sentence, but (ii) there is a strong temptation to say that distinct variables ‘x’ (...) and ‘y’ are synonymous, since sentences differing by the total, proper substitution of ‘x’ for ‘y’ always agree in meaning. We offer a precise interpretation of the challenge posed by (i) and (ii). We then develop some neglected passages of Tarski to show that his semantics for variables has the resources to resolve the antinomy without abandoning standard compositional semantics. (shrink)
Tarski's analysis of the concept of truth gives rise to a hierarchy of languages. Does this fragment the concept all the way to philosophical unacceptability? I argue it doesn't, drawing on a modification of Kaplan's theory of indexicals.
Halbach has argued that Tarski biconditionals are not ontologically conservative over classical logic, but his argument is undermined by the fact that he cannot include a theory of arithmetic, which functions as a theory of syntax. This article is an improvement on Halbach's argument. By adding the Tarski biconditionals to inclusive negative free logic and the universal closure of minimal arithmetic, which is by itself an ontologically neutral combination, one can prove that at least one thing exists. The (...) result can then be strengthened to the conclusion that infinitely many things exist. Those things are not just all Gödel codes of sentences but rather all natural numbers. Against this background inclusive negative free logic collapses into noninclusive free logic, which collapses into classical logic. The consequences for ontological deflationism with respect to truth are discussed. (shrink)
In this paper, two axiomatic theories T− and T′ are constructed, which are dual to Tarski’s theory T+ (1930) of deductive systems based on classical propositional calculus. While in Tarski’s theory T+ the primitive notion is the classical consequence function (entailment) Cn+, in the dual theory T− it is replaced by the notion of Słupecki’s rejection consequence Cn− and in the dual theory T′ it is replaced by the notion of the family Incons of inconsistent sets. The author (...) has proved that the theories T+, T−, and T′ are equivalent. (shrink)
The Introduction outlines, in a concise way, the history of the Lvov-Warsaw School – a most unique Polish school of worldwide renown, which pioneered trends combining philosophy, logic, mathematics and language. The author accepts that the beginnings of the School fall on the year 1895, when its founder Kazimierz Twardowski, a disciple of Franz Brentano, came to Lvov on his mission to organize a scientific circle. Soon, among the characteristic features of the School was its serious approach towards philosophical studies (...) and teaching of philosophy, dealing with philosophy and propagation of it as an intellectual and moral mission, passion for clarity and precision, as well as exchange of thoughts, and cooperation with representatives of other disciplines.The genesis is followed by a chronological presentation of the development of the School in the successive years. The author mentions all the key representatives of the School (among others, Ajdukiewicz, Lesniewski, Łukasiewicz,Tarski), accompanying the names with short descriptions of their achievements. The development of the School after Poland’s regaining independence in 1918 meant part of the members moving from Lvov to Warsaw, thus providing the other segment to the name – Warsaw School of Logic. The author dwells longer on the activity of the School during the Interwar period – the time of its greatest prosperity, which ended along with the outbreak of World War 2. Attempts made after the War to recreate the spirit of the School are also outlined and the names of followers are listed accordingly. The presentation ends with some concluding remarks on the contribution of the School to contemporary developments in the fields of philosophy, mathematical logic or computer science in Poland. (shrink)
The paper presents Alfred Tarski’s debate with the semantic antinomies: the basic Liar Paradox, and its more sophisticated versions, which are currently discussed in philosophy: Strengthen Liar Paradox, Cyclical Liar Paradox, Contingent Liar Paradox, Correct Liar Paradox, Card Paradox, Yablo’s Paradox and a few others. Since Tarski, himself did not addressed these paradoxes—neither in his famous work published in 1933, nor in later papers in which he developed the Semantic Theory of Truth—therefore, We try to defend his concept (...) of truth against these antinomies. It is demonstrated that Tarskian theory of truth is resistant to the paradoxes and it is still the best solution to avoid the antinomies and remain within a classical logic, that is, accepting the laws of noncontradiction, excluded middle, and the principle of bivalence. Thus, the goal of the paper is double—firstly, to show that none of the versions of the Liar Paradox’s is a serious threat to Tarski’s concept of truth, and secondly, that Semantic Theory of Truth allows to remain within classical logic, and at the same time, avoid antinomies—which makes it the most attractive among classical theories of truth. (shrink)
This papers discuss the place, if any, of Convention T (the condition of material adequacy of the proper definition of truth formulated by Tarski) in the truth-makers account offered by Kevin Mulligan, Peter Simons and Barry Smith. It is argued that although Tarski’s requirement seems entirely acceptable in the frameworks of truth-makers theories for the first-sight, several doubts arise under a closer inspection. In particular, T-biconditionals have no clear meaning as sentences about truth-makers. Thus, truth-makers theory cannot be (...) considered as the semantic theory of truth enriched by metaphysical (ontological) data. The problem of truth-makers for sentences about future events is discussed at the end of the paper. (shrink)
In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure induces naturally a (...) non-deterministic matrix. The aim of this paper is to obtain a swap structures semantics for some Ivlev-like modal systems proposed in 2015 by M. Coniglio, L. Fariñas del Cerro and N. Peron. Completeness results will be stated by means of the notion of Lindenbaum–Tarski swap structures, which constitute a natural generalization to multialgebras of the concept of Lindenbaum–Tarski algebras. (shrink)
One innovation in this paper is its identification, analysis, and description of a troubling ambiguity in the word ‘argument’. In one sense ‘argument’ denotes a premise-conclusion argument: a two-part system composed of a set of sentences—the premises—and a single sentence—the conclusion. In another sense it denotes a premise-conclusion-mediation argument—later called an argumentation: a three-part system composed of a set of sentences—the premises—a single sentence—the conclusion—and complex of sentences—the mediation. The latter is often intended to show that the conclusion follows from (...) the premises. The complementarity and interrelation of premise-conclusion arguments and premise-conclusion-mediation arguments resonate throughout the rest of the paper which articulates the conceptual structure found in logic from Aristotle to Tarski. This 1972 paper can be seen as anticipating Corcoran’s signature work: the more widely read 1989 paper, Argumentations and Logic, Argumentation 3, 17–43. MR91b:03006. The 1972 paper was translated into Portuguese. The 1989 paper was translated into Spanish, Portuguese, and Persian. (shrink)
Contemporary natural-language semantics began with the assumption that the meaning of a sentence could be modeled by a single truth condition, or by an entity with a truth-condition. But with the recent explosion of dynamic semantics and pragmatics and of work on non- truth-conditional dimensions of linguistic meaning, we are now in the midst of a shift away from a truth-condition-centric view and toward the idea that a sentence’s meaning must be spelled out in terms of its various roles in (...) conversation. This communicative turn in semantics raises historical questions: Why was truth-conditional semantics dominant in the first place, and why were the phenomena now driving the communicative turn initially ignored or misunderstood by truth-conditional semanticists? I offer a historical answer to both questions. The history of natural-language semantics—springing from the work of Donald Davidson and Richard Montague—began with a methodological toolkit that Frege, Tarski, Carnap, and others had created to better understand artificial languages. For them, the study of linguistic meaning was subservient to other explanatory goals in logic, philosophy, and the foundations of mathematics, and this subservience was reflected in the fact that they idealized away from all aspects of meaning that get in the way of a one-to-one correspondence between sentences and truth-conditions. The truth-conditional beginnings of natural- language semantics are best explained by the fact that, upon turning their attention to the empirical study of natural language, Davidson and Montague adopted the methodological toolkit assembled by Frege, Tarski, and Carnap and, along with it, their idealization away from non-truth-conditional semantic phenomena. But this pivot in explana- tory priorities toward natural language itself rendered the adoption of the truth-conditional idealization inappropriate. Lifting the truth-conditional idealization has forced semanticists to upend the conception of linguistic meaning that was originally embodied in their methodology. (shrink)
In his essay ‘“Wang’s Paradox”’, Crispin Wright proposes a solution to the Sorites Paradox (in particular, the form of it he calls the ‘Paradox of Sharp Boundaries’) that involves adopting intuitionistic logic when reasoning with vague predicates. He does not give a semantic theory which accounts for the validity of intuitionistic logic (and the invalidity of stronger logics) in that area. The present essay tentatively makes good the deficiency. By applying a theorem of Tarski, it shows that intuitionistic logic (...) is the strongest logic that may be applied, given certain semantic assumptions about vague predicates. The essay ends with an inconclusive discussion of whether those semantic assumptions should be accepted. (shrink)
Tarski "proved" that there cannot possibly be any correct formalization of the notion of truth entirely on the basis of an insufficiently expressive formal system that was incapable of recognizing and rejecting semantically incorrect expressions of language. -/- The only thing required to eliminate incompleteness, undecidability and inconsistency from formal systems is transforming the formal proofs of symbolic logic to use the sound deductive inference model.
The thesis deals with the concept of truth and the paradoxes of truth. Philosophical theories usually consider the concept of truth from a wider perspective. They are concerned with questions such as - Is there any connection between the truth and the world? And, if there is - What is the nature of the connection? Contrary to these theories, this analysis is of a logical nature. It deals with the internal semantic structure of language, the mutual semantic connection of sentences, (...) above all the connection of sentences that speak about the truth of other sentences and sentences whose truth they speak about. Truth paradoxes show that there is a problem in our basic understanding of the language meaning and they are a test for any proposed solution. It is important to make a distinction between the normative and analytical aspect of the solution. The former tries to ensure that paradoxes will not emerge. The latter tries to explain paradoxes. Of course, the practical aspect of the solution is also important. It tries to ensure a good framework for logical foundations of knowledge, for related problems in Artificial Intelligence and for the analysis of the natural language. Tarski’s analysis emphasized the T-scheme as the basic intuitive principle for the concept of truth, but it also showed its inconsistency with the classical logic. Tarski’s solution is to preserve the classical logic and to restrict the scheme: we can talk about the truth of sentences of a language only inside another essentially richer metalanguage. This solution is in harmony with the idea of reflexivity of thinking and it has become very fertile for mathematics and science in general. But it has normative nature | truth paradoxes are avoided in a way that in such frame we cannot even express paradoxical sentences. It is also too restrictive because, for the same reason we cannot express a situation in which there is a circular reference of some sentences to other sentences, no matter how common and harmless such a situation may be. Kripke showed that there is no natural restriction to the T-scheme and we have to accept it. But then we must also accept the riskiness of sentences | the possibility that under some circumstances a sentence does not have the classical truth value but it is undetermined. This leads to languages with three-valued semantics. Kripke did not give any definite model, but he gave a theoretical frame for investigations of various models | each fixed point in each three-valued semantics can be a model for the concept of truth. The solutions also have normative nature | we can express the paradoxical sentences, but we escape a contradiction by declaring them undetermined. Such a solution could become an analytical solution only if we provide the analysis that would show in a substantial way that it is the solution that models the concept of truth. Kripke took some steps in the direction of finding an analytical solution. He preferred the strong Kleene three-valued semantics for which he wrote it was "appropriate" but did not explain why it was appropriate. One reason for such a choice is probably that Kripke finds paradoxical sentences meaningful. This eliminates the weak Kleene three valued semantics which corresponds to the idea that paradoxical sentences are meaningless, and thus indeterminate. Another reason could be that the strong Kleene three valued semantics has the so-called investigative interpretation. According to this interpretation, this semantics corresponds to the classical determination of truth, whereby all sentences that do not have an already determined value are temporarily considered indeterminate. When we determine the truth value of these sentences, then we can also determine the truth value of the sentences that are composed of them. Kripke supplemented this investigative interpretation with an intuition about learning the concept of truth. That intuition deals with how we can teach someone who is a competent user of an initial language (without the predicate of truth T) to use sentences that contain the predicate T. That person knows which sentences of the initial language are true and which are not. We give her the rule to assign the T attribute to the former and deny that attribute to the latter. In that way, some new sentences that contain the predicate of truth, and which were indeterminate until then, become determinate. So the person gets a new set of true and false sentences with which he continues the procedure. This intuition leads directly to the smallest fixed point of strong Kleene semantics as an analytically acceptable model for the logical notion of truth. However, since this process is usually saturated only on some transfinite ordinal, this intuition, by climbing on ordinals, increasingly becomes a metaphor. This thesis is an attempt to give an analytical solution to truth paradoxes. It gives an analysis of why and how some sentences lack the classical truth value. The starting point is basic intuition according to which paradoxical sentences are meaningful (because we understand what they are talking about well, moreover we use it for determining their truth values), but they witness the failure of the classical procedure of determining their truth value in some "extreme" circumstances. Paradoxes emerge because the classical procedure of the truth value determination does not always give a classically supposed (and expected) answer. The analysis shows that such an assumption is an unjustified generalization from common situations to all situations. We can accept the classical procedure of the truth value determination and consequently the internal semantic structure of the language, but we must reject the universality of the exterior assumption of a successful ending of the procedure. The consciousness of this transforms paradoxes to normal situations inherent to the classical procedure. Some sentences, although meaningful, when we evaluate them according to the classical truth conditions, the classical conditions do not assign them a unique value. We can assign to them the third value, \undetermined", as a sign of definitive failure of the classical procedure. An analysis of the propagation of the failure in the structure of sentences gives exactly the strong Kleene three-valued semantics, not as an investigative procedure, as it occurs in Kripke, but as the classical truth determination procedure accompanied by the propagation of its own failure. An analysis of the circularities in the determination of the classical truth value gives the criterion of when the classical procedure succeeds and when it fails, when the sentences will have the classical truth value and when they will not. It turns out that the truth values of sentences thus obtained give exactly the largest intrinsic fixed point of the strong Kleene three-valued semantics. In that way, the argumentation is given for that choice among all fixed points of all monotone three-valued semantics for the model of the logical concept of truth. An immediate mathematical description of the fixed point is given, too. It has also been shown how this language can be semantically completed to the classical language which in many respects appears a natural completion of the process of thinking about the truth values of the sentences of a given language. Thus the final model is a language that has one interpretation and two systems of sentence truth evaluation, primary and final evaluation. The language through the symbol T speaks of its primary truth valuation, which is precisely the largest intrinsic fixed point of the strong Kleene three valued semantics. Its final truth valuation is the semantic completion of the first in such a way that all sentences that are not true in the primary valuation are false in the final valuation. (shrink)
The aim of this paper is to show that the account of objective truth taken for granted by logicians at least since the publication in 1933 of Tarski’s “The Concept of Truth in Formalized Languages” arose out of a tradition of philosophical thinking initiated by Bolzano and Brentano. The paper shows more specifically that certain investigations of states of affairs and other objectual correlates of judging acts, investigations carried out by Austrian and Polish philosophers around the turn of the (...) century, formed part of the background of views that led to standard current accounts of the objectivity of truth. It thus lends support to speculations on the role of Brentano and his heirs in contemporary logical philosophy advanced by Jan Wolenski in his masterpiece of 1989 on the Logic and philosophy in the Lvov-Warsaw School. (shrink)
Gila Sher interviewed by Chen Bo: -/- I. Academic Background and Earlier Research: 1. Sher’s early years. 2. Intellectual influence: Kant, Quine, and Tarski. 3. Origin and main Ideas of The Bounds of Logic. 4. Branching quantifiers and IF logic. 5. Preparation for the next step. -/- II. Foundational Holism and a Post-Quinean Model of Knowledge: 1. General characterization of foundational holism. 2. Circularity, infinite regress, and philosophical arguments. 3. Comparing foundational holism and foundherentism. 4. A post-Quinean model of (...) knowledge. 5. Intellect and figuring out. 6. Comparing foundational holism with Quine’s holism. 7. Evaluation of Quine’s Philosophy -/- III. Substantive Theory of Truth and Relevant Issues: 1. Outline of Sher’s substantive theory of truth. 2. Criticism of deflationism and treatment of the Liar. 3. Comparing Sher’s substantive theory of truth with Tarski’s theory of truth. -/- IV. A New Philosophy of Logic and Comparison with Other Theories: 1. Foundational account of logic. 2. Standard of logicality, set theory and logic. 3. Psychologism, Hanna’s and Maddy’s conceptions of logic. 4. Quine’s theses about the revisability of logic. -/- V. Epilogue. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.