C. I. Lewis (I883-I964) was the first major figure in history and philosophy of logic—-a field that has come to be recognized as a separate specialty after years of work by Ivor Grattan-Guinness and others (Dawson 2003, 257).Lewis was among the earliest to accept the challenges offered by this field; he was the first who had the philosophical and mathematical talent, the philosophical, logical, and historical background, and the patience and dedication to objectivity needed to excel. He was (...) blessed with many fortunate circumstances, not least of which was entering the field when mathematical logic, after only six decades of toil, had just reaped one of its most important harvests with publication of the monumental Principia Mathematica. It was a time of joyful optimism which demanded an historical account and a sober philosophical critique. Lewis was one of the first to apply to mathematical logic the Aristotelian dictum that we do not understand a living institution until we see it growing from its birth. (shrink)
The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by (...) Herbrand’s Induction-Axiom Schema [23]. Similarly, in first-order set theory, Zermelo’s second-order Separation Axiom is approximated by Fraenkel’s first-order Separation Schema [17]. In some of several closely related senses, a schema is a complex system having multiple components one of which is a template-text or scheme-template, a syntactic string composed of one or more “blanks” and also possibly significant words and/or symbols. In accordance with a side condition the template-text of a schema is used as a “template” to specify a multitude, often infinite, of linguistic expressions such as phrases, sentences, or argument-texts, called instances of the schema. The side condition is a second component. The collection of instances may but need not be regarded as a third component. The instances are almost always considered to come from a previously identified language (whether formal or natural), which is often considered to be another component. This article reviews the often-conflicting uses of the expressions ‘schema’ and ‘scheme’ in the literature of logic. It discusses the different definitions presupposed by those uses. And it examines the ontological and epistemic presuppositions circumvented or mooted by the use of schemata, as well as the ontological and epistemic presuppositions engendered by their use. In short, this paper is an introduction to the history and philosophy of schemata. (shrink)
K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics and (...) their interpretation. Concomitantly, she was one of the pioneers of mathematical logic in the Soviet Union, in an era of fierce disputes on its compatibility with Marxist philosophy. Yanovskaya managed to embrace in an originally Marxist spirit the contemporary level of logico-philosophical research of her time. Due to her highly esteemed status within Soviet academia, she became one of the most significant pillars for the culmination of modern mathematics in the Soviet Union. In this paper, I attempt to trace the influence of the complex socio-cultural context of the first decades of the Soviet Union on Yanovskaya’s work. Among the several issues I discuss, her encounter with L. Wittgenstein is striking. (shrink)
A Fortiori Logic: Innovations, History and Assessments is a wide-ranging and in-depth study of a fortiori reasoning, comprising a great many new theoretical insights into such argument, a history of its use and discussion from antiquity to the present day, and critical analyses of the main attempts at its elucidation. Its purpose is nothing less than to lay the foundations for a new branch of logic and greatly develop it; and thus to once and for all (...) dispel the many fallacious ideas circulating regarding the nature of a fortiori reasoning. -/- The work is divided into three parts. The first part, Formalities, presents the author’s largely original theory of a fortiori argument, in all its forms and varieties. Its four (or eight) principal moods are analyzed in great detail and formally validated, and secondary moods are derived from them. A crescendo argument is distinguished from purely a fortiori argument, and similarly analyzed and validated. These argument forms are clearly distinguished from the pro rata and analogical forms of argument. Moreover, we examine the wide range of a fortiori argument; the possibilities of quantifying it; the formal interrelationships of its various moods; and their relationships to syllogistic and analogical reasoning. Although a fortiori argument is shown to be deductive, inductive forms of it are acknowledged and explained. Although a fortiori argument is essentially ontical in character, more specifically logical-epistemic and ethical-legal variants of it are acknowledged. -/- The second part of the work, Ancient and Medieval History, looks into use and discussion of a fortiori argument in Greece and Rome, in the Talmud, among post-Talmudic rabbis, and in Christian, Moslem, Chinese and Indian sources. Aristotle’s approach to a fortiori argument is described and evaluated. There is a thorough analysis of the Mishnaic qal vachomer argument, and a reassessment of the dayo principle relating to it, as well as of the Gemara’s later take on these topics. The valuable contribution, much later, by Moshe Chaim Luzzatto is duly acknowledged. Lists are drawn up of the use of a fortiori argument in the Jewish Bible, the Mishna, the works of Plato and Aristotle, the Christian Bible and the Koran; and the specific moods used are identified. Moreover, there is a pilot study of the use of a fortiori argument in the Gemara, with reference to Rodkinson’s partial edition of the Babylonian Talmud, setting detailed methodological guidelines for a fuller study. There is also a novel, detailed study of logic in general in the Torah. -/- The third part of the present work, Modern and Contemporary Authors, describes and evaluates the work of numerous (some thirty) recent contributors to a fortiori logic, as well as the articles on the subject in certain lexicons. Here, we discover that whereas a few authors in the last century or so made some significant contributions to the field, most of them shot woefully off-target in various ways. The work of each author, whether famous or unknown, is examined in detail in a dedicated chapter, or at least in a section; and his ideas on the subject are carefully weighed. The variety of theories that have been proposed is impressive, and stands witness to the complexity and elusiveness of the subject, and to the crying need for the present critical and integrative study. But whatever the intrinsic value of each work, it must be realized that even errors and lacunae are interesting because they teach us how not to proceed. -/- This book also contains, in a final appendix, some valuable contributions to general logic, including new analyses of symbolization and axiomatization, existential import, the tetralemma, the Liar paradox and the Russell paradox. (shrink)
My analysis here is an attempt to bring out the main through-line in the development of Bulgarian philosophy of law today. A proper account of Bulgarian philosophy of law in the 20th century requires an attempt to find, on the one hand, a solution to epistemological and methodological problems in law and, on the other, a clear-cut influence of the Kantian critical tradition. Bulgarian philosophy of law follows a complicated path, ranging from acceptance and revision of Kantian philosophy to the (...) development of interesting theories on the logic of legal reasoning. (shrink)
Aristotle's syllogistic theory, as developed in his Prior Analytics, is often regarded as the birth of logic in Western philosophy. Over the past century, scholars have tried to identify important precursors to this theory. I argue that Platonic division, a method which aims to give accounts of essences of natural kinds by progressively narrowing down from a genus, influenced Aristotle's logical theory in a number of crucial respects. To see exactly how, I analyze the method of division as it (...) was originally conceived by Plato and received by Aristotle. I argue that, while Plato allowed that some divisions fail to rigorously investigate the essence, he began a program continued by Aristotle (and others in antiquity and the middle ages) of seeking norms for division that would apply in any domain whatsoever. This idea of a rigorous, general method was taken up and developed by Aristotle in his syllogistic. Aristotle also used Plato's conception of predication as parthood in his semantics for syllogistic propositions. As part of my argument, I prove that a semantics based on Platonic divisional structures is sound and complete for the deduction system used in the literature to model Aristotle's syllogistic. (shrink)
Brief note explaining the content, importance, and historical context of my joint translation of Quine's The Significance of the New Logic with my single-authored historical-philosophical essay 'Willard Van Orman Quine's Philosophical Development in the 1930s and 1940s'.
In this paper, I consider the basis for Kant's praise of Wolff's general logic as "the best we have." I argue that Wolff's logic was highly esteemed by Kant on account of its novel analysis of the three operations of the mind (tres operationes mentis), in the course of which Wolff formulates an argument for the priority of the understanding's activity of judging.
This article is part of a larger project in which I attempt to show that Western formal logic, from its inception in Aristotle onward, has both been partially constituted by, and partially constitutive of, what has become known as racism. In contrast to this trend, the present article concerns the major philosopher whose contribution to logic has been perhaps the most derided and marginalized, and yet whose character and politics are, from a contemporary perspective, drastically superior—John Stuart Mill. (...) My approach to my core concern will be one of narrowing concentric circles. I will begin with Mill’s occasional political writings that bear on the issue of racism, including “The Negro Question.” From there, the core of the article will explore the political dimensions of Mill’s A System of Logic. (shrink)
From the beginning of the 16th century to the end of the 18th century, there were not less than ten philosophers who focused extensively on Venn’s ostensible analytical diagrams, as noted by modern historians of logic (Venn, Gardner, Baron, Coumet et al.). But what was the reason for early modern philosophers to use logic or analytical diagrams? Among modern historians of logic one can find two theses which are closely connected to each other: M. Gardner states that (...) since the Middle Ages certain logic diagrams were used just in order to teach “dull-witted students”. Therefore, logic diagrams were just a means to an end. According to P. Bernhard, the appreciation of logic diagrams had not started prior to the 1960s, therefore the fact that logic diagrams become an end the point of research arose very late. The paper will focus on the question whether logic resp. analytical diagrams were just means in the history of (early) modern logic or not. In contrast to Gardner, I will argue that logic diagrams were not only used as a tool for “dull-witted students”, but rather as a tool used by didactic reformers in early modern logic. In predating Bernhard’s thesis, I will argue that in the 1820s logic diagrams had already become a value in themselves in Arthur Schopenhauer’s lectures on logic, especially in proof theory. (shrink)
Hailed as "a feast" (Washington Post) and "a modern-day bestiary" (The New Yorker), Stephen Asma's On Monsters is a wide-ranging cultural and conceptual history of monsters--how they have evolved over time, what functions they have served for us, and what shapes they are likely to take in the future. Beginning at the time of Alexander the Great, the monsters come fast and furious--Behemoth and Leviathan, Gog and Magog, Satan and his demons, Grendel and Frankenstein, circus freaks and headless children, (...) right up to the serial killers and terrorists of today and the post-human cyborgs of tomorrow. Monsters embody our deepest anxieties and vulnerabilities, Asma argues, but they also symbolize the mysterious and incoherent territory beyond the safe enclosures of rational thought. Exploring sources as diverse as philosophical treatises, scientific notebooks, and novels, Asma unravels traditional monster stories for the clues they offer about the inner logic of an era's fears and fascinations. In doing so, he illuminates the many ways monsters have become repositories for those human qualities that must be repudiated, externalized, and defeated. (shrink)
Since antiquity well into the beginnings of the 20th century geometry was a central topic for philosophy. Since then, however, most philosophers of science, if they took notice of topology at all, considered it as an abstruse subdiscipline of mathematics lacking philosophical interest. Here it is argued that this neglect of topology by philosophy may be conceived of as the sign of a conceptual sea-change in philosophy of science that expelled geometry, and, more generally, mathematics, from the central position it (...) used to have in philosophy of science and placed logic at center stage in the 20th century philosophy of science. Only in recent decades logic has begun to loose its monopoly and geometry and topology received a new chance to find a place in philosophy of science. (shrink)
Analytic philosophy is sometimes said to have particularly close connections to logic and to science, and no particularly interesting or close relation to its own history. It is argued here that although the connections to logic and science have been important in the development of analytic philosophy, these connections do not come close to characterizing the nature of analytic philosophy, either as a body of doctrines or as a philosophical method. We will do better to understand analytic (...) philosophy—and its relationship to continental philosophy—if we see it as a historically constructed collection of texts, which define its key problems and concerns. It is true, however, that analytic philosophy has paid little attention to the history of the subject. This is both its strength—since it allows for a distinctive kind of creativity—and its weakness—since ignoring history can encourage a philosophical variety of “normal science.”. (shrink)
This paper is a discussion of the treatment of Leibniz's conception of substance in Heidegger's The Metaphysical Foundations of Logic. I explain Heidegger's account, consider its relation to recent interpretations of Leibniz in the Anglophone secondary literature, and reflect on the ways in which Heidegger's methodology may illuminate what it is to read Leibniz and other figures in the history of philosophy.
Since the time of Aristotle's students, interpreters have considered Prior Analytics to be a treatise about deductive reasoning, more generally, about methods of determining the validity and invalidity of premise-conclusion arguments. People studied Prior Analytics in order to learn more about deductive reasoning and to improve their own reasoning skills. These interpreters understood Aristotle to be focusing on two epistemic processes: first, the process of establishing knowledge that a conclusion follows necessarily from a set of premises (that is, on the (...) epistemic process of extracting information implicit in explicitly given information) and, second, the process of establishing knowledge that a conclusion does not follow. Despite the overwhelming tendency to interpret the syllogistic as formal epistemology, it was not until the early 1970s that it occurred to anyone to think that Aristotle may have developed a theory of deductive reasoning with a well worked-out system of deductions comparable in rigor and precision with systems such as propositional logic or equational logic familiar from mathematical logic. When modern logicians in the 1920s and 1930s first turned their attention to the problem of understanding Aristotle's contribution to logic in modern terms, they were guided both by the Frege-Russell conception of logic as formal ontology and at the same time by a desire to protect Aristotle from possible charges of psychologism. They thought they saw Aristotle applying the informal axiomatic method to formal ontology, not as making the first steps into formal epistemology. They did not notice Aristotle's description of deductive reasoning. Ironically, the formal axiomatic method (in which one explicitly presents not merely the substantive axioms but also the deductive processes used to derive theorems from the axioms) is incipient in Aristotle's presentation. Partly in opposition to the axiomatic, ontically-oriented approach to Aristotle's logic and partly as a result of attempting to increase the degree of fit between interpretation and text, logicians in the 1970s working independently came to remarkably similar conclusions to the effect that Aristotle indeed had produced the first system of formal deductions. They concluded that Aristotle had analyzed the process of deduction and that his achievement included a semantically complete system of natural deductions including both direct and indirect deductions. Where the interpretations of the 1920s and 1930s attribute to Aristotle a system of propositions organized deductively, the interpretations of the 1970s attribute to Aristotle a system of deductions, or extended deductive discourses, organized epistemically. The logicians of the 1920s and 1930s take Aristotle to be deducing laws of logic from axiomatic origins; the logicians of the 1970s take Aristotle to be describing the process of deduction and in particular to be describing deductions themselves, both those deductions that are proofs based on axiomatic premises and those deductions that, though deductively cogent, do not establish the truth of the conclusion but only that the conclusion is implied by the premise-set. Thus, two very different and opposed interpretations had emerged, interestingly both products of modern logicians equipped with the theoretical apparatus of mathematical logic. The issue at stake between these two interpretations is the historical question of Aristotle's place in the history of logic and of his orientation in philosophy of logic. This paper affirms Aristotle's place as the founder of logic taken as formal epistemology, including the study of deductive reasoning. A by-product of this study of Aristotle's accomplishments in logic is a clarification of a distinction implicit in discourses among logicians--that between logic as formal ontology and logic as formal epistemology. (shrink)
Abstract. As a general theory of reasoning—and as a general theory of what holds true under every possible circumstance—logic is supposed to be ontologically neutral. It ought to have nothing to do with questions concerning what there is, or whether there is anything at all. It is for this reason that traditional Aristotelian logic, with its tacit existential presuppositions, was eventually deemed inadequate as a canon of pure logic. And it is for this reason that modern quantification (...) theory, too, with its residue of existentially loaded theorems and patterns of inference, has been claimed to suffer from a defect of logical purity. The law of non-contradiction rules out certain circumstances as impossible—circumstances in which a statement is both true and false, or perhaps circumstances where something both is and is not the case. Is this to be regarded as a further ontological bias? (shrink)
The paper introduces Vailati’s life and works, investigating Vailati’s education, the relation to Peano and his school, and the interest for pragmatism and modernism. A detailed analysis of Vailati’s scientific and didactic activities, shows that he held, like Peano, a a strong interest for the history of science and a pluralist, anti-dogmatic and anti-foundationalist conception of definitions in mathematics, logic and philosophy of language. Vailati’s understanding of mathematical logic as a form of pragmatism is not a faithful (...) interpretation of Peano’s conception, but it is essential to understand the relations of Peano’s logic with other philosophical traditions and some epistemological aspects of Peano’s perspective, such as the search for a universal language. (shrink)
The square of opposition is a diagram related to a theory of oppositions that goes back to Aristotle. Both the diagram and the theory have been discussed throughout the history of logic. Initially, the diagram was employed to present the Aristotelian theory of quantification, but extensions and criticisms of this theory have resulted in various other diagrams. The strength of the theory is that it is at the same time fairly simple and quite rich. The theory of oppositions (...) has recently become a topic of intense interest due to the development of a general geometry of opposition (polygons and polyhedra) with many applications. A congress on the square with an interdisciplinary character has been organized on a regular basis (Montreux 2007, Corsica 2010, Beirut 2012, Vatican 2014, Rapa Nui 2016). The volume at hand is a sequel to two successful books: The Square of Opposition - A General Framework of Cognition, ed. by J.-Y. Béziau & G. Payette, as well as Around and beyond the Square of Opposition, ed. by J.-Y. Béziau & D. Jacquette, and, like those, a collection of selected peer-reviewed papers. The idea of this new volume is to maintain a good equilibrium between history, technical developments and applications. The volume is likely to attract a wide spectrum of readers, mathematicians, philosophers, linguists, psychologists and computer scientists, who may range from undergraduate students to advanced researchers. (shrink)
This essay focuses on the logic of the aesthetic argument used in the eighteenth century as a conceptual tool for formulating the modern concept of “(fine) art(s).” The essay also examines the main developments in the history of the art of modernity which were initiated from the way the “nature” of art was conceived in early modern aesthetics. The author claims that the formulation of the “aesthetic nature” of art led to the process of the gradual disappearance of (...) all of the formal elements that had previously characterized the visual arts; the result was “emptiness” or “nothingness” as art. The author refers to this process in terms of “vanishing acts” that allow for the formulation of an aesthetics of absence in connection to twentieth-century art (complementing the Ästhetik der Absenz, formulated in German art theory). The author also briefly addresses the consequences that these processes have for the way contemporary art, and art world operate. (shrink)
The textbook-like history of analytic philosophy is a history of myths, re-ceived views and dogmas. Though mainly the last few years have witnessed a huge amount of historical work that aimed to reconsider our narratives of the history of ana-lytic philosophy there is still a lot to do. The present study is meant to present such a micro story which is still quite untouched by historians. According to the received view Kripke has defeated all the arguments of (...) Quine against quantified modal logic and thus it became a respectful tool for philosophers. If we accept the historical interpreta-tion of the network between Quine, Kripke and modal logic, which is to be presented here, we have to conclude that Quine’s real philosophical animadversions against the modalities are still on the table: though Kripke has provided some important (formal-logical) answers, Quine’s animadversions are still viable and worthy of further consideration. (shrink)
William James was one of the most controversial philosophers of the early part of the 20 century, and his apparent skepticism about logic and any robust conception of truth was often simply attributed to his endorsing mysticism and irrationality out of an overwhelming desire to make room for religion in his world-view. However, it will be argued here that James’s pessimism about logic and even truth (or at least ‘absolute’ truth), while most prominent in his later views, stem (...) from the naturalistic conception of concepts developed much earlier in The Principles of Psychology (1890), and it is his commitment to naturalism about our conceptual powers, rather than to any sort of mysticism or irrationalism, that motivates his skepticism about the scope and power of logic, and ultimately about the objectivity of truth itself. (shrink)
If the cultural variations concerning knowledge and research on ordinary reasoning are part of cultural history, what kind of historiographical method is needed in order to present the history of its evolution? This paper proposes to introduce the study of theories of reasoning into a historiographic perspective because we assume that the answer to the previous question does not only depend of internal controversies about how reasoning performance is explained by current theories of reasoning. [...].
Girolamo Saccheri (1667--1733) was an Italian Jesuit priest, scholastic philosopher, and mathematician. He earned a permanent place in the history of mathematics by discovering and rigorously deducing an elaborate chain of consequences of an axiom-set for what is now known as hyperbolic (or Lobachevskian) plane geometry. Reviewer's remarks: (1) On two pages of this book Saccheri refers to his previous and equally original book Logica demonstrativa (Turin, 1697) to which 14 of the 16 pages of the editor's "Introduction" are (...) devoted. At the time of the first edition, 1920, the editor was apparently not acquainted with the secondary literature on Logica demonstrativa which continued to grow in the period preceding the second edition \ref[see D. J. Struik, in Dictionary of scientific biography, Vol. 12, 55--57, Scribner's, New York, 1975]. Of special interest in this connection is a series of three articles by A. F. Emch [Scripta Math. 3 (1935), 51--60; Zbl 10, 386; ibid. 3 (1935), 143--152; Zbl 11, 193; ibid. 3 (1935), 221--333; Zbl 12, 98]. (2) It seems curious that modern writers believe that demonstration of the "nondeducibility" of the parallel postulate vindicates Euclid whereas at first Saccheri seems to have thought that demonstration of its "deducibility" is what would vindicate Euclid. Saccheri is perfectly clear in his commitment to the ancient (and now discredited) view that it is wrong to take as an "axiom" a proposition which is not a "primal verity", which is not "known through itself". So it would seem that Saccheri should think that he was convicting Euclid of error by deducing the parallel postulate. The resolution of this confusion is that Saccheri thought that he had proved, not merely that the parallel postulate was true, but that it was a "primal verity" and, thus, that Euclid was correct in taking it as an "axiom". As implausible as this claim about Saccheri may seem, the passage on p. 237, lines 3--15, seems to admit of no other interpretation. Indeed, Emch takes it this way. (3) As has been noted by many others, Saccheri was fascinated, if not obsessed, by what may be called "reflexive indirect deductions", indirect deductions which show that a conclusion follows from given premises by a chain of reasoning beginning with the given premises augmented by the denial of the desired conclusion and ending with the conclusion itself. It is obvious, of course, that this is simply a species of ordinary indirect deduction; a conclusion follows from given premises if a contradiction is deducible from those given premises augmented by the denial of the conclusion---and it is immaterial whether the contradiction involves one of the premises, the denial of the conclusion, or even, as often happens, intermediate propositions distinct from the given premises and the denial of the conclusion. Saccheri seemed to think that a proposition proved in this way was deduced from its own denial and, thus, that its denial was self-contradictory (p. 207). Inference from this mistake to the idea that propositions proved in this way are "primal verities" would involve yet another confusion. The reviewer gratefully acknowledges extensive communication with his former doctoral students J. Gasser and M. Scanlan. ADDED 14 March 14, 2015: (1) Wikipedia reports that many of Saccheri's ideas have a precedent in the 11th Century Persian polymath Omar Khayyám's Discussion of Difficulties in Euclid, a fact ignored in most Western sources until recently. It is unclear whether Saccheri had access to this work in translation, or developed his ideas independently. (2) This book is another exemplification of the huge difference between indirect deduction and indirect reduction. Indirect deduction requires making an assumption that is inconsistent with the premises previously adopted. This means that the reasoner must perform a certain mental act of assuming a certain proposition. It case the premises are all known truths, indirect deduction—which would then be indirect proof—requires the reasoner to assume a falsehood. This fact has been noted by several prominent mathematicians including Hardy, Hilbert, and Tarski. Indirect reduction requires no new assumption. Indirect reduction is simply a transformation of an argument in one form into another argument in a different form. In an indirect reduction one proposition in the old premise set is replaced by the contradictory opposite of the old conclusion and the new conclusion becomes the contradictory opposite of the replaced premise. Roughly and schematically, P,Q/R becomes P,~R/~Q or ~R, Q/~P. Saccheri’s work involved indirect deduction not indirect reduction. (3) The distinction between indirect deduction and indirect reduction has largely slipped through the cracks, the cracks between medieval-oriented logic and modern-oriented logic. The medievalists have a heavy investment in reduction and, though they have heard of deduction, they think that deduction is a form of reduction, or vice versa, or in some cases they think that the word ‘deduction’ is the modern way of referring to reduction. The modernists have no interest in reduction, i.e. in the process of transforming one argument into another having exactly the same number of premises. Modern logicians, like Aristotle, are concerned with deducing a single proposition from a set of propositions. Some focus on deducing a single proposition from the null set—something difficult to relate to reduction. (shrink)
DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...) from the hypothesis augmented by a set of premises known to be true. A “direct proof of a hypothesis" is an argumentation that actually deduces the hypothesis itself from premises known to be true. Since `appears', `believes' and `knows' all make elliptical reference to a participant, it is clear that `paradox', `indirect proof' and `direct proof' are all participant-relative. PARTICIPANT RELATIVITY In normal mathematical writing the participant is presumed to be “the community of mathematicians" or some more or less well-defined subcommunity and, therefore, omission of explicit reference to the participant is often warranted. However, in historical, critical, or philosophical writing focused on emerging branches of mathematics such omission often invites confusion. One and the same argumentation has been a paradox for one mathematician, an inconsistency proof for another, and an indirect proof to a third. One and the same argumentation-text can appear to one mathematician to express an indirect proof while appearing to another mathematician to express a direct proof. WHAT IS A PARADOX’S SOLUTION? Of the above four sorts of argumentation only the paradox invites “solution" or “resolution", and ordinarily this is to be accomplished either by discovering a logical fallacy in the “reasoning" of the argumentation or by discovering that the conclusion is not really false or by discovering that one of the premises is not really true. Resolution of a paradox by a participant amounts to reclassifying a formerly paradoxical argumentation either as a “fallacy", as a direct proof of its conclusion, as an indirect proof of the negation of one of its premises, as an inconsistency proof, or as something else depending on the participant's state of knowledge or belief. This illustrates why an argumentation which is a paradox to a given mathematician at a given time may well not be a paradox to the same mathematician at a later time. -/- The present article considers several set-theoretic argumentations that appeared in the period 1903-1908. The year 1903 saw the publication of B. Russell's Principles of mathematics, [Cambridge Univ. Press, Cambridge, 1903; Jbuch 34, 62]. The year 1908 saw the publication of Russell's article on type theory as well as Ernst Zermelo's two watershed articles on the axiom of choice and the foundations of set theory. The argumentations discussed concern “the largest cardinal", “the largest ordinal", the well-ordering principle, “the well-ordering of the continuum", denumerability of ordinals and denumerability of reals. The article shows that these argumentations were variously classified by various mathematicians and that the surrounding atmosphere was one of confusion and misunderstanding, partly as a result of failure to make or to heed distinctions similar to those made above. The article implies that historians have made the situation worse by not observing or not analysing the nature of the confusion. -/- RECOMMENDATION This well-written and well-documented article exemplifies the fact that clarification of history can be achieved through articulation of distinctions that had not been articulated (or were not being heeded) at the time. The article presupposes extensive knowledge of the history of mathematics, of mathematics itself (especially set theory) and of philosophy. It is therefore not to be recommended for casual reading. AFTERWORD: This review was written at the same time Corcoran was writing his signature “Argumentations and logic”[249] that covers much of the same ground in much more detail. https://www.academia.edu/14089432/Argumentations_and_Logic . (shrink)
As analytic philosophy is becoming increasingly aware of and interested in its own history, the study of that field is broadening to include, not just its earliest beginnings, but also the mid-twentieth century. One of the towering figures of this epoch is W.V. Quine (1908-2000), champion of naturalism in philosophy of science, pioneer of mathematical logic, trying to unite an austerely physicalist theory of the world with the truths of mathematics, psychology, and linguistics. Quine's posthumous papers, notes, and (...) drafts revealing the development of his views in the forties have recently begun to be published, as well as careful philosophical studies of, for instance, the evolution of his key doctrine that mathematical and logical truth are continuous with, not divorced from, the truths of natural science. But one central text has remained unexplored: Quine's Portuguese-language book on logic, his 'farewell for now' to the discipline as he embarked on an assignment in the Navy in WWII. Anglophone philosophers have neglected this book because they could not read it. Jointly with colleagues, I have completed the first full English translation of this book. In this accompanying paper I draw out the main philosophical contributions Quine made in the book, placing them in their historical context and relating them to Quine's overall philosophical development during the period. Besides significant developments in the evolution of Quine's views on meaning and analyticity, I argue, this book is also driven by Quine's indebtedness to Russell and Whitehead, Tarski, and Frege, and contains crucial developments in his thinking on philosophy of logic and ontology. This includes early versions of some arguments from 'On What There Is', four-dimensionalism, and virtual set theory. (shrink)
My dissertation explores the ways in which Rudolf Carnap sought to make philosophy scientific by further developing recent interpretive efforts to explain Carnap’s mature philosophical work as a form of engineering. It does this by looking in detail at his philosophical practice in his most sustained mature project, his work on pure and applied inductive logic. I, first, specify the sort of engineering Carnap is engaged in as involving an engineering design problem and then draw out the complications of (...) design problems from current work in history of engineering and technology studies. I then model Carnap’s practice based on those lessons and uncover ways in which Carnap’s technical work in inductive logic takes some of these lessons on board. This shows ways in which Carnap’s philosophical project subtly changes right through his late work on induction, providing an important corrective to interpretations that ignore the work on inductive logic. Specifically, I show that paying attention to the historical details of Carnap’s attempt to apply his work in inductive logic to decision theory and theoretical statistics in the 1950s and 1960s helps us understand how Carnap develops and rearticulates the philosophical point of the practical/theoretical distinction in his late work, offering thus a new interpretation of Carnap’s technical work within the broader context of philosophy of science and analytical philosophy in general. (shrink)
Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
In this paper I sketch some arguments that underlie Hegel's chapter on judgment, and I attempt to place them within a broad tradition in the history of logic. Focusing on his analysis of simple predicative assertions or ‘positive judgments’, I first argue that Hegel supplies an instructive alternative to the classical technique of existential quantification. The main advantage of his theory lies in his treatment of the ontological implications of judgments, implications that are inadequately captured by quantification. The (...) second concern of this paper is the manner in which Hegel makes logic not only dependent on ontology generally, but also variant in regard to domains of objects. In other words, he offers a domain-specific logical theory, according to which the form of judgment or inference is specific to the subject of judgment. My third concern lies with the metaphilosophical consequences of this theory, and this includes some more familiar Hegelian themes. It is well known that Hegel frequently questioned the adequacy of the sentential form for expressing higher order truths. My reading of his theory of predication explains and contextualizes this tendency by demystifying notions like the so-called speculative proposition. (shrink)
This article discusses the relation between the early Wittgenstein’s and Carnap’s philosophies of logic, arguing that Carnap’s position in The Logical Syntax of Language is in certain respects much closer to the Tractatus than has been recognized. In Carnapian terms, the Tractatus’ goal is to introduce, by means of quasi-syntactical sentences, syntactical principles and concepts to be used in philosophical clarification in the formal mode. A distinction between the material and formal mode is therefore already part of the Tractatus’ (...) view, and its method for introducing syntactical concepts and principles should be entirely acceptable for Carnap by his own criteria. Moreover, despite the Tractatus’ rejection of syntactical statements, there is an important correspondence between Wittgenstein’s saying-showing distinction and Carnap’s object-language-syntax-language distinction: both constitute a distinction between logico-syntactical determinations concerning language and language as determined or described by those determinations. Wittgenstein’s distinction therefore constitutes a precursor of the object-language syntax-language distinction which the latter in a certain sense affirms, rather than simply contradicting it. The saying-showing distinction agrees with Carnap’s position also in marking logic as something that isn’t true/false about either language or reality, which is a conception that underlies Carnap’s principle of tolerance. (shrink)
John Corcoran and George Boger. Aristotelian logic and Euclidean geometry. Bulletin of Symbolic Logic. 20 (2014) 131. -/- By an Aristotelian logic we mean any system of direct and indirect deductions, chains of reasoning linking conclusions to premises—complete syllogisms, to use Aristotle’s phrase—1) intended to show that their conclusions follow logically from their respective premises and 2) resembling those in Aristotle’s Prior Analytics. Such systems presuppose existence of cases where it is not obvious that the conclusion follows (...) from the premises: there must be something deductions can show. Corcoran calls a proposition that follows from given premises a hidden consequence of those premises if it is not obvious that the proposition follows from those premises. By a Euclidean geometry we mean an extended discourse beginning with basic premises—axioms, postulates, definitions—1) treating a universe of geometrical figures and 2) resembling Euclid’s Elements. There were Euclidean geometries before Euclid (fl. 300 BCE), even before Aristotle (384–322 BCE). Bochenski, Lukasiewicz, Patzig and others never new this or if they did they found it inconvenient to mention. Euclid shows no awareness of Aristotle. It is obvious today—as it should have been obvious in Euclid’s time, if anyone knew both—that Aristotle’s logic was insufficient for Euclid’s geometry: few if any geometrical theorems can be deduced from Euclid’s premises by means of Aristotle’s deductions. Aristotle’s writings don’t say whether his logic is sufficient for Euclidean geometry. But, there is not even one fully-presented example. However, Aristotle’s writings do make clear that he endorsed the goal of a sufficient system. Nevertheless, incredible as this is today, many logicians after Aristotle claimed that Aristotelian logics are sufficient for Euclidean geometries. This paper reviews and analyses such claims by Mill, Boole, De Morgan, Russell, Poincaré, and others. It also examines early contrary statements by Hintikka, Mueller, Smith, and others. Special attention is given to the argumentations pro or con and especially to their logical, epistemic, and ontological presuppositions. What methodology is necessary or sufficient to show that a given logic is adequate or inadequate to serve as the underlying logi of a given science. (shrink)
This paper revisits Derrida’s and Deleuze’s early discussions of “Platonism” in order to challenge the common claim that there is a fundamental divergence in their thought and to challenge one standard narrative about the history of deconstruction. According to that narrative, deconstruction should be understood as the successor to phenomenology. To complicate this story, I read Derrida’s “Plato’s Pharmacy” alongside Deleuze’s discussion of Platonism and simulacra at the end of Logic of Sense. Both discussions present Platonism as the (...) effort to establish a representative order (of original ideas and authorized reproductions of them) with no excess or outside (simulacra, or ideas that cannot be tied to an eidos). Since such pure representation is impossible, Platonism functions by means of the violent suppression of the simulacra and pharamakoi that exceed its eidetic structures. To overcome Platonism is thus not to reverse it, but to establish something like a practice of counter-memorials: detecting, exhuming, and writing back textual traces of what Platonism excludes. I then briefly apply this practice to narratives about the history of deconstruction, and suggest that they tend to occlude precisely the materialist elements of that history, as (for example) the importance of Spinoza as an interlocutor. In other words, the emerging canonical narrative about deconstruction runs the risk of repeating the Platonic gesture that Derrida spent his career writing against. (shrink)
In this manuscript, published here for the first time, Tarski explores the concept of logical notion. He draws on Klein's Erlanger Programm to locate the logical notions of ordinary geometry as those invariant under all transformations of space. Generalizing, he explicates the concept of logical notion of an arbitrary discipline.
With Hegel’s metaphysics attracting renewed attention, it is time to address a longstanding criticism: Scholars from Marx to Popper and Habermas have worried that Hegel’s metaphysics has anti-individualist and authoritarian implications, which are particularly pronounced in his Philosophy of History, since Hegel identifies historical progress with reason imposing itself on individuals. Rather than proposing an alternative non-metaphysical conception of reason, as Pippin or Brandom have done, this article argues that critics are broadly right in their metaphysical reading of Hegel’s (...) central concepts. However, they are mistaken about what Hegel’s approach entails, when one examines the specific types of states discussed (and rejected) by the philosopher in his Philosophy of History. Even on a traditional metaphysical reading, Hegel is not only nonauthoritarian; he also makes a powerful argument concerning freedom, whereupon the freest society involves collective oversight and the shaping of social structures so as to ensure that they benefit everybody. (shrink)
In order to say what one means, and be understood, one needs to know to whom one wishes to communicate, the particular mindset one addresses. Expressing oneself clearly and naturally requires some art. Style, then, is an important component of the message received, or so it is in art history writing according to James Elkins. He attempts to demonstrate that what constitutes art history writing is consequently unanalysable; that art history under analysis becomes something else. ‘The glare (...) of logic’ Elkins claims, ‘bleaches the carefully modulated colors of art history and makes whole stretches of it appear blank’ (225). Art history is shrunk when it becomes the patient of the philosopher, the sociologist, the cultural theorist. (shrink)
Judaic Logic is an original inquiry into the forms of thought determining Jewish law and belief, from the impartial perspective of a logician. Judaic Logic attempts to honestly estimate the extent to which the logic employed within Judaism fits into the general norms, and whether it has any contributions to make to them. The author ranges far and wide in Jewish lore, finding clear evidence of both inductive and deductive reasoning in the Torah and other books of (...) the Bible, and analyzing the methodology of the Talmud and other Rabbinic literature by means of formal tools which make possible its objective evaluation with reference to scientific logic. The result is a highly innovative work – incisive and open, free of clichés or manipulation. Judaic Logic succeeds in translating vague and confusing interpretative principles and examples into formulas with the clarity and precision of Aristotelean syllogism. Among the positive outcomes, for logic in general, are a thorough listing, analysis and validation of the various forms of a-fortiori argument, as well as a clarification of dialectic logic. However, on the negative side, this demystification of Talmudic/Rabbinic modes of thought (hermeneutic and heuristic) reveals most of them to be, contrary to the boasts of orthodox commentators, far from deductive and certain. They are often, legitimately enough, inductive. But they are also often unnatural and arbitrary constructs, supported by unverifiable claims and fallacious techniques. Many other thought-processes, used but not noticed or discussed by the Rabbis, are identified in this treatise, and subjected to logical review. Various more or less explicit Rabbinic doctrines, which have logical significance, are also examined in it. In particular, this work includes a formal study of the ethical logic (deontology) found in Jewish law, to elicit both its universal aspects and its peculiarities. With regard to Biblical studies, one notable finding is an explicit formulation (which, however, the Rabbis failed to take note of and stress) of the principles of adduction in the Torah, written long before the acknowledgement of these principles in Western philosophy and their assimilation in a developed theory of knowledge. Another surprise is that, in contrast to Midrashic claims, the Tanakh (Jewish Bible) contains a lot more than ten instances of qal vachomer (a-fortiori) reasoning. In sum, Judaic Logic elucidates and evaluates the epistemological assumptions which have generated the Halakhah (Jewish religious jurisprudence) and allied doctrines. Traditional justifications, or rationalizations, concerning Judaic law and belief, are carefully dissected and weighed at the level of logical process and structure, without concern for content. This foundational approach, devoid of any critical or supportive bias, clears the way for a timely reassessment of orthodox Judaism (and incidentally, other religious systems, by means of analogies or contrasts). Judaic Logic ought, therefore, to be read by all Halakhists, as well as Bible and Talmud scholars and students; and also by everyone interested in the theory, practise and history of logic. (shrink)
This paper intends to explain key differences between Aristotle’s understanding of the relationships between nous, epistêmê, and the art of syllogistic reasoning(both analytic and dialectical) and the corresponding modern conceptions of intuition, knowledge, and reason. By uncovering paradoxa that Aristotle’s understanding of syllogistic reasoning presents in relation to modern philosophical conceptions of logic and science, I highlight problems of a shift in modern philosophy—a shift that occurs most dramatically in the seventeenth century—toward a project of construction, a pervasive desire (...) for rational certainty, and a general insistence on the reducibility of the sciences. The major motivation of this analysis is my intention to show that modern attempts to reduce science/epistêmê to a single science/method of inquiry occlude dialectical and ethico-political dimensions of “reason” and, hence, also impoverish philosophy’s critical capacities. (shrink)
What is the rational response when confronted with a set of propositions each of which we have some reason to accept, and yet which taken together form an inconsistent class? This was, in a nutshell, the problem addressed by the Jaina logicians of classical India, and the solution they gave is, I think, of great interest, both for what it tells us about the relationship between rationality and consistency, and for what we can learn about the logical basis of philosophical (...) pluralism. The Jainas claim that we can continue to reason in spite of the presence of inconsistencies, and indeed construct a many-valued logical system tailored to the purpose. My aim in this paper is to offer a new interpretation of that system and to try to draw out some of its philosophical implications. (shrink)
According to the reading of Spinoza that Gilles Deleuze presents in Expressionism in Philosophy: Spinoza, Spinoza's philosophy should not be represented as a moment that can be simply subsumed and sublated within the dialectical progression of the history of philosophy, as it is figured by Hegel in the Science of Logic, but rather should be considered as providing an alternative point of view for the development of a philosophy that overcomes Hegelian idealism. Indeed, Deleuze demonstrates, by means of (...) Spinoza, that a more complex philosophy antedates Hegel's which cannot be supplanted by it. Spinoza therefore becomes a significant figure in Deleuze's project of tracing an alternative lineage in the history of philosophy, which, by distancing itself from Hegelian idealism, culminates in the construction of a philosophy of difference. Deleuze presents Spinoza's metaphysics as determined according to a 'logic of expression', which, insofar as it contributes to the determination of a philosophy of difference, functions as an alternative to the Hegelian dialectical logic. Deleuze's project in Expressionism in Philosophy is therefore to redeploy Spinoza in order to mobilize his philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic. (shrink)
Carnap’s Ideal of Explication and Naturalism is the second book on Rudolf Carnap’s philosophy edited by Pierre Wagner for Palgrave Macmillan’s series The History of Analytic Philosophy. The collection of essays is important for several reasons both for philosophers and historians of philosophy, but some parts of it will also be valuable to anyone interested in general scientific methodologies. I shall first survey the theme in order to locate the collection within the recent philosophical discussion then I will consider (...) the volume itself. (shrink)
In this paper, I focus on the important semantic components involved in analogy in hopes of providing an epistemic ground for predicating names of God analogously. To this task, I address a semantic/epistemic problem, which concludes that the doctrine of analogy lacks epistemological grounding insofar as it presupposes a prior understanding of God in order to sufficiently alter a given concept to be proportionate to God. In hopes of avoiding this conclusion, I introduce Aquinas’s specifically semantic aspects that follow after (...) the real distinction between a thing’s esse and its essence or form in the context of analogy and show that the ratio of a term can be altered in a way proportionate to a consideration of the mode of being of God. (shrink)
The science of logic has occupied an important role in Islamic history. Especially when al-Gazali 505-1111 has come and claimed that who learned Islamic sciences, without learning the Logic we cannot trust in his knowledge. From this time The science of logic has been flourished and quietly began to include in many sciences even Tefsir and Fiqh. After that, Al-razzi 606/1210 has established a big school in Islamic philosophy in general and in logic in particular. (...) al-Khonaji 646/1248 one of his important students. Who moved from Iran to Egypt and became Qadi al-Qudat (Chief Islamic justice). He has improved The science of logic by his books; like Keshf al-Asrar. In the sixth/twelfth one of his books has been spread in Muslim world and became the first step for who wanted to learn Logic. Beside that we have a lot of scholars has made commentaries on this book. In this article we focused on (Metn al-Jumal) by al-Konaji with his spreading in the Sixth. Seventh h.centuries. (shrink)
Logicians commonly speak in a relatively undifferentiated way about pre-euler diagrams. The thesis of this paper, however, is that there were three periods in the early modern era in which euler-type diagrams (line diagrams as well as circle diagrams) were expansively used. Expansive periods are characterized by continuity, and regressive periods by discontinuity: While on the one hand an ongoing awareness of the use of euler-type diagrams occurred within an expansive period, after a subsequent phase of regression the entire knowledge (...) about the systematic application and the history of euler-type diagrams was lost. I will argue that the first expansive period lasted from Vives (1531) to Alsted (1614). The second period began around 1660 with Weigel and ended in 1712 with lange. The third period of expansion started around 1760 with the works of Ploucquet, euler and lambert. Finally, it is shown that euler-type diagrams became popular in the debate about intuition which took place in the 1790s between leibnizians and Kantians. The article is thus limited to the historical periodization between 1530 and 1800. (shrink)
This self-contained one page paper produces one valid two-premise premise-conclusion argument that is a counterexample to the entire three traditional rules of distribution. These three rules were previously thought to be generally applicable criteria for invalidity of premise-conclusion arguments. No longer can a three-term argument be dismissed as invalid simply on the ground that its middle is undistributed, for example. The following question seems never to have been raised: how does having an undistributed middle show that an argument's conclusion does (...) not follow from its premises? This result does nothing to vitiate the theories of distribution developed over the period beginning in medieval times. What it does vitiate is many if not all attempts to use distribution in tests of invalidity outside of the standard two-premise categorical arguments—where they were verified on a case-by-case basis without further theoretical grounding. In addition it shows that there was no theoretical basis for many if not all claims of fundamental status of rules of distribution. These results are further support for approaching historical texts using mathematical archeology. (shrink)
Logic in the Torah is a ‘thematic compilation’ by Avi Sion. It collects in one volume essays that he has written on this subject in Judaic Logic (1995) and A Fortiori Logic (2013), in which traces of logic in the Torah and related religious documents (the Nakh, the Christian Bible, and the Koran and Hadiths) are identified and analyzed.
Logic in the Talmud is a ‘thematic compilation’ by Avi Sion. It collects in one volume essays that he has written on this subject in Judaic Logic (1995) and A Fortiori Logic (2013), in which traces of logic in the Talmud (the Mishna and Gemara) are identified and analyzed. While this book does not constitute an exhaustive study of logic in the Talmud, it is a ground-breaking and extensive study.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.