The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...) of arithmetic are logically derivable from Hume’s Principle. And that hardly counts as a vindication of logicism. (shrink)
A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of (...) representation from contemporary mathematical logic. It is argued that the theory-based versions of such logicism are either too liberal (the plethora problem) or are committed to intuitively incorrect closure conditions (the consistency problem). Structure-based versions must on the other hand respond to a charge of begging the question (the circularity problem) or explain how one may have a knowledge of structure in advance of a knowledge of axioms (the signature problem). This discussion is significant because it gives us a better idea of what a notion of representation must look like if it is to aid in realizing some of the traditional epistemic aims of logicism in the philosophy of mathematics. (shrink)
In two recent papers, Bob Hale has attempted to free second-order logic of the 'staggering existential assumptions' with which Quine famously attempted to saddle it. I argue, first, that the ontological issue is at best secondary: the crucial issue about second-order logic, at least for a neo-logicist, is epistemological. I then argue that neither Crispin Wright's attempt to characterize a `neutralist' conception of quantification that is wholly independent of existential commitment, nor Hale's attempt to characterize the second-order domain in terms (...) of definability, can serve a neo-logicist's purposes. The problem, in both cases, is similar: neither Wright nor Hale is sufficiently sensitive to the demands that impredicativity imposes. Finally, I defend my own earlier attempt to finesse this issue, in "A Logic for Frege's Theorem", from Hale's criticisms. (shrink)
According to Quine, Charles Parsons, Mark Steiner, and others, Russell's logicist project is important because, if successful, it would show that mathematical theorems possess desirable epistemic properties often attributed to logical theorems, such as a prioricity, necessity, and certainty. Unfortunately, Russell never attributed such importance to logicism, and such a thesis contradicts Russell's explicitly stated views on the relationship between logic and mathematics. This raises the question: what did Russell understand to be the philosophical importance of logicism? Building (...) on recent work by Andrew Irvine and Martin Godwyn, I argue that Russell thought a systematic reduction of mathematics increases the certainty of known mathematical theorems (even basic arithmetical facts) by showing mathematical knowledge to be coherently organized. The paper outlines Russell's theory of coherence, and discusses its relevance to logicism and the certainty attributed to mathematics. -/- . (shrink)
Most advocates of the so-called “neologicist” movement in the philosophy of mathematics identify themselves as “Neo-Fregeans” (e.g., Hale and Wright): presenting an updated and revised version of Frege’s form of logicism. Russell’s form of logicism is scarcely discussed in this literature, and when it is, often dismissed as not really logicism at all (in lights of its assumption of axioms of infinity, reducibiity and so on). In this paper I have three aims: firstly, to identify more clearly (...) the primary metaontological and methodological differences between Russell’s logicism and the more recent forms; secondly, to argue that Russell’s form of logicism offers more elegant and satisfactory solutions to a variety of problems that continue to plague the neo-logicist movement (the bad company objection, the embarassment of richness objection, worries about a bloated ontology, etc.); thirdly, to argue that Neo- Russellian forms of neologicism remain viable positions for current philosophers of mathematics. (shrink)
In this work I study the main tenets of the logicist philosophy of mathematics. I deal, basically, with two problems: (1) To what extent can one dispense with intuition in mathematics? (2) What is the appropriate logic for the purposes of logicism? By means of my considerations I try to determine the pros and cons of logicism. My standpoint favors the logicist line of thought. -/- .
This paper has two separate aims, with obvious links between them. First, to present Charles S. Peirce and the pragmatist movement in a historical framework which stresses the close connections of pragmatism with the mainstream of philosophy; second, to deal with a particular controversial issue, that of the supposed logicistic orientation of Peirce's work.
This essay examines the philosophical significance of Ω-logic in Zermelo-Fraenkel set theory with choice (ZFC). The dual isomorphism between algebra and coalgebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω-logical validity can then be countenanced within a coalgebraic logic, and Ω-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω-logical validity correspond to those of (...) second-order logical consequence, Ω-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets. (shrink)
In this extended critical discussion of 'Kant's Modal Metaphysics' by Nicholas Stang (OUP 2016), I focus on one central issue from the first chapter of the book: Stang’s account of Kant’s doctrine that existence is not a real predicate. In §2 I outline some background. In §§3-4 I present and then elaborate on Stang’s interpretation of Kant’s view that existence is not a real predicate. For Stang, the question of whether existence is a real predicate amounts to the question: ‘could (...) there be non-actual possibilia?’ (p.35). Kant’s view, according to Stang, is that there could not, and that the very notion of non-actual or ‘mere’ possibilia is incoherent. In §5 I take a close look at Stang’s master argument that Kant’s Leibnizian predecessors are committed to the claim that existence is a real predicate, and thus to mere possibilia. I argue that it involves substantial logical commitments that the Leibnizian could reject. I also suggest that it is danger of proving too much. In §6 I explore two closely related logical commitments that Stang’s reading implicitly imposes on Kant, namely a negative universal free logic and a quantified modal logic that invalidates the Converse Barcan Formula. I suggest that each can seem to involve Kant himself in commitment to mere possibilia. (shrink)
I critically discuss Dale Jacquette’s Frege: A Philosophical Biography. First, I provide a short overview of Jacquette’s book. Second, I evaluate Jacquette’s interpretation of Frege’s three major works, Begriffsschrift, Grundlagen der Arithmetik and Grundgesetze der Arithmetik; and conclude that the author does not faithfully represent their content. Finally, I offer some technical and general remarks.
A speculative investigation of how Frege's logical views change between Begriffsschrift and Grundgesetze and how this might have affected the formal development of logicism.
The objective of this paper is to analyze the broader significance of Frege’s logicist project against the background of Wittgenstein’s philosophy from both Tractatus and Philosophical Investigations. The article draws on two basic observations, namely that Frege’s project aims at saying something that was only implicit in everyday arithmetical practice, as the so-called recursion theorem demonstrates, and that the explicitness involved in logicism does not concern the arithmetical operations themselves, but rather the way they are defined. It thus represents (...) the attempt to make explicit not the rules alone, but rather the rules governing their following, i.e. rules of second-order type. I elaborate on these remarks with short references to Brandom’s refinement of Frege’s expressivist and Wittgenstein’s pragmatist project. (shrink)
In the early 1900s, Russell began to recognize that he, and many other mathematicians, had been using assertions like the Axiom of Choice implicitly, and without explicitly proving them. In working with the Axioms of Choice, Infinity, and Reducibility, and his and Whitehead’s Multiplicative Axiom, Russell came to take the position that some axioms are necessary to recovering certain results of mathematics, but may not be proven to be true absolutely. The essay traces historical roots of, and motivations for, Russell’s (...) method of analysis, which are intended to shed light on his view about the status of mathematical axioms. I describe the position Russell develops in consequence as “immanent logicism,” in contrast to what Irving (1989) describes as “epistemic logicism.” Immanent logicism allows Russell to avoid the logocentric predicament, and to propose a method for discovering structural relationships of dependence within mathematical theories. (shrink)
Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08. -/- Constance Reid was an insider of the Berkeley-Stanford logic circle. Her San Francisco home was in Ashbury Heights near the homes of logicians such as Dana Scott and John Corcoran. Her sister Julia Robinson was one of the top mathematical logicians of her generation, as was Julia’s husband Raphael Robinson for whom Robinson Arithmetic was named. Julia was a Tarski PhD and, in recognition of (...) a distinguished career, was elected President of the American Mathematics Society. https://en.wikipedia.org/wiki/Julia_Robinson http://www.awm-math.org/noetherbrochure/Robinson82.html. (shrink)
An overview of what Frege accomplishes in Part II of Grundgesetze, which contains proofs of axioms for arithmetic and several additional results concerning the finite, the infinite, and the relationship between these notions. One might think of this paper as an extremely compressed form of Part II of my book Reading Frege's Grundgesetze.
This paper looks at the history of the problem of individuation from Plato to Whitehead. Part I takes as its point of departure Reiner Wiehl’s interpretation of the different meanings of “abstract” in the metaphysics of Alfred North Whitehead and arrives at a corresponding taxonomy of different ways things can be called concrete. Part II compares the way philosophers in different periods understand the relation between thought and intuition. The view mostly associated with ancient philosophy is that thought and sense-perception (...) target different kinds of objects. The view mostly associated with modern philosophy (although it was introduced by the Stoics) is that thought and sense-perception are different ways of targeting the same objects. These differences have specific consequences for theories of individuation, which are assessed historically in Part III and then applied to Whitehead’s difficult texts in part IV. (shrink)
This paper contains a close analysis of Frege's proofs of the axioms of arithmetic §§70-83 of Die Grundlagen, with special attention to the proof of the existence of successors in §§82-83. Reluctantly and hesitantly, we come to the conclusion that Frege was at least somewhat confused in those two sections and that he cannot be said to have outlined, or even to have intended, any correct proof there. The proof he sketches is in many ways similar to that given in (...) Grundgesetze der Arithmetik, but fidelity to what Frege wrote in Die Grundlagen and in Grundgesetze requires us to reject the charitable suggestion that it was this (beautiful) proof that he had in mind in §§82-83. (shrink)
I present and discuss three previously unpublished manuscripts written by Bertrand Russell in 1903, not included with similar manuscripts in Volume 4 of his Collected Papers. One is a one-page list of basic principles for his “functional theory” of May 1903, in which Russell partly anticipated the later Lambda Calculus. The next, catalogued under the title “Proof That No Function Takes All Values”, largely explores the status of Cantor’s proof that there is no greatest cardinal number in the variation of (...) the functional theory holding that only some but not all complexes can be analyzed into function and argument. The final manuscript, “Meaning and Denotation”, examines how his pre-1905 distinction between meaning and denotation is to be understood with respect to functions and their arguments. In them, Russell seems to endorse an extensional view of functions not endorsed in other works prior to the 1920s. All three manuscripts illustrate the close connection between his work on the logical paradoxes and his work on the theory of meaning. (shrink)
For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...) about? (2) How do we distinguish significant from insignificant mathematics? This is a fundamental philosophical problem concerning the nature of mathematics. But it is also a practical problem concerning mathematics itself. In the absence of the solution to the problem, there is the danger that genuinely significant mathematics will be lost among the unchecked growth of a mass of insignificant mathematics. This second problem cannot, it would seem, be solved granted knowledge-inquiry. For, in order to solve the problem, mathematics needs to be related to values, but this is, it seems, prohibited by knowledge-inquiry because it could only lead to the subversion of mathematical rigour. Both problems are solved, however, when mathematics is viewed from the perspective of wisdom-inquiry. (1) Mathematics is not a branch of knowledge. It is a body of systematized, unified and inter-connected problem-solving methods, a body of problematic possibilities. (2) A piece of mathematics is significant if (a) it links up to the interconnected body of existing mathematics, ideally in such a way that some problems difficult to solve in other branches become much easier to solve when translated into the piece of mathematics in question; (b) it has fruitful applications for (other) worthwhile human endeavours. If ever the revolution from knowledge to wisdom occurs, I would hope wisdom mathematics would flourish, the nature of mathematics would become much more transparent, more pupils and students would come to appreciate the fascination of mathematics, and it would be easier to discern what is genuinely significant in mathematics (something that baffled even Einstein). As a result of clarifying what should count as significant, the pursuit of wisdom mathematics might even lead to the development of significant new mathematics. (shrink)
This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; deontic modality; the types of mathematical modality; to the epistemic status of undecidable propositions and abstraction principles in the philosophy of mathematics; to the apriori-aposteriori distinction; to the modal profile of (...) rational propositional intuition; and to the types of intention, when the latter is interpreted as a modal mental state. Examining the nature of epistemic logic itself, I develop a novel approach to conditions of self-knowledge in the setting of the modal μ-calculus, as well as novel epistemicist solutions to Curry's and the liar paradoxes. Solutions to the Julius Caesar Problem, and to previously intransigent issues concerning the first-person concept, the distinction between fundamental and derivative truths, and the unity of intention and its role in decision theory, are developed along the way. (shrink)
Nous envisagerons dans cet article la possibilité d'un abord pratique de la relation entre linguistique et psychanalyse : la modélisation linguistique des données mises au jour par la psychanalyse à partir de corpus tirés du discours courant. La validation de tels modèles d'après les critères requis par l'« approche logiciste » de J.-C. Gardin et J. Molino sera examinée sur un exemple précis que nous exposerons en détail : l'Analyse des Logiques Subjectives, modèle développé, publié et enseigné par nous depuis (...) près de vingt ans. (shrink)
We are much better equipped to let the facts reveal themselves to us instead of blinding ourselves to them or stubbornly trying to force them into preconceived molds. We no longer embarrass ourselves in front of our students, for example, by insisting that “Some Xs are Y” means the same as “Some X is Y”, and lamely adding “for purposes of logic” whenever there is pushback. Logic teaching in this century can exploit the new spirit of objectivity, humility, clarity, observationalism, (...) contextualism, and pluralism. Besides the new spirit there have been quiet developments in logic and its history and philosophy that could radically improve logic teaching. One rather conspicuous example is that the process of refining logical terminology has been productive. Future logic students will no longer be burdened by obscure terminology and they will be able to read, think, talk, and write about logic in a more careful and more rewarding manner. Closely related is increased use and study of variable-enhanced natural language as in “Every proposition x that implies some proposition y that is false also implies some proposition z that is true”. Another welcome development is the culmination of the slow demise of logicism. No longer is the teacher blocked from using examples from arithmetic and algebra fearing that the students had been indoctrinated into thinking that every mathematical truth was a tautology and that every mathematical falsehood was a contradiction. A fifth welcome development is the separation of laws of logic from so-called logical truths, i.e., tautologies. Now we can teach the logical independence of the laws of excluded middle and non-contradiction without fear that students had been indoctrinated into thinking that every logical law was a tautology and that every falsehood of logic was a contradiction. This separation permits the logic teacher to apply logic in the clarification of laws of logic. This lecture expands the above points, which apply equally well in first, second, and third courses, i.e. in “critical thinking”, “deductive logic”, and “symbolic logic”. (shrink)
Many authors believe that the manuscripts Frege wrote in 1924–1925 are not theoretically of interest. They are rather a product of his emotional despair and theoretical dead-end which he reached in the last years of his life. Such is also the judgement of Michael Dummett delivered in his seminal book Frege: Philosophy of Language. According to Dummett, “the few fragmentary writings of Frege’s final period—1919–1925—are not of high quality: they are interesting chiefly as showing that Frege did, at least at (...) the very end of his life, acknowledge the failure of the logicist programme” (Dummett 1981, p. 664). In this paper we will try to show that the widely accepted negative assessment of Frege’s latest writings is due to a lack of understanding of their true idea. In fact, the change in Fre-ge’s mind in the last two or three years of his life was result of long deliberations on a severe tension in his founding intuitions. The change itself made his logico-philosophical project more coherent and, thus, is of utmost theoretical importance. (shrink)
Although the economic thought of Marshall and Pigou was united by ethical positions broadly considered utilitarian, differences in their intellectual milieu led to degrees of difference between their respective philosophical visions. This change in milieu includes the influence of the little understood period of transition from the early idealist period in Great Britain, which provided the context to Marshall’s intellectual formation, and the late British Idealist period, which provided the context to Pigou’s intellectual formation. During this latter period, the pervading (...) Hegelianism and influences of naturalism arising from the ideas of Charles Darwin and Herbert Spencer were challenged by Hermann Lotze, a key transitional thinker influencing the Neo-Kantian movement, who recognised significant limits of naturalism, on the one hand, and the metaphysical tenor of absolute idealism, on the other, and attempted to provide a balance between the two. The goal of this paper is to make the provisional case for the argument that Pigou’s views on ethics were not only directly influenced by utilitarian thinkers like Mill and Sidgwick, but they were also indirectly influenced by Hermann Lotze, via the influence of the Neo- Kantian movement on late British idealism. To that end, Pigou’s essays in The Trouble with Theism (1908), including his sympathetic consideration of the ethics of Friedrich Nietzsche, reflect the influence of Lotze indirectly through the impact at Cambridge of: James Ward’s critique of associationist psychology, and consideration of the limits of naturalism including the critique of evolutionary ethics; Bertrand Russell’s rejection of neo-Hegelianism and, together with Alfred North Whitehead, the development of Logicism; and G.E. Moore’s critique of utilitarian ethics on the basis of the naturalistic fallacy and the development of his own intuitionist system of ethics. (shrink)
Frege's diatribes against psychologism have often been taken to imply that he thought that logic and thought have nothing to do with each other. I argue against this interpretation and attribute to Frege a view on which the two are tightly connected. The connection, however, derives not from logic's being founded on the empirical laws of thought but rather from thought's depending constitutively on the application to it of logic. I call this view 'psycho-logicism.'.
In To be is to be the object of a possible act of choice the authors defended Boolos’ thesis that plural quantification is part of logic. To this purpose, plural quantification was explained in terms of plural reference, and a semantics of plural acts of choice, performed by an ideal team of agents, was introduced. In this paper, following that approach, we develop a theory of concepts that—in a sense to be explained—can be labeled as a theory of logical concepts. (...) Within this theory, we propose a new logicist approach to natural numbers. Then, we compare our logicism with Frege’s traditional logicism. (shrink)
Corcoran, J. 2007. Psychologism. American Philosophy: an Encyclopedia. Eds. John Lachs and Robert Talisse. New York: Routledge. Pages 628-9. -/- Psychologism with respect to a given branch of knowledge, in the broadest neutral sense, is the view that the branch is ultimately reducible to, or at least is essentially dependent on, psychology. The parallel with logicism is incomplete. Logicism with respect to a given branch of knowledge is the view that the branch is ultimately reducible to logic. Every (...) branch of knowledge depends on logic. Psychologism is found in several fields including history, political science, economics, ethics, epistemology, linguistics, aesthetics, mathematics, and logic. Logicism is found mainly in branches of mathematics: number theory, analysis, and, more rarely, geometry. Although the ambiguous term ‘psychologism’ has senses with entirely descriptive connotations, it is widely used in senses that are derogatory. No writers with any appreciation of this point will label their own views as psychologistic. It is usually used pejoratively by people who disapprove of psychologism. The term ‘scientism’ is similar in that it too has both pejorative and descriptive senses but its descriptive senses are rarely used any more. It is almost a law of linguistics that the negative connotations tend to drive out the neutral and the positive. Dictionaries sometimes mark both words with a usage label such as “Usually disparaging”. In this article, the word is used descriptively mainly because there are many psychologistic views that are perfectly respectable and even endorsed by people who would be offended to have their views labeled psychologism. A person who subscribes to logicism is called a logicist, but there is no standard word for a person who subscribes to psychologism. ‘Psychologist’, which is not suitable, occurs in this sense. ‘Psychologician’, with stress on the second syllable as in ‘psychologist’, has been proposed. In the last century, some of the most prominent forms of psychologism pertained to logic; the rest of this article treats only such forms. Psychologism in logic is very “natural”. After all, logic studies reasoning, which is done by the mind, whose nature and functioning is studied in psychology—using the word ‘psychology’ in its broadest etymological sense. (shrink)
First, given criteria for identifying universals and particulars, it is shown that stuffs appear to qualify as neither. Second, the standard solutions to the logico-linguistic problem of mass terms are examined and evidence is presented in favor of the view that mass terms are straightforward singular terms and, relatedly, that stuffs indeed belong to a metaphysical category distinct from the categories of universal and particular. Finally, a new theory of the copula is offered: 'The cue is cold', 'The cube is (...) ice', and 'Ice is water' all have the form 'A is B'. On the basis of the logical behavior of stuff-names with respect to this univocal copula, definitions are suggested for 'X is a stuff', 'X composes Y', 'X is a material object', and even 'Matter'. Hence an expanded form of logicism. (shrink)
According to Kant, pure intuition is an indispensable ingredient of mathematical proofs. Kant‘s thesis has been considered as obsolete since the advent of modern relational logic at the end of 19th century. Against this logicist orthodoxy Cassirer’s “critical idealism” insisted that formal logic alone could not make sense of the conceptual co-evolution of mathematical and scientific concepts. For Cassirer, idealizations, or, more precisely, idealizing completions, played a fundamental role in the formation of the mathematical and empirical concepts. The aim of (...) this paper is to outline the basics of Cassirer’s idealizational account, and to point at some interesting similarities it has with Kant’s and Peirce’s philosophies of mathematics based on the key notions of pure intuition and theorematic reasoning, respectively. (shrink)
According to what was the standard view (Poincaré; Wang, etc.), although Frege endorses, and Kant denies, the claim that arithmetic is reducible to logic, there is not a substantive disagreement between them because their conceptions of logic are too different. In his “Frege, Kant, and the logic in logicism,” John MacFarlane aims to establish that Frege and Kant do share enough of a conception of logic for this to be a substantive, adjudicable dispute. MacFarlane maintains that for both Frege (...) and Kant, the fundamental defining characteristic of logic is “that it provides norms for thought as such (MacFarlane, 2002, p.57). I defend the standard view. I show that MacFarlane's argument rests on conflating the way that pure general logic is normative as a canon and as a propaedeutic, and that once these are distinguished the argument is blocked. (shrink)
Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and rejected. Constructive empiricism (...) cannot be realist about abstract objects; it must reject even the realism advocated by otherwise ontologically restrained and epistemologically empiricist indispensability theorists. Indispensability arguments rely on the kind of inference to the best explanation the rejection of which is definitive of constructive empiricism. On the other hand, formalist and logicist anti-realist positions are also shown to be untenable. It is argued that a constructive empiricist philosophy of mathematics must be fictionalist. Borrowing and developing elements from both Philip Kitcher's constructive naturalism and Kendall Walton's theory of fiction, the account of mathematics advanced treats mathematics as a collection of stories told about an ideal agent and mathematical objects as fictions. The account explains what true portions of mathematics are about and why mathematics is useful, even while it is a story about an ideal agent operating in an ideal world; it connects theory and practice in mathematics with human experience of the phenomenal world. At the same time, the make-believe and game-playing aspects of the theory show how we can make sense of mathematics as fiction, as stories, without either undermining that explanation or being forced to accept abstract mathematical objects into our ontology. All of this occurs within the framework that constructive empiricism itself provides the epistemological limitations it mandates, the semantic view of theories, and an emphasis on the pragmatic dimension of our theories, our explanations, and of our relation to the language we use. (shrink)
I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view can (...) be thought of as a sort of logicism for the logical expressivist---a person who believes that the purpose of logical language is to make explicit commitments and entitlements that are implicit in ordinary practice. The thesis that mathematical statements are expression of norms is a kind of logicism, not because it says that mathematics can be reduced to logic, but because it says that mathematical statements play the same role as logical statements. ;I contrast my position with two sets of views, an empiricist view, which says that mathematical knowledge is acquired and justified through experience, and a cluster of nativist and apriorist views, which say that mathematical knowledge is either hardwired into the human brain, or justified a priori, or both. To develop the empiricist view, I look at the work of Kitcher and Mill, arguing that although their ideas can withstand the criticisms brought against empiricism by Frege and others, they cannot reply to a version of the critique brought by Wittgenstein in the Remarks on the Foundations of Mathematics. To develop the nativist and apriorist views, I look at the work of contemporary developmental psychologists, like Gelman and Gallistel and Karen Wynn, as well as the work of philosophers who advocate the existence of a mathematical intuition, such as Kant, Husserl, and Parsons. After clarifying the definitions of "innate" and "a priori," I argue that the mechanisms proposed by the nativists cannot bring knowledge, and the existence of the mechanisms proposed by the apriorists is not supported by the arguments they give. (shrink)
In Der logische Aufbau der Welt, first published in 1928, Carnap aims to rationally reconstruct all objects of cognition by logico-definitional means. As a result, he intends to obtain a fully objective framework in which scientific discourse can take place. This is made possible by the novel method of ‘purely structural definite description’ of all scientifically relevant objects, which is first introduced in the Aufbau. Key to the attainment of this goal is the notion of ‘foundedness’, which Carnap presents as (...) a new basic notion of logic, in order to establish a link between the purely conventional world of logical and mathematical knowledge and the empirical world of knowledge of scientific objects. This idea experienced major criticism by Friedman (1999a,b) since he considers it to lead to the demolition of the boundary between those two worlds. In this essay, we want to defend foundedness against Friedman’s critique by arguing that its introduction is necessary within Carnap’s logicist world of thought to deal with a more fundamental problem: the demarcation of the empirical parts of the Aufbau. In the last section, we will give an outlook on the actual cause for the failure of the Aufbau, the lack of a principle to determine the truth of the instances of the basic relation in the Aufbau, and we will show how this can contribute to the explanation of Carnap’s future philosophical development and retrospective self-evaluation. This essay serves as a dense informal sketch for a later extensive formal treatment of this reading of foundedness and focuses on its implications for the interpretation of Carnap’s post-Aufbau development. (shrink)
Starting from the sensuous perception of what is seen, an attempt is made at re-casting a Husserlian theory of constitution of the object of intuition, as one leaves the natural attitude through a transcendental method, by positing several theses so as to avoid the aporias of philosophical binary oppositions such as rationalism and empiri-cism, realism and idealism, logicism and psychologism, subjectivism and objectivism, transcendentalism and ontologism, metaphysics and positivism. Throughout fifty-five theses on constitution, the Husserlian proposal of continuously reforming (...) philosophizing by transcendental reduction is revisited, leaving the latter incomplete as new conversions are required by noetic-noematic correlations between world and consciousness. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.