Results for 'Geometrie und Arithmetik Geometry and Arithmetics'

968 found
Order:
  1. Hermann von Helmholtz, Philosophische und populärwissenschaftliche Schriften. 3 Bände.Gregor Schiemann, Michael Heidelberger & Helmut Pulte (eds.) - 2017 - Hamburg: Meiner.
    Aus dem vielfältigen Werk von Hermann von Helmholtz versammelt diese Ausgabe die im engeren Sinne philosophischen Abhandlungen, vor allem zur Wissenschaftsphilosophie und Erkenntnistheorie, sowie Vorträge und Reden, bei denen der Autor seine Ausnahmestellung im Wissenschaftsbetrieb nutzte, um die Wissenschaften und ihre Institutionen in der bestehenden Form zu repräsentieren und zu begründen. Ein Philosoph wollte Helmholtz nicht sein, aber er legte der philosophischen Reflexion wissenschaftlicher Erkenntnis und wissenschaftlichen Handelns große Bedeutung bei. Vor allem bezog er, in der Regel ausgehend von seinen (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Cassirer and the Structural Turn in Modern Geometry.Georg Schiemer - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The paper investigates Ernst Cassirer’s structuralist account of geometrical knowledge developed in his Substanzbegriff und Funktionsbegriff. The aim here is twofold. First, to give a closer study of several developments in projective geometry that form the direct background for Cassirer’s philosophical remarks on geometrical concept formation. Specifically, the paper will survey different attempts to justify the principle of duality in projective geometry as well as Felix Klein’s generalization of the use of geometrical transformations in his Erlangen program. The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  3. After Non-Euclidean Geometry: Intuition, Truth and the Autonomy of Mathematics.Janet Folina - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The mathematical developments of the 19th century seemed to undermine Kant’s philosophy. Non-Euclidean geometries challenged Kant’s view that there is a spatial intuition rich enough to yield the truth of Euclidean geometry. Similarly, advancements in algebra challenged the view that temporal intuition provides a foundation for both it and arithmetic. Mathematics seemed increasingly detached from experience as well as its form; moreover, with advances in symbolic logic, mathematical inference also seemed independent of intuition. This paper considers various philosophical responses (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  64
    Summary by an AI of the article The Ontology of Knowledge, Logic, Arithmetic, Set Theory, and Geometry.Jean-Louis Boucon - 2024 - Academia.
    The text “The Ontology of Knowledge, Logic, Arithmetic, Set Theory, and Geometry” by Jean-Louis Boucon explores a deeply philosophical interpretation of knowledge, its logical structure, and the foundational elements of mathematical and scientific reasoning. -/- Here’s an overview condensed by an AI of the key themes and ideas, summarized into a quite general conceptual structure. These two pages are instructive on their own, but their main purpose is to facilitate the reading of the entire article, allowing the reader to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. An Arithmetization of Logical Oppositions.Fabien Schang - 2016 - In Jean-Yves Béziau & Gianfranco Basti (eds.), The Square of Opposition: A Cornerstone of Thought. Basel, Switzerland: Birkhäuser. pp. 215-237.
    An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Meršić o Hilbertovoj aksiomatskoj metodi [Meršić on Hilbert's axiomatic method].Srećko Kovač - 2006 - In E. Banić-Pajnić & M. Girardi Karšulin (eds.), Zbornik u čast Franji Zenku. pp. 123-135.
    The criticism of Hilbert's axiomatic system of geometry by Mate Meršić (Merchich, 1850-1928), presented in his work "Organistik der Geometrie" (1914, also in "Modernes und Modriges", 1914), is analyzed and discussed. According to Meršić, geometry cannot be based on its own axioms, as a logical analysis of spatial intuition, but must be derived as a "spatial concretion" using "higher" axioms of arithmetic, logic, and "rational algorithmics." Geometry can only be one, because space is also only one. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. The Ontology of Knowledge, logic, arithmetic, sets theory and geometry (issue 20220523).Jean-Louis Boucon - 2021 - Published.
    Despite the efforts undertaken to separate scientific reasoning and metaphysical considerations, despite the rigor of construction of mathematics, these are not, in their very foundations, independent of the modalities, of the laws of representation of the world. The OdC shows that the logical Facts Exist neither more nor less than the Facts of the world which are Facts of Knowledge. Mathematical facts are representation facts. The primary objective of this article is to integrate the subject into mathematics as a mode (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Frege on the Foundation of Geometry in Intuition.Jeremy Shipley - 2015 - Journal for the History of Analytical Philosophy 3 (6).
    I investigate the role of geometric intuition in Frege’s early mathematical works and the significance of his view of the role of intuition in geometry to properly understanding the aims of his logicist project. I critically evaluate the interpretations of Mark Wilson, Jamie Tappenden, and Michael Dummett. The final analysis that I provide clarifies the relationship of Frege’s restricted logicist project to dominant trends in German mathematical research, in particular to Weierstrassian arithmetization and to the Riemannian conceptual/geometrical tradition at (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  9. Application of natural deduction in Renaissance geometry.Mirek Ryszard - 2014 - Argument: Biannual Philosophical Journal 4 (2):425-438.
    my goal here is to provide a detailed analysis of the methods of inference that are employed in De prospectiva pingendi. For this purpose, a method of natural deduction is proposed. the treatise by Piero della Francesca is a manifestation of a union between the ne arts and the mathematical sciences of arithmetic and geometry. He de nes painting as a part of perspective and, speaking precisely, as a branch of geometry, which is why we nd advanced geometrical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Eternal truths and laws of nature.Dennis Des Chene - manuscript
    Are the laws of nature among the eternal truths that, according to Descartes, are created by God? The basis of those laws is the immutability of the divine will, which is not an eternal truth, but a divine attribute. On the other hand, the realization of those laws, and in particular, the quantitative consequences to be drawn from them, depend upon the eternal truths insofar as those truths include the foundations of geometry and arithmetic.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Logic, Geometry And Probability Theory.Federico Holik - 2013 - SOP Transactions On Theoretical Physics 1:128 - 137.
    We discuss the relationship between logic, geometry and probability theory under the light of a novel approach to quantum probabilities which generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories.
    Download  
     
    Export citation  
     
    Bookmark  
  12. Linguistic Geometry and its Applications.W. B. Vasantha Kandasamy, K. Ilanthenral & Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    The notion of linguistic geometry is defined in this book. It is pertinent to keep in the record that linguistic geometry differs from classical geometry. Many basic or fundamental concepts and notions of classical geometry are not true or extendable in the case of linguistic geometry. Hence, for simple illustration, facts like two distinct points in classical geometry always define a line passing through them; this is generally not true in linguistic geometry. Suppose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. O papel da abstração na instanciação da álgebra nas Regulae ad Directionem Ingenii.Érico Andrade - 2011 - Analytica (Rio) 15 (1):145-172.
    In this essay I will defend three points, the first being that Descartes- unlike the aristotelian traditon- maintained that abstraction is not a operation in which the intellect builds the mathematical object resorting to sensible ob- jects. Secondly I will demonstrate that, according to cartesian philosophy, the faculty of understanding has the ability to instatiate- within the process of abstraction- mathematical symbols that represent the relation between quantities, whether magnitude or multitude.And finally I will advocate that the lack of onthological (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Physical Geometry and Fundamental Metaphysics.Cian Dorr - 2011 - Proceedings of the Aristotelian Society 111 (1pt1):135-159.
    I explore some ways in which one might base an account of the fundamental metaphysics of geometry on the mathematical theory of Linear Structures recently developed by Tim Maudlin (2010). Having considered some of the challenges facing this approach, Idevelop an alternative approach, according to which the fundamental ontology includes concrete entities structurally isomorphic to functions from space-time points to real numbers.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Synthetic Geometry and Aufbau.Thomas Mormann - 2003 - In Thomas Bonk (ed.), Language, Truth and Knowledge: Contributions to the Philosophy of Rudolf Carnap. Dordrecht, Netherland: Kluwer Academic Publishers. pp. 45--64.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  16. From practical to pure geometry and back.Mario Bacelar Valente - 2020 - Revista Brasileira de História da Matemática 20 (39):13-33.
    The purpose of this work is to address the relation existing between ancient Greek practical geometry and ancient Greek pure geometry. In the first part of the work, we will consider practical and pure geometry and how pure geometry can be seen, in some respects, as arising from an idealization of practical geometry. From an analysis of relevant extant texts, we will make explicit the idealizations at play in pure geometry in relation to practical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Geometry and geography of morality: S. Matthew Liao : Moral brains. The neuroscience of morality. Oxford University Press, 2016, £ 22.99 PB.Jovan Babić - 2017 - Metascience 26 (3):475-479.
    Download  
     
    Export citation  
     
    Bookmark  
  18. Astronomy, Geometry, and Logic, Rev. 1c: An ontological proof of the natural principles that enable and sustain reality and mathematics.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The latest draft (posted 05/14/22) of this short, concise work of proof, theory, and metatheory provides summary meta-proofs and verification of the work and results presented in the Theory and Metatheory of Atemporal Primacy and Riemann, Metatheory, and Proof. In this version, several new and revised definitions of terms were added to subsection SS.1; and many corrected equations, theorems, metatheorems, proofs, and explanations are included in the main text. The body of the text is approximately 18 pages, with 3 sections; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Between Classical and Modern Theory of Science. Hermann von Helmholtz und Karl R. Popper, compared epistemologically.Gregor Schiemann - 1995 - In Heinz Lübbig (ed.), The Inverse Problem. Akademie Verlag und VCH Weinheim.
    With his influence on the development of physiology, physics and geometry, Hermann von Helmholtz – like few scientists of the second half of the 19th century – is representative of the research in natural science in Germany. The development of his understanding of science is not less representative. Until the late sixties, he emphatically claimed the truth of science; later on, he began to see the conditions for the validity of scientific knowledge in relative terms, and this can, in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Models in Geometry and Logic: 1870-1920.Patricia Blanchette - 2017 - In Niniiluoto Seppälä Sober (ed.), Logic, Methodology and Philosophy of Science - Proceedings of the 15th International Congress. College Publications. pp. 41-61.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  21. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Revalidation of the Developed Learning Material in Analytic Geometry and Trigonometry in IDEA Format.Joan Saavedra, Victorina Palanas & Jeruel Canceran - 2023 - Jpair Multidisciplinary Research 53 (1):91-108.
    Elective mathematics has been an extra mathematics subject for pilot students of Eduardo Barretto Sr. National High School for quite some time now. Through this, many alumni testified how this helped them understand senior high school and college math. However, the teachers have also been struggling with the resources for specific areas of mathematics, such as Business Math, Statistics, Analytic Geometry, Trigonometry, and Calculus. When the pandemic hit the Philippines, contextualized learning material aligned with the Most Essential Learning Competencies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Golden Ratio Geometry and the Fine-Structure Constant.Michael A. Sherbon - 2019 - Journal of Advances in Physics 16 (1):362 -368.
    The golden ratio is found to be related to the fine-structure constant, which determines the strength of the electromagnetic interaction. The golden ratio and classical harmonic proportions with quartic equations give an approximate value for the inverse fine-structure constant the same as that discovered previously in the geometry of the hydrogen atom. With the former golden ratio results, relationships are also shown between the four fundamental forces of nature: electromagnetism, the weak force, the strong force, and the force of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Mathematics embodied: Merleau-Ponty on geometry and algebra as fields of motor enaction.Jan Halák - 2022 - Synthese 200 (1):1-28.
    This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Husserl, Intentionality and Mathematics: Geometry and Category Theory.Arturo Romero Contreras - 2022 - In Boi Luciano & Lobo Carlos (eds.), When Form Becomes Substance. Power of Gestures, Diagrammatical Intuition and Phenomenology of Space. Birkhäuser. pp. 327-358.
    The following text is divided in four parts. The first presents the inner relation between the phenomenological concept of intentionality and space in a general mathematical sense. Following this train of though the second part brie_ly characterizes the use of the geometrical concept of manifold (Mannigfaltigkeit) in Husserl’s work. In the third part we present some examples of the use of the concept in Husserl’s analyses of space, time and intersubjectivity, pointing out some dif_iculties in his endeavor. In the fourth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Husserl, Intentionality and Mathematics: Geometry and Category Theory.Romero Arturo - 2022 - In Boi Luciano & Lobo Carlos (eds.), When Form Becomes Substance. Power of Gestures, Diagrammatical Intuition and Phenomenology of Space. Birkhäuser. pp. 327-358.
    The following text is divided in four parts. The first presents the inner relation between the phenomenological concept of intentionality and space in a general mathematical sense. Following this train of though the second part brie_ly characterizes the use of the geometrical concept of manifold (Mannigfaltigkeit) in Husserl’s work. In the third part we present some examples of the use of the concept in Husserl’s analyses of space, time and intersubjectivity, pointing out some dif_iculties in his endeavor. In the fourth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Discrete and continuous: a fundamental dichotomy in mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last hundred years. This (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  30. Attempts by Avicenna and Ibn al-Nafīs to Expand the Field of the Transference of Demonstration in the Context of the Relationship Between Geometry and Medicine.Bakhadir Musametov - 2021 - Nazariyat, Journal for the History of Islamic Philosophy and Sciences 7 (1):37-71.
    This paper aims to deal with the disputes on transferring demonstration between the various sciences in the context of the medicine-geometry relationship. According to Aristotle’s metabasis-prohibition, these two sciences should be located in separate compartments due to the characteristics of their subject-matter. However, a thorough analysis of the critical passage in Aristotle’s Posterior Analytics on circular wounds forces a revision of the boundaries of the interactions between sciences, since subsequently Avicenna, on the grounds of this passage, would widen the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Fundamental and Emergent Geometry in Newtonian Physics.David Wallace - 2020 - British Journal for the Philosophy of Science 71 (1):1-32.
    Using as a starting point recent and apparently incompatible conclusions by Saunders and Knox, I revisit the question of the correct spacetime setting for Newtonian physics. I argue that understood correctly, these two versions of Newtonian physics make the same claims both about the background geometry required to define the theory, and about the inertial structure of the theory. In doing so I illustrate and explore in detail the view—espoused by Knox, and also by Brown —that inertial structure is (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  32. Affine geometry, visual sensation, and preference for symmetry of things in a thing.Birgitta Dresp-Langley - 2016 - Symmetry 127 (8).
    Evolution and geometry generate complexity in similar ways. Evolution drives natural selection while geometry may capture the logic of this selection and express it visually, in terms of specific generic properties representing some kind of advantage. Geometry is ideally suited for expressing the logic of evolutionary selection for symmetry, which is found in the shape curves of vein systems and other natural objects such as leaves, cell membranes, or tunnel systems built by ants. The topology and (...) of symmetry is controlled by numerical parameters, which act in analogy with a biological organism’s DNA. The introductory part of this paper reviews findings from experiments illustrating the critical role of two-dimensional (2D) design parameters, affine geometry and shape symmetry for visual or tactile shape sensation and perception-based decision making in populations of experts and non-experts. It will be shown that 2D fractal symmetry, referred to herein as the “symmetry of things in a thing”, results from principles very similar to those of affine projection. Results from experiments on aesthetic and visual preference judgments in response to 2D fractal trees with varying degrees of asymmetry are presented. In a first experiment (psychophysical scaling procedure), non-expert observers had to rate (on a scale from 0 to 10) the perceived beauty of a random series of 2D fractal trees with varying degrees of fractal symmetry. In a second experiment (two-alternative forced choice procedure), they had to express their preference for one of two shapes from the series. The shape pairs were presented successively in random order. Results show that the smallest possible fractal deviation from “symmetry of things in a thing” significantly reduces the perceived attractiveness of such shapes. The potential of future studies where different levels of complexity of fractal patterns are weighed against different degrees of symmetry is pointed out in the conclusion. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Julius Caesar and the Numbers.Nathan Salmón - 2018 - Philosophical Studies 175 (7):1631-1660.
    This article offers an interpretation of a controversial aspect of Frege’s The Foundations of Arithmetic, the so-called Julius Caesar problem. Frege raises the Caesar problem against proposed purely logical definitions for ‘0’, ‘successor’, and ‘number’, and also against a proposed definition for ‘direction’ as applied to lines in geometry. Dummett and other interpreters have seen in Frege’s criticism a demanding requirement on such definitions, often put by saying that such definitions must provide a criterion of identity of a certain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Objectivity and Rigor in Classical Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2022 - Noesis 38:195-212.
    The classification of algebraic surfaces by the Italian School of algebraic geometry is universally recognized as a breakthrough in 20th-century mathematics. The methods by which it was achieved do not, however, meet the modern standard of rigor and therefore appear dubious from a contemporary viewpoint. In this article, we offer a glimpse into the mathematical practice of the three leading exponents of the Italian School of algebraic geometry: Castelnuovo, Enriques, and Severi. We then bring into focus their distinctive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Review of The Art of the Infinite by R. Kaplan, E. Kaplan 324p(2003).Michael Starks - 2016 - In Suicidal Utopian Delusions in the 21st Century: Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2017 2nd Edition Feb 2018. Las Vegas, USA: Reality Press. pp. 619.
    This book tries to present math to the millions and does a pretty good job. It is simple and sometimes witty but often the literary allusions intrude and the text bogs down in pages of relentless math--lovely if you like it and horrid if you don´t. If you already know alot of math you will still probably find the discussions of general math, geometry, projective geometry, and infinite series to be a nice refresher. If you don´t know any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Geometry as a Universal mental Construction.Véronique Izard, Pierre Pica, Danièle Hinchey, Stanislas Dehane & Elizabeth Spelke - 2011 - In Stanislas Dehaene & Elizabeth Brannon (eds.), Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press.
    Geometry, etymologically the “science of measuring the Earth”, is a mathematical formalization of space. Just as formal concepts of number may be rooted in an evolutionary ancient system for perceiving numerical quantity, the fathers of geometry may have been inspired by their perception of space. Is the spatial content of formal Euclidean geometry universally present in the way humans perceive space, or is Euclidean geometry a mental construction, specific to those who have received appropriate instruction? The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  37. Natural Philosophy, Deduction, and Geometry in the Hobbes-Boyle Debate.Marcus P. Adams - 2017 - Hobbes Studies 30 (1):83-107.
    This paper examines Hobbes’s criticisms of Robert Boyle’s air-pump experiments in light of Hobbes’s account in _De Corpore_ and _De Homine_ of the relationship of natural philosophy to geometry. I argue that Hobbes’s criticisms rely upon his understanding of what counts as “true physics.” Instead of seeing Hobbes as defending natural philosophy as “a causal enterprise … [that] as such, secured total and irrevocable assent,” 1 I argue that, in his disagreement with Boyle, Hobbes relied upon his understanding of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. God, Human Memory, and the Certainty of Geometry: An Argument Against Descartes.Marc Champagne - 2016 - Philosophy and Theology 28 (2):299–310.
    Descartes holds that the tell-tale sign of a solid proof is that its entailments appear clearly and distinctly. Yet, since there is a limit to what a subject can consciously fathom at any given moment, a mnemonic shortcoming threatens to render complex geometrical reasoning impossible. Thus, what enables us to recall earlier proofs, according to Descartes, is God’s benevolence: He is too good to pull a deceptive switch on us. Accordingly, Descartes concludes that geometry and belief in God must (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries (revisited).Florentin Smarandache - 2021 - Neutrosophic Sets and Systems 46 (1):456-477.
    In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom or even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of geometry such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.) Geometry, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Symmetry and partial belief geometry.Stefan Lukits - 2021 - European Journal for Philosophy of Science 11 (3):1-24.
    When beliefs are quantified as credences, they are related to each other in terms of closeness and accuracy. The “accuracy first” approach in formal epistemology wants to establish a normative account for credences based entirely on the alethic properties of the credence: how close it is to the truth. To pull off this project, there is a need for a scoring rule. There is widespread agreement about some constraints on this scoring rule, but not whether a unique scoring rule stands (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The geometry of visual space and the nature of visual experience.Farid Masrour - 2015 - Philosophical Studies 172 (7):1813-1832.
    Some recently popular accounts of perception account for the phenomenal character of perceptual experience in terms of the qualities of objects. My concern in this paper is with naturalistic versions of such a phenomenal externalist view. Focusing on visual spatial perception, I argue that naturalistic phenomenal externalism conflicts with a number of scientific facts about the geometrical characteristics of visual spatial experience.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  43. Deleuze, Leibniz and Projective Geometry in the Fold.Simon Duffy - 2010 - Angelaki 15 (2):129-147.
    Explications of the reconstruction of Leibniz’s metaphysics that Deleuze undertakes in 'The Fold: Leibniz and the Baroque' focus predominantly on the role of the infinitesimal calculus developed by Leibniz.1 While not underestimat- ing the importance of the infinitesimal calculus and the law of continuity as reflected in the calculus of infinite series to any understanding of Leibniz’s metaphysics and to Deleuze’s reconstruction of it in The Fold, what I propose to examine in this paper is the role played by other (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  44. Universal Agent Mixtures and the Geometry of Intelligence.Samuel Allen Alexander, David Quarel, Len Du & Marcus Hutter - 2023 - Aistats.
    Inspired by recent progress in multi-agent Reinforcement Learning (RL), in this work we examine the collective intelligent behaviour of theoretical universal agents by introducing a weighted mixture operation. Given a weighted set of agents, their weighted mixture is a new agent whose expected total reward in any environment is the corresponding weighted average of the original agents' expected total rewards in that environment. Thus, if RL agent intelligence is quantified in terms of performance across environments, the weighted mixture's intelligence is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. On the Connection Between Quantum Probability and Geometry.Federico Holik - 2021 - Quanta 10 (1):1-14.
    We discuss the mathematical structures that underlie quantum probabilities. More specifically, we explore possible connections between logic, geometry and probability theory. We propose an interpretation that generalizes the method developed by R. T. Cox to the quantum logical approach to physical theories. We stress the relevance of developing a geometrical interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - 2023 - In Wolfgang Lefèvre (ed.), Between Leibniz, Newton, and Kant: Philosophy and Science in the Eighteenth Century. Springer. pp. 69-98.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, she writes that things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of material things. After situating Du Châtelet in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. ARISTOTELIAN LOGIC AND EUCLIDEAN GEOMETRY.John Corcoran - 2014 - Bulletin of Symbolic Logic 20 (1):131-2.
    John Corcoran and George Boger. Aristotelian logic and Euclidean geometry. Bulletin of Symbolic Logic. 20 (2014) 131. -/- By an Aristotelian logic we mean any system of direct and indirect deductions, chains of reasoning linking conclusions to premises—complete syllogisms, to use Aristotle’s phrase—1) intended to show that their conclusions follow logically from their respective premises and 2) resembling those in Aristotle’s Prior Analytics. Such systems presuppose existence of cases where it is not obvious that the conclusion follows from the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. On the relationship between plane and solid geometry.Andrew Arana & Paolo Mancosu - 2012 - Review of Symbolic Logic 5 (2):294-353.
    Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  49. Notes on Groups and Geometry, 1978-1986.Steven H. Cullinane - 2012 - Internet Archive.
    Typewritten notes on groups and geometry.
    Download  
     
    Export citation  
     
    Bookmark  
  50. (1 other version)The Marriage of Metaphysics and Geometry in Kant's Prolegomena (Forthcoming in Cambridge Critical Guide to Kant’s Prolegomena).James Messina - 2021 - In Peter Thiekle (ed.), Cambridge Critical Guide to Kant’s Prolegomena. Cambridge.
    Kant was engaged in a lifelong struggle to achieve what he calls in the 1756 Physical Monadology (PM) a “marriage” of metaphysics and geometry (1:475). On one hand, this involved showing that metaphysics and geometry are complementary, despite the seemingly irreconcilable conflicts between these disciplines and between their respective advocates, the Leibnizian-Wolffians and the Newtonians. On the other hand, this involved defining the terms of their union, which meant among other things, articulating their respective roles in grounding Newtonian (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 968