The paper considers a generalization of Peano arithmetic, Hilbertarithmetic as the basis of the world in a Pythagorean manner. Hilbertarithmetic unifies the foundations of mathematics (Peano arithmetic and set theory), foundations of physics (quantum mechanics and information), and philosophical transcendentalism (Husserl’s phenomenology) into a formal theory and mathematical structure literally following Husserl’s tracе of “philosophy as a rigorous science”. In the pathway to that objective, Hilbertarithmetic identifies by itself information (...) related to finite sets and series and quantum information referring to infinite one as both appearing in three “hypostases”: correspondingly, mathematical, physical and ontological, each of which is able to generate a relevant science and area of cognition. Scientific transcendentalism is a falsifiable counterpart of philosophical transcendentalism. The underlying concept of the totality can be interpreted accordingly also mathematically, as consistent completeness, and physically, as the universe defined not empirically or experimentally, but as that ultimate wholeness containing its externality into itself. (shrink)
Hilbertarithmetic in a wide sense, including Hilbertarithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also (...) justifying that unity by quantum neo-Pythagoreanism links it to the opposition of propositional logic, to which Gentzen’s cut rule refers immediately, on the one hand, and the linguistic and mathematical theory of metaphor therefore sharing the same structure borrowed from Hilbertarithmetic in a wide sense. An example by hermeneutical circle modeled as a dual pair of a syllogism (accomplishable also by a Turing machine) and a relevant metaphor (being a formal and logical mistake and thus fundamentally inaccessible to any Turing machine) visualizes human understanding corresponding also to Gentzen’s cut elimination and the Gödel dichotomy about the relation of arithmetic to set theory: either incompleteness or contradiction. The metaphor as the complementing “half” of any understanding of hermeneutical circle is what allows for that Gödel-like incompleteness to be overcome in human thought. (shrink)
The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbertarithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of (...) a subspace of Hilbert space and especially its uniqueness can be unambiguously linked to that of partial algebra or incommensurability, or interpreted as a relation of the two dual branches of Hilbertarithmetic in a wide sense. The investigation of the last relation allows for FLT and Gleason’s theorem to be equated in a sense, as two dual counterparts, and the former to be inferred from the latter, as well as vice versa under an additional condition relevant to the Gödel incompleteness of arithmetic to set theory. The qubit Hilbert space itself in turn can be interpreted by the unity of FLT and Gleason’s theorem. The proof of such a fundamental result in number theory as FLT by means of Hilbertarithmetic in a wide sense can be generalized to an idea about “quantum number theory”. It is able to research mathematically the origin of Peano arithmetic from Hilbertarithmetic by mediation of the “nonstandard bijection” and its two dual branches inherently linking it to information theory. Then, infinitesimal analysis and its revolutionary application to physics can be also re-realized in that wider context, for example, as an exploration of the way for physical quantity of time (respectively, for time derivative in any temporal process considered in physics) to appear at all. Finally, the result admits a philosophical reflection of how any hierarchy arises or changes itself only thanks to its dual and idempotent counterpart. (shrink)
In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...) = 3” has been known for a long time. It needs “Hilbert mathematics”, which is inherently complete unlike the usual “Gödel mathematics”, and based on “Hilbertarithmetic” to generalize Peano arithmetic in a way to unify it with the qubit Hilbert space of quantum information. An “epoché to infinity” (similar to Husserl’s “epoché to reality”) is necessary to map Hilbertarithmetic into Peano arithmetic in order to be relevant to Fermat’s age. Furthermore, the two linked semigroups originating from addition and multiplication and from the Peano axioms in the final analysis can be postulated algebraically as independent of each other in a “Hamilton” modification of arithmetic supposedly equivalent to Peano arithmetic. The inductive proof of FLT can be deduced absolutely precisely in that Hamilton arithmetic and the pransfered as a corollary in the standard Peano arithmetic furthermore in a way accessible in Fermat’s epoch and thus, to himself in principle. A future, second part of the paper is outlined, getting directed to an eventual proof of the case “n=3” based on the qubit Hilbert space and the Kochen-Specker theorem inferable from it. (shrink)
Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...) other well-known mathematical observations: (1) the paradox of Achilles and the Turtle; (2) the transitivity of the relation of equality. Analogically to (1), one can juxtapose the paradox of the Liar (for Lewis Carroll’s paradox) and that of the arrow (for “Achilles and the Turtle”), i.e. a logical paradox, on the one hand, and an aporia of motion, on the other hand, suggesting a shared formal structure of both, which can be called “ontological”, on which basis “motion” studied by physics and “conclusion” studied by logic can be unified being able to bridge logic and physics philosophically in a Hegelian manner: even more, the bridge can be continued to mathematics in virtue of (2), which forces the equality (for its property of transitivity) of any two quantities to be postponed analogically ad lib and ad infinitum. The paper shows that Hilbertarithmetic underlies naturally Lewis Carroll’s paradox admitting at least three interpretations linked to each other by it: mathematical, physical and logical. Thus, it can be considered as both generalization and solution of his paradox therefore naturally unifying the completeness of quantum mechanics (i.e. the absence of hidden variables) and eventual completeness of mathematics as the same and isomorphic to the completeness of propositional logic in relation to set theory as a first-order logic (in the sense of Gödel (1930)’s completeness theorems). (shrink)
The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...) relevant mathematical structure is Hilbertarithmetic in a wide sense, in the framework of which Hilbertarithmetic in a narrow sense and the qubit Hilbert space are dual to each other. A few cases involving set theory are possible: (1) only within the case “n=3” and implicitly, within any next level of “n” in Fermat’s equation; (2) the identification of the case “n=3” and the general case utilizing the axiom of choice rather than the axiom of induction. If the former is the case, the application of set theory and arithmetic can remain disjunctively divided: set theory, “locally”, within any level; and arithmetic, “globally”, to all levels. If the latter is the case, the proof is thoroughly within set theory. Thus, the relevance of Yablo’s paradox to the statement of Fermat’s last theorem is avoided in both cases. The idea of “arithmetic mechanics” is sketched: it might deduce the basic physical dimensions of mechanics (mass, time, distance) from the axioms of arithmetic after a relevant generalization, Furthermore, a future Part III of the paper is suggested: FLT by mediation of Hilbertarithmetic in a wide sense can be considered as another expression of Gleason’s theorem in quantum mechanics: the exclusions about (n = 1, 2) in both theorems as well as the validity for all the rest values of “n” can be unified after the theory of quantum information. The availability (respectively, non-availability) of solutions of Fermat’s equation can be proved as equivalent to the non-availability (respectively, availability) of a single probabilistic measure as to Gleason’s theorem. (shrink)
The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbertarithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbertarithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical (...) problems of the present such as Fermat’s last theorem, four-color theorem as well as its new-formulated generalization as “four-letter theorem”, Poincaré’s conjecture, “P vs NP” are considered over again, from and within the new-founding conceptual reference frame of information, as illustrations. Simple or crucially simplifying solutions and proofs are demonstrated. The link between the consistent completeness of the system mathematics-physics on the ground of information and all the great mathematical problems of the present (rather than the enumerated ones) is suggested. (shrink)
In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished (...) material presented in Chapter 2 shows that a completeness proof for propositional logic was found by Hilbert and his assistant Paul Bernays already in 1917--18, and that Bernays's contribution was much greater than is commonly acknowledged. Aside from logic, the main technical contribution of Hilbert's Program are the development of formal mathematical theories and proof-theoretical investigations thereof, in particular, consistency proofs. In this respect Wilhelm Ackermann's 1924 dissertation is a milestone both in the development of the Program and in proof theory in general. Ackermann gives a consistency proof for a second-order version of primitive recursive arithmetic which, surprisingly, explicitly uses a finitistic version of transfinite induction up to www . He also gave a faulty consistency proof for a system of second-order arithmetic based on Hilbert's &egr;-substitution method. Detailed analyses of both proofs in Chapter 3 shed light on the development of finitism and proof theory in the 1920s as practiced in Hilbert's school. ;In a series of papers, Charles Parsons has attempted to map out a notion of mathematical intuition which he also brings to bear on Hilbert's finitism. According to him, mathematical intuition fails to be able to underwrite the kind of intuitive knowledge Hilbert thought was attainable by the finitist. It is argued in Chapter 4 that the extent of finitistic knowledge which intuition can provide is broader than Parsons supposes. According to another influential analysis of finitism due to W. W. Tait, finitist reasoning coincides with primitive recursive reasoning. The acceptance of non-primitive recursive methods in Ackermann's dissertation presented in Chapter 3, together with additional textual evidence presented in Chapter 4, shows that this identification is untenable as far as Hilbert's conception of finitism is concerned. Tait's conception, however, differs from Hilbert's in important respects, yet it is also open to criticisms leading to the conclusion that finitism encompasses more than just primitive recursive reasoning. (shrink)
This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s (...) axiomatic approach was guided primarily by model theoretical concerns. Accordingly, the ultimate aim of his consistency program was to prove the model-theoretical consistency of mathematical theories. It turns out that for the purpose of carrying out such consistency proofs, a suitable modification of the ordinary first-order logic is needed. To effect this modification, independence-friendly logic is needed as the appropriate conceptual framework. It is then shown how the model theoretical consistency of arithmetic can be proved by using IF logic as its basic logic. Hilbert’s other problems, manifesting themselves as aspects (ii), (iii), and (iv)—most notably the problem of the status of the axiom of choice, the problem of the role of the law of excluded middle, and the problem of giving an elementary account of quantification—can likewise be approached by using the resources of IF logic. It is shown that by means of IF logic one can carry out Hilbertian solutions to all these problems. The two major results concerning aspects (ii), (iii) and (iv) are the following: (a) The axiom of choice is a logical principle; (b) The law of excluded middle divides metamathematical methods into elementary and non-elementary ones. It is argued that these results show that IF logic helps to vindicate Hilbert’s nominalist philosophy of mathematics. On the basis of an elementary approach to logic, which enriches the expressive resources of ordinary first-order logic, this dissertation shows how the different problems that Hilbert discovered in the foundations of mathematics can be solved. (shrink)
Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08. -/- Constance Reid was an insider of the Berkeley-Stanford logic circle. Her San Francisco home was in Ashbury Heights near the homes of logicians such as Dana Scott and John Corcoran. Her sister Julia Robinson was one of the top mathematical logicians of her generation, as was Julia’s husband Raphael Robinson for whom Robinson Arithmetic was named. Julia was a Tarski PhD and, in (...) recognition of a distinguished career, was elected President of the American Mathematics Society. https://en.wikipedia.org/wiki/Julia_Robinson http://www.awm-math.org/noetherbrochure/Robinson82.html. (shrink)
It is argued that the goal of Hilbert's program was to prove the model-theoretical consistency of different axiom systems. This Hilbert proposed to do by proving the deductive consistency of the relevant systems. In the extended independence-friendly logic there is a complete proof method for the contradictory negations of independence-friendly sentences, so the existence of a single proposition that is not disprovable from arithmetic axioms can be shown formally in the extended independence-friendly logic. It can also be (...) proved by means of independence-friendly logic that proof-theoretical consistency of a sentence S implies the existence of a model in which S is not false. Hence the consistency of the axioms of arithmetic in the sense of being not-false in a model can be proved. (shrink)
Husserl (a mathematician by education) remained a few famous and notable philosophical “slogans” along with his innovative doctrine of phenomenology directed to transcend “reality” in a more general essence underlying both “body” and “mind” (after Descartes) and called sometimes “ontology” (terminologically following his notorious assistant Heidegger). Then, Husserl’s tradition can be tracked as an idea for philosophy to be reinterpreted in a way to be both generalized and mathenatizable in the final analysis. The paper offers a pattern borrowed from the (...) theory of information and quantum information (therefore relating philosophy to both mathematics and physics) to formalize logically a few key concepts of Husserl’s phenomenology such as “epoché” “eidetic, phenomenological, and transcendental reductions” as well as the identification of “phenomenological, transcendental, and psychological reductions” in a way allowing for that identification to be continued to “eidetic reduction” (and thus to mathematics). The approach is tested by an independent and earlier idea of Husserl, “logical arithmetic” (parallelly implemented in mathematics by Whitehead and Russell’s Principia) as what “Hilbertarithmetic” generalizing Peano arithmetics is interpreted. A basic conclusion states for the unification of philosophy, mathematics, and physics in their foundations and fundamentals to be the Husserl tradition both tracked to its origin (in the being itself after Heidegger or after Husserl’s “zu Sache selbst”) and embodied in the development of human cognition in the third millennium. (shrink)
The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to be causal by (...) the conservation of quantum information and in accordance with Born’s interpretation; (3) it introduces inverse causality, “backwards in time”, observable “forwards in time” as the fundamentally random probability density distribution of all possible measurements of any physical quantity in quantum mechanics; (4) it involves a kind of “bidirectional causality” unifying (4.1) the classical determinism of cause and effect, (4.2) the probabilistic causality of quantum mechanics, and (4.3) the reversibility of any coherent state; (5) it identifies determinism with the function successor in Peano arithmetic, and its proper generalized causality with the information function successor in Hilbertarithmetic. (shrink)
The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (e.g. that (...) of the Big Bang), which can be described exhaustively by means of 16 numbers (4 for position, 4 for velocity, and 8 for acceleration) independently of time, but in space-time continuum, and still one, 17th number is necessary for the mass of rest of the observer in it. The same 17 numbers describing exhaustively a privileged reference frame thus granted to be “zero”, respectively a certain violation of all the three symmetries of the Standard model or the “record” in a qubit in general, can be represented as 17 elementary wave functions (or classes of wave functions) after the bijection of natural and transfinite natural (ordinal) numbers in Hilbertarithmetic and further identified as those corresponding to the 17 elementary of particles of the Standard model. Two generalizations of the relevant concepts of general relativity are introduced: (1) “discrete reference frame” to the class of all arbitrarily accelerated reference frame constituting a smooth manifold; (2) a still more general principle of relativity to the general principle of relativity, and meaning the conservation of quantum information as to all discrete reference frames as to the smooth manifold of all reference frames of general relativity. Then, the bijective transition from an accelerated reference frame to the 17 elementary wave functions of the Standard model can be interpreted by the still more general principle of relativity as the equivalent redescription of a privileged reference frame: smooth into a discrete one. The conservation of quantum information related to the generalization of the concept of reference frame can be interpreted as restoring the concept of the ether, an absolutely immovable medium and reference frame in Newtonian mechanics, to which the relative motion can be interpreted as an absolute one, or logically: the relations, as properties. The new ether is to consist of qubits (or quantum information). One can track the conceptual pathway of the “ether” from Newtonian mechanics via special relativity, via general relativity, via quantum mechanics to the theory of quantum information (or “quantum mechanics and information”). The identification of entanglement and gravity can be considered also as a ‘byproduct” implied by the transition from the smooth “ether of special and general relativity’ to the “flat” ether of quantum mechanics and information. The qubit ether is out of the “temporal screen” in general and is depicted on it as both matter and energy, both dark and visible. (shrink)
Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of (...) infinity. The most utilized example of those generalizations is the complex Hilbert space. Any generalization of Peano arithmetic consistent to infinity, e.g. the complex Hilbert space, can serve as a foundation for mathematics to found itself and by itself. (shrink)
Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. (...) That's why it can Ье applied to itself, proving that it is an undecidaЬle statement. It seems to Ье а too strange kind of proposition: its validity implies its undecidabllity. If the validity of а statement implies its untruth, then it is either untruth (reductio ad absurdum) or an antinomy (if also its negation implies its validity). А theory that contains а contradiction implies any statement. Appearing of а proposition, whose validity implies its undecidabllity, is due to the statement that claims its unprovability. Obviously, it is а proposition of self-referential type. Ву Gбdel's words, it is correlative with Richard's or liar paradox, or even with any other semantic or mathematical one. What is the cost, if а proposition of that special kind is used in а proof? ln our opinion, the price is analogous to «applying» of а contradictory in а theory: any statement turns out to Ье undecidaЬ!e. Ifthe first incompleteness theorem is an undecidaЬ!e theorem, then it is impossiЬle to prove that the very completeness of Peano arithmetic is also an tmdecidaЬle statement (the second incompleteness theorem). Hilbert's program for ап arithmetical self-foundation of matheшatics is partly rehabllitated: only partly, because it is not decidaЬ!e and true, but undecidaЬle; that's wby both it and its negation шау Ье accepted as true, however not siшultaneously true. The first incompleteness theoreш gains the statute of axiom of а very special, semi-philosophical kind: it divides mathematics as whole into two parts: either Godel шathematics or Нilbert matheшatics. Нilbert's program of self-foundation ofmatheшatic is valid only as to the latter. (shrink)
The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classical” quantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That new understanding of quantum indistinguishability is linked to (...) the distinction of classical (Maxwell-Boltzmann) versus quantum (either Fermi-Dirac or Bose-Einstein) statistics. The latter can be generalized to classes of wave functions (“empty” qubits) and represented exhaustively in Hilbertarithmetic therefore connectible to the foundations of mathematics, more precisely, to the interrelations of propositional logic and set theory sharing the structure of Boolean algebra and two anti-isometric copies of Peano arithmetic. (shrink)
The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after (...) measurement. The quantity of quantum information is the transfinite ordinal number corresponding to the infinity series in question. The transfinite ordinal numbers can be defined as ambiguously corresponding “transfinite natural numbers” generalizing the natural numbers of Peano arithmetic to “Hilbertarithmetic” allowing for the unification of the foundations of mathematics and quantum mechanics. (shrink)
Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches (...) for completeness. This paper investigates both conditions and philosophical background necessary for that modification. The main conclusion is that the concept of infinity as underlying contemporary mathematics cannot be reduced to a single Peano arithmetic, but to at least two ones independent of each other. Intuitionism, quantum mechanics, and Gentzen’s approaches to completeness an even Hilbert’s finitism can be unified from that viewpoint. Mathematics may found itself by a way of finitism complemented by choice. The concept of information as the quantity of choices underlies that viewpoint. Quantum mechanics interpretable in terms of information and quantum information is inseparable from mathematics and its foundation. (shrink)
The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave (...) function describing a state of a quantum system) as its value as the bound variable. A qubit is equivalent to the generalization of ‘bit’ from the set of two equally probable alternatives to an infinite set of alternatives. Then, that Hilbert space is considered as a generalization of Peano arithmetic where any unit is substituted by a qubit and thus the set of natural number is mappable within any qubit as the complex internal structure of the unit or a different state of it. Thus, any mathematical structure being reducible to set theory is re-presentable as a set of wave functions and a subspace of the separable complex Hilbert space, and it can be identified as the category of all categories for any functor represents an operator transforming a set (or subspace) of the separable complex Hilbert space into another. Thus, category theory is isomorphic to the Hilbert-space representation of set theory & Peano arithmetic as above. Given any value of quantum information, i.e. a point in the separable complex Hilbert space, it always admits two equally acceptable interpretations: the one is physical, the other is mathematical. The former is a wave function as the exhausted description of a certain state of a certain quantum system. The latter chooses a certain mathematical structure among a certain category. Thus there is no way to be distinguished a mathematical structure from a physical state for both are described exhaustedly as a value of quantum information. This statement in turn can be utilized to be defined quantum information by the identity of any mathematical structure to a physical state, and also vice versa. Further, that definition is equivalent to both standard definition as the normed superposition and in-variance of Hamilton and Lagrange interpretation of mechanical motion introduced in the beginning of the paper. Then, the concept of information symmetry can be involved as the symmetry between three elements or two pairs of elements: Lagrange representation and each counterpart of the pair of Hamilton representation. The sense and meaning of information symmetry may be visualized by a single (quantum) bit and its interpretation as both (privileged) reference frame and the symmetries of the Standard model. (shrink)
Introduction to mathematical logic, part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what (...) may be labelled a finitary, evidence-based, `agnostic' perspective and argue that Brouwerian atheism is merely a restricted perspective within the finitary agnostic perspective, whilst Hilbertian theism contradicts the finitary agnostic perspective. -/- We then consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary, evidence-based, definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways. -/- We show that the two definitions correspond to two distinctly different---not necessarily evidence-based but complementary---assignments of satisfaction and truth to the compound formulas of PA over N. -/- We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both the complementary interpretations; and conclude some unsuspected constructive consequences of such complementarity for the foundations of mathematics, logic, philosophy, and the physical sciences. -/- . (shrink)
We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and (...) truth to the compound formulas of PA over N---I_PA(N; SV ) and I_PA(N; SC). We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both I_PA(N; SV ) and I_PA(N; SC). We then show: (a) that if we assume the satisfaction and truth of the compound formulas of PA are always non-finitarily decidable under I_PA(N; SV ), then this assignment corresponds to the classical non-finitary putative standard interpretation I_PA(N; S) of PA over the domain N; and (b) that the satisfaction and truth of the compound formulas of PA are always finitarily decidable under the assignment I_PA(N; SC), from which we may finitarily conclude that PA is consistent. We further conclude that the appropriate inference to be drawn from Goedel's 1931 paper on undecidable arithmetical propositions is that we can define PA formulas which---under interpretation---are algorithmically verifiable as always true over N, but not algorithmically computable as always true over N. We conclude from this that Lucas' Goedelian argument is validated if the assignment I_PA(N; SV ) can be treated as circumscribing the ambit of human reasoning about `true' arithmetical propositions, and the assignment I_PA(N; SC) as circumscribing the ambit of mechanistic reasoning about `true' arithmetical propositions. (shrink)
Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can be (...) interpreted. The correspondence can be further extended to the foundation of mathematics by set theory and arithmetic, and thus to all mathematics. (shrink)
Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine – (...) Is continuality universal? – Diffeomorphism and velocity – Einstein’s general principle of relativity – „Mach’s principle“ – The Skolemian relativity of the discrete and the continuous – The counterexample in § 6 of their paper – About the classical tautology which is untrue being replaced by the statements about commeasurable quantum-mechanical quantities – Logical hidden parameters – The undecidability of the hypothesis about hidden parameters – Wigner’s work and и Weyl’s previous one – Lie groups, representations, and psi-function – From a qualitative to a quantitative expression of relativity − psi-function, or the discrete by the random – Bartlett’s approach − psi-function as the characteristic function of random quantity – Discrete and/ or continual description – Quantity and its “digitalized projection“ – The idea of „velocity−probability“ – The notion of probability and the light speed postulate – Generalized probability and its physical interpretation – A quantum description of macro-world – The period of the as-sociated de Broglie wave and the length of now – Causality equivalently replaced by chance – The philosophy of quantum information and religion – Einstein’s thesis about “the consubstantiality of inertia ant weight“ – Again about the interpretation of complex velocity – The speed of time – Newton’s law of inertia and Lagrange’s formulation of mechanics – Force and effect – The theory of tachyons and general relativity – Riesz’s representation theorem – The notion of covariant world line – Encoding a world line by psi-function – Spacetime and qubit − psi-function by qubits – About the physical interpretation of both the complex axes of a qubit – The interpretation of the self-adjoint operators components – The world line of an arbitrary quantity – The invariance of the physical laws towards quantum object and apparatus – Hilbert space and that of Minkowski – The relationship between the coefficients of -function and the qubits – World line = psi-function + self-adjoint operator – Reality and description – Does a „curved“ Hilbert space exist? – The axiom of choice, or when is possible a flattening of Hilbert space? – But why not to flatten also pseudo-Riemannian space? – The commutator of conjugate quantities – Relative mass – The strokes of self-movement and its philosophical interpretation – The self-perfection of the universe – The generalization of quantity in quantum physics – An analogy of the Feynman formalism – Feynman and many-world interpretation – The psi-function of various objects – Countable and uncountable basis – Generalized continuum and arithmetization – Field and entanglement – Function as coding – The idea of „curved“ Descartes product – The environment of a function – Another view to the notion of velocity-probability – Reality and description – Hilbert space as a model both of object and description – The notion of holistic logic – Physical quantity as the information about it – Cross-temporal correlations – The forecasting of future – Description in separable and inseparable Hilbert space – „Forces“ or „miracles“ – Velocity or time – The notion of non-finite set – Dasein or Dazeit – The trajectory of the whole – Ontological and onto-theological difference – An analogy of the Feynman and many-world interpretation − psi-function as physical quantity – Things in the world and instances in time – The generation of the physi-cal by mathematical – The generalized notion of observer – Subjective or objective probability – Energy as the change of probability per the unite of time – The generalized principle of least action from a new view-point – The exception of two dimensions and Fermat’s last theorem. (shrink)
A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...) means. Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction. A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis. Accepting or rejecting the principle, two kinds of mathematics appear differing from each other by its relation to reality. Accepting the principle, mathematics has to include reality within itself in a kind of Pythagoreanism. These two kinds are called in paper correspondingly Hilbert mathematics and Gödel mathematics. The sketch of the proof of the principle demonstrates that the generalization of Peano arithmetic as above can be interpreted as a model of Hilbert mathematics into Gödel mathematics therefore showing that the former is not less consistent than the latter, and the principle is an independent axiom. An information interpretation of Hilbert mathematics is involved. It is a kind of ontology of information. Thus the problem which of the two mathematics is more relevant to our being is discussed. An information interpretation of the Schrödinger equation is involved to illustrate the above problem. (shrink)
Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...) - and $\tau $ -formulas and using the translation of quantifiers into $\varepsilon $ - and $\tau $ -terms to intermediate logics. It is shown that conservativity over the propositional base logic also holds for such intermediate ${\varepsilon \tau }$ -calculi. The “extended” first $\varepsilon $ -theorem holds if the base logic is finite-valued Gödel–Dummett logic, and fails otherwise, but holds for certain provable formulas in infinite-valued Gödel logic. The second $\varepsilon $ -theorem also holds for finite-valued first-order Gödel logics. The methods used to prove the extended first $\varepsilon $ -theorem for infinite-valued Gödel logic suggest applications to theories of arithmetic. (shrink)
Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in (...) the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert’s program due to Simpson [1988], and predicativism in the extended form due to Feferman and Schütte. -/- Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Pi-1-1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Pi-1-1-CA0. (shrink)
A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore (...) as the coincidence of model and reality. The paper discusses the option and fact of that coincidence it its base: the fundamental postulate formulated by Niels Bohr about what quantum mechanics studies (unlike all classical science). Quantum mechanics involves and develops further both identification and disjunctive distinction of the global space of the apparatus and the local space of the investigated quantum entity as complementary to each other. This results into the analogical complementarity of model and reality in quantum mechanics. The apparatus turns out to be both absolutely “transparent” and identically coinciding simultaneously with the reflected quantum reality. Thus, the coincidence of model and reality is postulated as necessary condition for cognition in quantum mechanics by Bohr’s postulate and further, embodied in its formalism of the separable complex Hilbert space, in turn, implying the theorems of the absence of hidden variables (or the equivalent to them “conservation of energy conservation” in quantum mechanics). What the apparatus and measured entity exchange cannot be energy (for the different exponents of energy), but quantum information (as a certain, unambiguously determined wave function) therefore a generalized law of conservation, from which the conservation of energy conservation is a corollary. Particularly, the local and global space (rigorously justified in the Standard model) share the complementarity isomorphic to that of model and reality in the foundation of quantum mechanics. On that background, one can think of the troubles of “quantum gravity” as fundamental, direct corollaries from the postulates of quantum mechanics. Gravity can be defined only as a relation or by a pair of non-orthogonal separable complex Hilbert space attachable whether to two “parts” or to a whole and its parts. On the contrary, all the three fundamental interactions in the Standard model are “flat” and only “properties”: they need only a single separable complex Hilbert space to be defined. (shrink)
A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having (...) a remarkable symmetry to the axiom of choice. The quantity of information is interpreted as the number of elementary choices (bits). Quantum information is seen as the generalization of information to infinite sets or series. The equivalence of that model to a quantum computer is demonstrated. The condition for the Turing machines to be independent of each other is reduced to the state of Nash equilibrium between them. Two relative models of language as game in the sense of game theory and as ontology of metaphors (all mappings, which are not one-to-one, i.e. not representations of reality in a formal sense) are deduced. (shrink)
In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...) interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines. (shrink)
The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory (...) or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”. (shrink)
A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...) a metamathematical axiom about the relation of mathematics and reality. The main statement is formulated as follows: Any scientific theory admits isomorphism to some mathematical structure in a way constructive. Its investigation needs philosophical means. Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction. The sketch of the proof is organized in five steps: a generalization of epoché; involving transfinite induction in the transition between Peano arithmetic and set theory; discussing the finiteness of Peano arithmetic; applying transfinite induction to Peano arithmetic; discussing an arithmetical model of reality. Accepting or rejecting the principle, two kinds of mathematics appear differing from each other by its relation to reality. Accepting the principle, mathematics has to include reality within itself in a kind of Pythagoreanism. These two kinds are called in paper correspondingly Hilbert mathematics and Gödel mathematics. The sketch of the proof of the principle demonstrates that the generalization of Peano arithmetic as above can be interpreted as a model of Hilbert mathematics into Gödel mathematics therefore showing that the former is not less consistent than the latter, and the principle is an independent axiom. The present paper follows a pathway grounded on Husserl’s phenomenology and “bracketing reality” to achieve the generalized arithmetic necessary for the principle to be founded in alternative ontology, in which there is no reality external to mathematics: reality is included within mathematics. That latter mathematics is able to self-found itself and can be called Hilbert mathematics in honour of Hilbert’s program for self-founding mathematics on the base of arithmetic. The principle of universal mathematizability is consistent to Hilbert mathematics, but not to Gödel mathematics. Consequently, its validity or rejection would resolve the problem which mathematics refers to our being; and vice versa: the choice between them for different reasons would confirm or refuse the principle as to the being. An information interpretation of Hilbert mathematics is involved. It is a kind of ontology of information. The Schrödinger equation in quantum mechanics is involved to illustrate that ontology. Thus the problem which of the two mathematics is more relevant to our being is discussed again in a new way A few directions for future work can be: a rigorous formal proof of the principle as an independent axiom; the further development of information ontology consistent to both kinds of mathematics, but much more natural for Hilbert mathematics; the development of the information interpretation of quantum mechanics as a mathematical one for information ontology and thus Hilbert mathematics; the description of consciousness in terms of information ontology. (shrink)
The book is devoted to the contemporary stage of quantum mechanics – quantum information, and especially to its philosophical interpretation and comprehension: the first one of a series monographs about the philosophy of quantum information. The second will consider Be l l ’ s inequalities, their modified variants and similar to them relations. The beginning of quantum information was in the thirties of the last century. Its speed development has started over the last two decades. The main phenomenon is entanglement. (...) The subareas are quantum computer, quantum communication (and teleportation), and quantum cryptography. The book offers the following main conceptions, theses and hypotheses: – dualistic Phythagoreanism as a new kind among the interpretations of quantum mechanics and information: arithmetical, logical, and metamathematical one; – Gödel ’ s first incompleteness theorem is an undecidable proposition, and consequently the second one,too. – a partial rehabilitation of Hilbert ’ s program for the self-foundation of mathematics; – the dual-foundation of mathematics; – Skolemian relativity between: Cantor ’s kinds of infinity, finiteness and infinity, discreteness and continuity, completeness and incompleteness, etc.; – information is a physical quantity representing the non-reducibility of a system to its parts, particularly nonaddtivity; – there exist pure relations «by itself», which cannot be reduced to predications; – energy conservation can and should be generalized; – Einstein’ s «general covariance» or «principle of relativity» can and should be generalized to cover discrete morphisms where the notion of velocity does not make sense. (shrink)
What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the transfinite deadlock of (...) higher set theory the jewel of mathematical Continuum -- this genuine, even if mostly forgotten today raison d'etre of all set-theoretical enterprises to Infinity and beyond, from Georg Cantor to W. Hugh Woodin to Buzz Lightyear, by simultaneously exhibiting the limits and pitfalls of all old and new reductionist foundational approaches to mathematical truth: be it Cantor's or post-Cantorian Idealism, Brouwer's or post-Brouwerian Constructivism, Hilbert's or post-Hilbertian Formalism, Goedel's or post-Goedelian Platonism. -/- In the spirit of Zeno's paradoxes, but with the enormous historical advantage of hindsight, we claim that Cantor's set-theoretical methodology, powerful and reach in proof-theoretic and similar applications as it might be, is inherently limited by its epistemological framework of transfinite local causality, and neither can be held accountable for the properties of the Continuum already acquired through geometrical, analytical, and arithmetical studies, nor can it be used for an adequate, conceptually sensible, operationally workable, and axiomatically sustainable re-creation of the Continuum. -/- From a strictly mathematical point of view, this intrinsic limitation of the constative and explicative power of higher set theory finds its explanation in the identified in this study ultimate phenomenological obstacle to Cantor's transfinite construction, similar to topological obstacles in homotopy theory and theoretical physics: the entanglement capacity of the mathematical Continuum. (shrink)
Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had (...) many partial successes, and generated important advances in logical theory and metatheory, both at the time and since. The article discusses the historical background and development of Hilbert’s program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s. (shrink)
Restall set forth a "consecution" calculus in his "An Introduction to Substructural Logics." This is a natural deduction type sequent calculus where the structural rules play an important role. This paper looks at different ways of extending Restall's calculus. It is shown that Restall's weak soundness and completeness result with regards to a Hilbert calculus can be extended to a strong one so as to encompass what Restall calls proofs from assumptions. It is also shown how to extend the (...) calculus so as to validate the metainferential rule of reasoning by cases, as well as certain theory-dependent rules. (shrink)
Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In (...) defense of this claim, I offer evidence from mathematical practice, and I respond to contrary suggestions due to Steinhart, Maddy, Kitcher and Quine. I then show how, even if set-theoretic reductions are generally not explanatory, set theory can nevertheless serve as a legitimate foundation for mathematics. Finally, some implications of my thesis for philosophy of mathematics and philosophy of science are discussed. In particular, I suggest that some reductions in mathematics are probably explanatory, and I propose that differing standards of theory acceptance might account for the apparent lack of unexplanatory reductions in the empirical sciences. (shrink)
This is a pdf of a Mathematica calculation that supplements the paper "Presentist Fragmentalism and Quantum Mechanics" forthcoming in Foundations of Physics. In that paper the Born rule (or at least a progenitor) is derived from experimental conditions on the mutual observations of two fragments. In this pdf the experimental conditions are applied to Hilbert space dimensions 3, 4, and 5. It turns out each of these have a 1-dimensional solution space which, it is hoped, can be interpretated as (...) the phase. (shrink)
The paper explores the idea that some singular judgements about the natural numbers are immune to error through misidentification by pursuing a comparison between arithmetic judgements and first-person judgements. By doing so, the first part of the paper offers a conciliatory resolution of the Coliva-Pryor dispute about so-called “de re” and “which-object” misidentification. The second part of the paper draws some lessons about what it takes to explain immunity to error through misidentification. The lessons are: First, the so-called Simple (...) Account of which-object immunity to error through misidentification to the effect that a judgement is immune to this kind of error just in case its grounds do not feature any identification component fails. Secondly, wh-immunity can be explained by a Reference-Fixing Account to the effect that a judgement is immune to this kind of error just in case its grounds are constituted by the facts whereby the reference of the concept of the object which the judgement concerns is fixed. Thirdly, a suitable revision of the Simple Account explains the de re immunity of those arithmetic judgements which are not wh-immune. These three lessons point towards the general conclusion that there is no unifying explanation of de re and wh-immunity. (shrink)
Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers (...) larger than 4 or 5. Our results imply a distinction between a nonverbal system of number approximation and a language-based counting system for exact number and arithmetic. (shrink)
Orthodoxy holds that there is a determinate fact of the matter about every arithmetical claim. Little argument has been supplied in favour of orthodoxy, and work of Field, Warren and Waxman, and others suggests that the presumption in its favour is unjustified. This paper supports orthodoxy by establishing the determinacy of arithmetic in a well-motivated modal plural logic. Recasting this result in higher-order logic reveals that even the nominalist who thinks that there are only finitely many things should think (...) that there is some sense in which arithmetic is true and determinate. (shrink)
Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these (...) results, focussing primarily on propositional logic, and to put them in their historical context. It is argued that truth-value semantics, syntactic ("Post-") and semantic completeness, decidability, and other results were first obtained by Hilbert and Bernays in 1918, and that Bernays's role in their discovery and the subsequent development of mathematical logic is much greater than has so far been acknowledged. (shrink)
Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning (...) about signs, which illuminates Hilbert's account of mathematical objectivity, axiomatics, idealization, and consistency. (shrink)
An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
After sketching the main lines of Hilbert's program, certain well-known and influential interpretations of the program are critically evaluated, and an alternative interpretation is presented. Finally, some recent developments in logic related to Hilbert's program are reviewed.
David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which (...) have so far received little attention, and on a number of philosophical reconstructions of the viewpoint (in particular, by Hand, Kitcher, and Tait). (shrink)
Hilbert izlencesinin kanıt kuramsal amacı tarihsel gelişimi içinde özetlendikten sonra arka plandaki model-kuramsal motivasyonu belirtilmektedir. Hilbert'in nihai hedefinin matematiğin temellerine ilişkin tüm epistemolojik ve ontolojik varsayımlardan arındırılmış bir matematik kuramı geliştirmek olduğu savunulmaktadır. Yakın geçmişte mantıktaki bazı gelişmelerin Hilbert izlencesinin yalnızca adcı varsayımlar temelinde sürdürülebileceğine ilişkin yeni bir bakış açısı sağladığı öne sürülmektedir.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.