Switch to: References

Add citations

You must login to add citations.
  1. Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Generalized Revenge.Julien Murzi & Lorenzo Rossi - 2019 - Australasian Journal of Philosophy 98 (1):153-177.
    Since Saul Kripke’s influential work in the 1970s, the revisionary approach to semantic paradox—the idea that semantic paradoxes must be solved by weakening classical logic—has been increasingly popular. In this paper, we present a new revenge argument to the effect that the main revisionary approaches breed new paradoxes that they are unable to block.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. Much of Stoic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Semantical analysis of weak Kleene logics.Roberto Ciuni & Massimiliano Carrara - 2019 - Journal of Applied Non-Classical Logics 29 (1):1-36.
    This paper presents a semantical analysis of the Weak Kleene Logics Kw3 and PWK from the tradition of Bochvar and Halldén. These are three-valued logics in which a formula takes the third value if at least one of its components does. The paper establishes two main results: a characterisation result for the relation of logical con- sequence in PWK – that is, we individuate necessary and sufficient conditions for a set.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Obligations, Sophisms and Insolubles.Stephen Read - 2013 - National Research University “Higher School of Economics” - (Series WP6 “Humanities”).
    The focus of the paper is a sophism based on the proposition ‘This is Socrates’ found in a short treatise on obligational casus attributed to William Heytesbury. First, the background to the puzzle in Walter Burley’s traditional account of obligations (the responsio antiqua), and the objections and revisions made by Richard Kilvington and Roger Swyneshed, are presented. All six types of obligations described by Burley are outlined, including sit verum, the type used in the sophism. Kilvington and Swyneshed disliked the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • „Kauza Afthonios“: Ilustrácia k otázke správneho riešenia antických paradoxov.Vladimir Marko - 2014 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 1 (20):88-103.
    The article deals with the question of correct reconstruction of and solutions to the ancient paradoxes. Analyzing one contemporary example of a reconstruction of the so-called Crocodile Paradox, taken from Sorensen’s A Brief History of Paradox, the author shows how the original pattern of paradox could have been incorrectly transformed in its meaning by overlooking its adequate historical background. Sorensen’s quoting of Aphthonius, as the author of a certain solution to the paradox, seems to be a systematic failure since the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof Theory of Finite-valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Hybridized Paracomplete and Paraconsistent Logics.Colin Caret - 2017 - Australasian Journal of Logic 14 (1):281-325.
    This paper contributes to the study of paracompleteness and paraconsistency. We present two logics that address the following questions in novel ways. How can the paracomplete theorist characterize the formulas that defy excluded middle while maintaining that not all formulas are of this kind? How can the paraconsistent theorist characterize the formulas that obey explosion while still maintaining that there are some formulas not of this kind?
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Defining LFIs and LFUs in extensions of infectious logics.Szmuc Damian Enrique - 2016 - Journal of Applied Non-Classical Logics 26 (4):286-314.
    The aim of this paper is to explore the peculiar case of infectious logics, a group of systems obtained generalizing the semantic behavior characteristic of the -fragment of the logics of nonsense, such as the ones due to Bochvar and Halldén, among others. Here, we extend these logics with classical negations, and we furthermore show that some of these extended systems can be properly regarded as logics of formal inconsistency and logics of formal undeterminedness.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • LP, K3, and FDE as Substructural Logics.Lionel Shapiro - 2017 - In Arazim Pavel & Lávička Tomáš (eds.), The Logica Yearbook 2016. College Publications.
    Building on recent work, I present sequent systems for the non-classical logics LP, K3, and FDE with two main virtues. First, derivations closely resemble those in standard Gentzen-style systems. Second, the systems can be obtained by reformulating a classical system using nonstandard sequent structure and simply removing certain structural rules (relatives of exchange and contraction). I clarify two senses in which these logics count as “substructural.”.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What is morphological computation? On how the body contributes to cognition and control.Vincent Müller & Matej Hoffmann - 2017 - Artificial Life 23 (1):1-24.
    The contribution of the body to cognition and control in natural and artificial agents is increasingly described as “off-loading computation from the brain to the body”, where the body is said to perform “morphological computation”. Our investigation of four characteristic cases of morphological computation in animals and robots shows that the ‘off-loading’ perspective is misleading. Actually, the contribution of body morphology to cognition and control is rarely computational, in any useful sense of the word. We thus distinguish (1) morphology that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)End Extensions Which are Models of a Given Theory.A. M. Dawes - 1977 - Mathematical Logic Quarterly 23 (27-30):463-467.
    Download  
     
    Export citation  
     
    Bookmark  
  • Supervaluationism and Its Logics.Achille C. Varzi - 2007 - Mind 116 (463):633-676.
    What sort of logic do we get if we adopt a supervaluational semantics for vagueness? As it turns out, the answer depends crucially on how the standard notion of validity as truth preservation is recasted. There are several ways of doing that within a supervaluational framework, the main alternative being between “global” construals (e.g., an argument is valid iff it preserves truth-under-all-precisifications) and “local” construals (an argument is valid iff, under all precisifications, it preserves truth). The former alternative is by (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Computationalism, The Church–Turing Thesis, and the Church–Turing Fallacy.Gualtiero Piccinini - 2007 - Synthese 154 (1):97-120.
    The Church–Turing Thesis (CTT) is often employed in arguments for computationalism. I scrutinize the most prominent of such arguments in light of recent work on CTT and argue that they are unsound. Although CTT does nothing to support computationalism, it is not irrelevant to it. By eliminating misunderstandings about the relationship between CTT and computationalism, we deepen our appreciation of computationalism as an empirical hypothesis.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modeling the suppression task under weak completion and well-founded semantics.Emmanuelle-Anna Dietz, Steffen Hölldobler & Christoph Wernhard - 2014 - Journal of Applied Non-Classical Logics 24 (1-2):61-85.
    Formal approaches that aim at representing human reasoning should be evaluated based on how humans actually reason. One way of doing so is to investigate whether psychological findings of human reasoning patterns are represented in the theoretical model. The computational logic approach discussed here is the so-called weak completion semantics which is based on the three-valued ᴌukasiewicz logic. We explain how this approach adequately models Byrne’s suppression task, a psychological study where the experimental results show that participants’ conclusions systematically deviate (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The two modes of identifying objects: descriptive and holistic for concrete objects; recursive and ostensive for abstract objects.Miriam L. Yevick - 1978 - Behavioral and Brain Sciences 1 (2):253-254.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the connection between Nonstandard Analysis and Constructive Analysis.Sam Sanders - forthcoming - Logique Et Analyse.
    Constructive Analysis and Nonstandard Analysis are often characterized as completely antipodal approaches to analysis. We discuss the possibility of capturing the central notion of Constructive Analysis (i.e. algorithm, finite procedure or explicit construction) by a simple concept inside Nonstandard Analysis. To this end, we introduce Omega-invariance and argue that it partially satisfies our goal. Our results provide a dual approach to Erik Palmgren's development of Nonstandard Analysis inside constructive mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • A pragmatic theory of truth and ontology.Stewart Edward Granger - unknown
    At the heart of my pragmatic theory of truth and ontology is a view of the relation between language and reality which I term internal justification: a way of explaining how sentences may have truth-values which we cannot discover without invoking the need for the mystery of a correspondence relation. The epistemology upon which the theory depend~ is fallibilist and holistic ; places heavy reliance on modal idioms ; and leads to the conclusion that current versions of realism and anti-realism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does the deduction theorem fail for modal logic?Raul Hakli & Sara Negri - 2012 - Synthese 187 (3):849-867.
    Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Proceedings of Sinn und Bedeutung 9.Emar Maier, Corien Bary & Janneke Huitink (eds.) - 2005 - Nijmegen Centre for Semantics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Descriptions in Mathematical Logic.Gerard R. Renardel - 1984 - Studia Logica 43 (3):281-294.
    After a discussion of the different treatments in the literature of vacuous descriptions, the notion of descriptor is slightly generalized to function descriptor Ⅎ $\overset \rightarrow \to{y}$, so as to form partial functions φ = Ⅎ $y.A$ which satisfy $\forall \overset \rightarrow \to{x}z\leftrightarrow y=z))$. We use logic with existence predicate, as introduced by D. S. Scott, to handle partial functions, and prove that adding function descriptors to a theory based on such a logic is conservative. For theories with quantification over (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Odel's dialectica interpretation and its two-way stretch.Solomon Feferman - manuscript
    In 1958, G¨ odel published in the journal Dialectica an interpretation of intuitionistic number theory in a quantifier-free theory of functionals of finite type; this subsequently came to be known as G¨ odel’s functional or Dialectica interpretation. The article itself was written in German for an issue of that journal in honor of Paul Bernays’ 70th birthday. In 1965, Bernays told G¨.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • My route to arithmetization.Solomon Feferman - 1997 - Theoria 63 (3):168-181.
    I had the pleasure of renewing my acquaintance with Per Lindström at the meeting of the Seventh Scandinavian Logic Symposium, held in Uppsala in August 1996. There at lunch one day, Per said he had long been curious about the development of some of the ideas in my paper [1960] on the arithmetization of metamathematics. In particular, I had used the construction of a non-standard definition !* of the set of axioms of P (Peano Arithmetic) to show that P + (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s Induction-Axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Intensionality and the gödel theorems.David D. Auerbach - 1985 - Philosophical Studies 48 (3):337--51.
    Philosophers of language have drawn on metamathematical results in varied ways. Extensionalist philosophers have been particularly impressed with two, not unrelated, facts: the existence, due to Frege/Tarski, of a certain sort of semantics, and the seeming absence of intensional contexts from mathematical discourse. The philosophical import of these facts is at best murky. Extensionalists will emphasize the success and clarity of the model theoretic semantics; others will emphasize the relative poverty of the mathematical idiom; still others will question the aptness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Vagueness and blurry sets.Nicholas J. J. Smith - 2004 - Journal of Philosophical Logic 33 (2):165-235.
    This paper presents a new theory of vagueness, which is designed to retain the virtues of the fuzzy theory, while avoiding the problem of higher-order vagueness. The theory presented here accommodates the idea that for any statement S₁ to the effect that 'Bob is bald' is x true, for x in [0, 1], there should be a further statement S₂ which tells us how true S₁ is, and so on - that is, it accommodates higher-order vagueness without resorting to the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (2 other versions)Step by recursive step: Church's analysis of effective calculability.Wilfried Sieg - 1997 - Bulletin of Symbolic Logic 3 (2):154-180.
    Alonzo Church's mathematical work on computability and undecidability is well-known indeed, and we seem to have an excellent understanding of the context in which it arose. The approach Church took to the underlying conceptual issues, by contrast, is less well understood. Why, for example, was "Church's Thesis" put forward publicly only in April 1935, when it had been formulated already in February/March 1934? Why did Church choose to formulate it then in terms of Gödel's general recursiveness, not his own λ (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)On recursively enumerable and arithmetic models of set theory.Michael O. Rabin - 1958 - Journal of Symbolic Logic 23 (4):408-416.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Trial and error predicates and the solution to a problem of Mostowski.Hilary Putnam - 1965 - Journal of Symbolic Logic 30 (1):49-57.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • The last mathematician from Hilbert's göttingen: Saunders Mac Lane as philosopher of mathematics.Colin McLarty - 2007 - British Journal for the Philosophy of Science 58 (1):77-112.
    While Saunders Mac Lane studied for his D.Phil in Göttingen, he heard David Hilbert's weekly lectures on philosophy, talked philosophy with Hermann Weyl, and studied it with Moritz Geiger. Their philosophies and Emmy Noether's algebra all influenced his conception of category theory, which has become the working structure theory of mathematics. His practice has constantly affirmed that a proper large-scale organization for mathematics is the most efficient path to valuable specific results—while he sees that the question of which results are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Admissible ordinals and intrinsic consistency.Michael Machtey - 1970 - Journal of Symbolic Logic 35 (3):389-400.
    Download  
     
    Export citation  
     
    Bookmark  
  • The mathematical import of zermelo's well-ordering theorem.Akihiro Kanamori - 1997 - Bulletin of Symbolic Logic 3 (3):281-311.
    Set theory, it has been contended, developed from its beginnings through a progression ofmathematicalmoves, despite being intertwined with pronounced metaphysical attitudes and exaggerated foundational claims that have been held on its behalf. In this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Gödel numberings of partial recursive functions.Hartley Rogers - 1958 - Journal of Symbolic Logic 23 (3):331-341.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • A logic stronger than intuitionism.Sabine Görnemann - 1971 - Journal of Symbolic Logic 36 (2):249-261.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • String theory.John Corcoran, William Frank & Michael Maloney - 1974 - Journal of Symbolic Logic 39 (4):625-637.
    For each positive n , two alternative axiomatizations of the theory of strings over n alphabetic characters are presented. One class of axiomatizations derives from Tarski's system of the Wahrheitsbegriff and uses the n characters and concatenation as primitives. The other class involves using n character-prefixing operators as primitives and derives from Hermes' Semiotik. All underlying logics are second order. It is shown that, for each n, the two theories are definitionally equivalent [or synonymous in the sense of deBouvere]. It (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • On the weak Kleene scheme in Kripke's theory of truth.James Cain & Zlatan Damnjanovic - 1991 - Journal of Symbolic Logic 56 (4):1452-1468.
    It is well known that the following features hold of AR + T under the strong Kleene scheme, regardless of the way the language is Gödel numbered: 1. There exist sentences that are neither paradoxical nor grounded. 2. There are 2ℵ0 fixed points. 3. In the minimal fixed point the weakly definable sets (i.e., sets definable as {n∣ A(n) is true in the minimal fixed point where A(x) is a formula of AR + T) are precisely the Π1 1 sets. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The truth is never simple.John P. Burgess - 1986 - Journal of Symbolic Logic 51 (3):663-681.
    The complexity of the set of truths of arithmetic is determined for various theories of truth deriving from Kripke and from Gupta and Herzberger.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • The impact of the lambda calculus in logic and computer science.Henk Barendregt - 1997 - Bulletin of Symbolic Logic 3 (2):181-215.
    One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Unified Theory of Truth and Paradox.Lorenzo Rossi - 2019 - Review of Symbolic Logic 12 (2):209-254.
    The sentences employed in semantic paradoxes display a wide range of semantic behaviours. However, the main theories of truth currently available either fail to provide a theory of paradox altogether, or can only account for some paradoxical phenomena by resorting to multiple interpretations of the language. In this paper, I explore the wide range of semantic behaviours displayed by paradoxical sentences, and I develop a unified theory of truth and paradox, that is a theory of truth that also provides a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ins and outs of Russell's theory of types.Ali Bora Enderer - unknown
    The thesis examines A.N. Whitehead and B. Russell’s Ramified Theory of Types. It consists of three parts. The first part is devoted to understanding the source of impredicativity implicit in the induction principle. The question I raise here is whether second-order explicit definitions are responsible for cases when impredicativity turns pathological. The second part considers the interplay between the vicious-circle principle and the no-class theory. The main goal is to give an explanation for the predicative restrictions entailed by the vicious-circle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dualities for Płonka Sums.Stefano Bonzio - 2018 - Logica Universalis 12 (3-4):327-339.
    Płonka sums consist of an algebraic construction similar, in some sense, to direct limits, which allows to represent classes of algebras defined by means of regular identities. Recently, Płonka sums have been connected to logic, as they provide algebraic semantics to logics obtained by imposing a syntactic filter to given logics. In this paper, I present a very general topological duality for classes of algebras admitting a Płonka sum representation in terms of dualisable algebras.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Independence Day?Matthew Mandelkern & Daniel Rothschild - 2019 - Journal of Semantics 36 (2):193-210.
    Two recent and influential papers, van Rooij 2007 and Lassiter 2012, propose solutions to the proviso problem that make central use of related notions of independence—qualitative in the first case, probabilistic in the second. We argue here that, if these solutions are to work, they must incorporate an implicit assumption about presupposition accommodation, namely that accommodation does not interfere with existing qualitative or probabilistic independencies. We show, however, that this assumption is implausible, as updating beliefs with conditional information does not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Three-Valued Fregean Quantification Logic.Minghui Ma & Yuanlei Lin - 2019 - Journal of Philosophical Logic 48 (2):409-423.
    Kripke’s Fregean quantification logic FQ fails to formalize the usual first-order logic with identity due to the interpretation of the conditional operator. Motivated by Kripke’s syntax and semantics, the three-valued Fregean quantification logic FQ3 is proposed. This three valued logic differs from Kleene and Łukasiewicz’s three-valued logics. The logic FQ3 is decidable. A sound and complete Hilbert-style axiomatic system for the logic FQ3 is presented.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Duality for Involutive Bisemilattices.Stefano Bonzio, Andrea Loi & Luisa Peruzzi - 2019 - Studia Logica 107 (2):423-444.
    We establish a duality between the category of involutive bisemilattices and the category of semilattice inverse systems of Stone spaces, using Stone duality from one side and the representation of involutive bisemilattices as Płonka sum of Boolean algebras, from the other. Furthermore, we show that the dual space of an involutive bisemilattice can be viewed as a GR space with involution, a generalization of the spaces introduced by Gierz and Romanowska equipped with an involution as additional operation.
    Download  
     
    Export citation  
     
    Bookmark   9 citations