Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Logical foundations of probability.Rudolf Carnap - 1950 - Chicago]: Chicago University of Chicago Press.
    APA PsycNET abstract: This is the first volume of a two-volume work on Probability and Induction. Because the writer holds that probability logic is identical with inductive logic, this work is devoted to philosophical problems concerning the nature of probability and inductive reasoning. The author rejects a statistical frequency basis for probability in favor of a logical relation between two statements or propositions. Probability "is the degree of confirmation of a hypothesis (or conclusion) on the basis of some given evidence (...)
    Download  
     
    Export citation  
     
    Bookmark   966 citations  
  • Fixing Language: An Essay on Conceptual Engineering.Herman Cappelen - 2018 - Oxford: Oxford University Press.
    Herman Cappelen investigates how language and other representational devices can go wrong, and how to fix them. We use language to understand and talk about the world, but what if our language has deficiencies that prevent it from playing that role? How can we revise our concepts, and what are the limits on revision?
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Syntactic Structures.Noam Chomsky - 1957 - Mouton.
    Noam Chomsky's book on syntactic structures is a serious attempts on the part of a linguist to construct within the tradition of scientific theory-construction ...
    Download  
     
    Export citation  
     
    Bookmark   725 citations  
  • The origin of concepts.Susan Carey - 2009 - New York: Oxford University Press.
    Only human beings have a rich conceptual repertoire with concepts like tort, entropy, Abelian group, mannerism, icon and deconstruction. How have humans constructed these concepts? And once they have been constructed by adults, how do children acquire them? While primarily focusing on the second question, in The Origin of Concepts , Susan Carey shows that the answers to both overlap substantially. Carey begins by characterizing the innate starting point for conceptual development, namely systems of core cognition. Representations of core cognition (...)
    Download  
     
    Export citation  
     
    Bookmark   506 citations  
  • Word and Object.Willard Van Orman Quine - 1960 - Les Etudes Philosophiques 17 (2):278-279.
    Download  
     
    Export citation  
     
    Bookmark   2998 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   623 citations  
  • Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 1997 - Oxford, England: Oxford University Press USA.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   304 citations  
  • (1 other version)Logical Foundations of Probability.Rudolf Carnap - 1950 - Mind 62 (245):86-99.
    Download  
     
    Export citation  
     
    Bookmark   908 citations  
  • Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than 4 (...)
    Download  
     
    Export citation  
     
    Bookmark   183 citations  
  • Core systems of number.Stanislas Dehaene, Elizabeth Spelke & Lisa Feigenson - 2004 - Trends in Cognitive Sciences 8 (7):307-314.
    Download  
     
    Export citation  
     
    Bookmark   310 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2000 - Philosophical Quarterly 50 (198):120-123.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • (1 other version)Core knowledge.Elizabeth S. Spelke - 2000 - American Psychologist 55 (11):1233-1243.
    Complex cognitive skills such as reading and calculation and complex cognitive achievements such as formal science and mathematics may depend on a set of building block systems that emerge early in human ontogeny and phylogeny. These core knowledge systems show characteristic limits of domain and task specificity: Each serves to represent a particular class of entities for a particular set of purposes. By combining representations from these systems, however human cognition may achieve extraordinary flexibility. Studies of cognition in human infants (...)
    Download  
     
    Export citation  
     
    Bookmark   215 citations  
  • (1 other version)Philosophy of Mathematics: Structure and Ontology.Stewart Shapiro - 2002 - Philosophy and Phenomenological Research 65 (2):467-475.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • The Child's Conception of Number.J. Piaget - 1953 - British Journal of Educational Studies 1 (2):183-184.
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Mathematical Cognition: A Case of Enculturation.Richard Menary - 2015 - Open Mind.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Children's understanding of counting.Karen Wynn - 1990 - Cognition 36 (2):155-193.
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition.Tali Leibovich, Naama Katzin, Maayan Harel & Avishai Henik - 2017 - Behavioral and Brain Sciences 40.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures.Pierre Pica, Stanislas Dehaene, Elizabeth Spelke & Véronique Izard - 2008 - Science 320 (5880):1217-1220.
    The mapping of numbers onto space is fundamental to measurement and to mathematics. Is this mapping a cultural invention or a universal intuition shared by all humans regardless of culture and education? We probed number-space mappings in the Mundurucu, an Amazonian indigene group with a reduced numerical lexicon and little or no formal education. At all ages, the Mundurucu mapped symbolic and nonsymbolic numbers onto a logarithmic scale, whereas Western adults used linear mapping with small or symbolic numbers and logarithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • (1 other version)Philosophy of Mathematics.Stewart Shapiro - 2003 - In Peter Clark & Katherine Hawley, Philosophy of science today. New York: Oxford University Press.
    Moving beyond both realist and anti-realist accounts of mathematics, Shapiro articulates a "structuralist" approach, arguing that the subject matter of a mathematical theory is not a fixed domain of numbers that exist independent of each other, but rather is the natural structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Reason's Nearest Kin: Philosophies of Arithmetic from Kant to Carnap.Michael Potter - 2000 - Oxford and New York: Oxford University Press.
    This is a critical examination of the astonishing progress made in the philosophical study of the properties of the natural numbers from the 1880s to the 1930s. Reassessing the brilliant innovations of Frege, Russell, Wittgenstein, and others, which transformed philosophy as well as our understanding of mathematics, Michael Potter places arithmetic at the interface between experience, language, thought, and the world.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Conceptual engineering for mathematical concepts.Fenner Stanley Tanswell - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 61 (8):881-913.
    ABSTRACTIn this paper I investigate how conceptual engineering applies to mathematical concepts in particular. I begin with a discussion of Waismann’s notion of open texture, and compare it to Shapiro’s modern usage of the term. Next I set out the position taken by Lakatos which sees mathematical concepts as dynamic and open to improvement and development, arguing that Waismann’s open texture applies to mathematical concepts too. With the perspective of mathematics as open-textured, I make the case that this allows us (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Bootstrapping of integer concepts: the stronger deviant-interpretation challenge.Markus Pantsar - 2021 - Synthese 199 (3-4):5791-5814.
    Beck presents an outline of the procedure of bootstrapping of integer concepts, with the purpose of explicating the account of Carey. According to that theory, integer concepts are acquired through a process of inductive and analogous reasoning based on the object tracking system, which allows individuating objects in a parallel fashion. Discussing the bootstrapping theory, Beck dismisses what he calls the "deviant-interpretation challenge"—the possibility that the bootstrapped integer sequence does not follow a linear progression after some point—as being general to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • What makes us Smart? Core knowledge and natural language.Elizabeth S. Spelke - 2003 - In Dedre Gentner & Susan Goldin-Meadow, Language in Mind: Advances in the Study of Language and Thought. MIT Press. pp. 277--311.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • How counting represents number: What children must learn and when they learn it.Barbara W. Sarnecka & Susan Carey - 2008 - Cognition 108 (3):662-674.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Numerical cognition and mathematical realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought.Stanislas Dehaene & Elizabeth Brannon (eds.) - 2011 - Oxford University Press.
    A uniquely integrative work, this volume provides a much needed compilation of primary source material to researchers from basic neuroscience, psychology, developmental science, neuroimaging, neuropsychology and theoretical biology. * The ...
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Speaking with Shadows: A Study of Neo‐Logicism.Fraser MacBride - 2003 - British Journal for the Philosophy of Science 54 (1):103-163.
    According to the species of neo-logicism advanced by Hale and Wright, mathematical knowledge is essentially logical knowledge. Their view is found to be best understood as a set of related though independent theses: (1) neo-fregeanism-a general conception of the relation between language and reality; (2) the method of abstraction-a particular method for introducing concepts into language; (3) the scope of logic-second-order logic is logic. The criticisms of Boolos, Dummett, Field and Quine (amongst others) of these theses are explicated and assessed. (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • An empirically feasible approach to the epistemology of arithmetic.Markus Pantsar - 2014 - Synthese 191 (17):4201-4229.
    Recent years have seen an explosion of empirical data concerning arithmetical cognition. In this paper that data is taken to be philosophically important and an outline for an empirically feasible epistemological theory of arithmetic is presented. The epistemological theory is based on the empirically well-supported hypothesis that our arithmetical ability is built on a protoarithmetical ability to categorize observations in terms of quantities that we have already as infants and share with many nonhuman animals. It is argued here that arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Does learning to count involve a semantic induction?Kathryn Davidson, Kortney Eng & David Barner - 2012 - Cognition 123 (1):162-173.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Can Bootstrapping Explain Concept Learning?Jacob Beck - 2017 - Cognition 158 (C):110–121.
    Susan Carey's account of Quinean bootstrapping has been heavily criticized. While it purports to explain how important new concepts are learned, many commentators complain that it is unclear just what bootstrapping is supposed to be or how it is supposed to work. Others allege that bootstrapping falls prey to the circularity challenge: it cannot explain how new concepts are learned without presupposing that learners already have those very concepts. Drawing on discussions of concept learning from the philosophical literature, this article (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Categories, Structures, and the Frege-Hilbert Controversy: The Status of Meta-mathematics.Stewart Shapiro - 2005 - Philosophia Mathematica 13 (1):61-77.
    There is a parallel between the debate between Gottlob Frege and David Hilbert at the turn of the twentieth century and at least some aspects of the current controversy over whether category theory provides the proper framework for structuralism in the philosophy of mathematics. The main issue, I think, concerns the place and interpretation of meta-mathematics in an algebraic or structuralist approach to mathematics. Can meta-mathematics itself be understood in algebraic or structural terms? Or is it an exception to the (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • From numerical concepts to concepts of number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.
    Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Six does not just mean a lot: preschoolers see number words as specific.B. Sarnecka - 2004 - Cognition 92 (3):329-352.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • (1 other version)Concatenation as a basis for arithmetic.W. V. Quine - 1946 - Journal of Symbolic Logic 11 (4):105-114.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Open questions and a proposal: A critical review of the evidence on infant numerical abilities.Lisa Cantrell & Linda B. Smith - 2013 - Cognition 128 (3):331-352.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Exact equality and successor function: Two key concepts on the path towards understanding exact numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that all numbers can be generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Do analog number representations underlie the meanings of young children’s verbal numerals?Susan Carey, Anna Shusterman, Paul Haward & Rebecca Distefano - 2017 - Cognition 168 (C):243-255.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Friedrich Waismann: The Open Texture of Analytic Philosophy.Dejan Makovec & Stewart Shapiro (eds.) - 2019 - Palgrave Macmillan.
    This edited collection covers Friedrich Waismann's most influential contributions to twentieth-century philosophy of language: his concepts of open texture and language strata, his early criticism of verificationism and the analytic-synthetic distinction, as well as their significance for experimental and legal philosophy. -/- In addition, Waismann's original papers in ethics, metaphysics, epistemology and the philosophy of mathematics are here evaluated. They introduce Waismann's theory of action along with his groundbreaking work on fiction, proper names and Kafka's Trial. -/- Waismann is known (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Pre-History of Mathematical Structuralism.Erich H. Reck & Georg Schiemer (eds.) - 2020 - Oxford: Oxford University Press.
    This edited volume explores the previously underacknowledged 'pre-history' of mathematical structuralism, showing that structuralism has deep roots in the history of modern mathematics. The contributors explore this history along two distinct but interconnected dimensions. First, they reconsider the methodological contributions of major figures in the history of mathematics. Second, they re-examine a range of philosophical reflections from mathematically-inclinded philosophers like Russell, Carnap, and Quine, whose work led to profound conclusions about logical, epistemological, and metaphysic.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Philosophical Significance of Tennenbaum’s Theorem.T. Button & P. Smith - 2012 - Philosophia Mathematica 20 (1):114-121.
    Tennenbaum's Theorem yields an elegant characterisation of the standard model of arithmetic. Several authors have recently claimed that this result has important philosophical consequences: in particular, it offers us a way of responding to model-theoretic worries about how we manage to grasp the standard model. We disagree. If there ever was such a problem about how we come to grasp the standard model, then Tennenbaum's Theorem does not help. We show this by examining a parallel argument, from a simpler model-theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • An association between understanding cardinality and analog magnitude representations in preschoolers.Jennifer B. Wagner & Susan C. Johnson - 2011 - Cognition 119 (1):10-22.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Computational Structuralism &dagger.Volker Halbach & Leon Horsten - 2005 - Philosophia Mathematica 13 (2):174-186.
    According to structuralism in philosophy of mathematics, arithmetic is about a single structure. First-order theories are satisfied by models that do not instantiate this structure. Proponents of structuralism have put forward various accounts of how we succeed in fixing one single structure as the intended interpretation of our arithmetical language. We shall look at a proposal that involves Tennenbaum's theorem, which says that any model with addition and multiplication as recursive operations is isomorphic to the standard model of arithmetic. On (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Can Church’s thesis be viewed as a Carnapian explication?Paula Quinon - 2019 - Synthese 198 (Suppl 5):1047-1074.
    Turing and Church formulated two different formal accounts of computability that turned out to be extensionally equivalent. Since the accounts refer to different properties they cannot both be adequate conceptual analyses of the concept of computability. This insight has led to a discussion concerning which account is adequate. Some authors have suggested that this philosophical debate—which shows few signs of converging on one view—can be circumvented by regarding Church’s and Turing’s theses as explications. This move opens up the possibility that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)The Logical Foundations of Probability. [REVIEW]Rudolf Carnap - 1950 - Journal of Philosophy 60 (13):362-364.
    Download  
     
    Export citation  
     
    Bookmark   580 citations  
  • Natural number and natural geometry.Elizabeth S. Spelke - 2011 - In Stanislas Dehaene & Elizabeth Brannon, Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press. pp. 287--317.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Learning to represent exact numbers.Barbara W. Sarnecka - 2015 - Synthese 198 (Suppl 5):1001-1018.
    This article focuses on how young children acquire concepts for exact, cardinal numbers. I believe that exact numbers are a conceptual structure that was invented by people, and that most children acquire gradually, over a period of months or years during early childhood. This article reviews studies that explore children’s number knowledge at various points during this acquisition process. Most of these studies were done in my own lab, and assume the theoretical framework proposed by Carey. In this framework, the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Recantation or any old w-sequence would do after all.Paul Benacerraf - 1996 - Philosophia Mathematica 4 (2):184-189.
    What Numbers Could Not Be’) that an adequate account of the numbers and our arithmetic practice must satisfy not only the conditions usually recognized to be necessary: (a) identify some w-sequence as the numbers, and (b) correctly characterize the cardinality relation that relates a set to a member of that sequence as its cardinal number—it must also satisfy a third condition: the ‘<’ of the sequence must be recursive. This paper argues that adding this further condition was a mistake—any w-sequence (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Models and Computability.W. Dean - 2014 - Philosophia Mathematica 22 (2):143-166.
    Computationalism holds that our grasp of notions like ‘computable function’ can be used to account for our putative ability to refer to the standard model of arithmetic. Tennenbaum's Theorem has been repeatedly invoked in service of this claim. I will argue that not only do the relevant class of arguments fail, but that the result itself is most naturally understood as having the opposite of a reference-fixing effect — i.e., rather than securing the determinacy of number-theoretic reference, Tennenbaum's Theorem points (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Evolutionary foundations of the approximate number system.E. M. Brannon & D. J. Merritt - 2011 - In Stanislas Dehaene & Elizabeth Brannon, Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   11 citations