Results for 'Mathematical Proof'

948 found
Order:
  1. (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  2. Ancient Greek Mathematical Proofs and Metareasoning.Mario Bacelar Valente - 2024 - In Maria Zack (ed.), Research in History and Philosophy of Mathematics. Annals of the Canadian Society for History and Philosophy of Mathematics. pp. 15-33.
    We present an approach in which ancient Greek mathematical proofs by Hippocrates of Chios and Euclid are addressed as a form of (guided) intentional reasoning. Schematically, in a proof, we start with a sentence that works as a premise; this sentence is followed by another, the conclusion of what we might take to be an inferential step. That goes on until the last conclusion is reached. Guided by the text, we go through small inferential steps; in each one, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  79
    The Arbitrariness of Symmetry in Mathematical Proofs.Melisa Vivanco - 2024 - Revista de Humanidades de Valparaíso 25:129-148.
    Symmetry is not an inherent characteristic of mathematical proofs; instead, it is a property that arbitrarily manifests in different modes of presentation. This arbitrariness leads to the conclusion that symmetry cannot be part of the defining or essential properties that characterize proofs. Consequently, contrary to some authors’ claims, symmetry does not significantly contribute to the validity, accuracy, or soundness of mathematical proofs. What is more, it does not even play any critical role in heuristic aspects such as explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  87
    Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the slowly emerging, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Probabilistic Proofs, Lottery Propositions, and Mathematical Knowledge.Yacin Hamami - 2021 - Philosophical Quarterly 72 (1):77-89.
    In mathematics, any form of probabilistic proof obtained through the application of a probabilistic method is not considered as a legitimate way of gaining mathematical knowledge. In a series of papers, Don Fallis has defended the thesis that there are no epistemic reasons justifying mathematicians’ rejection of probabilistic proofs. This paper identifies such an epistemic reason. More specifically, it is argued here that if one adopts a conception of mathematical knowledge in which an epistemic subject can know (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - 2020 - Analytic Philosophy 62 (3):252-274.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Review of John Stillwell, Reverse Mathematics: Proofs from the Inside Out. [REVIEW]Benedict Eastaugh - 2020 - Philosophia Mathematica 28 (1):108-116.
    Review of John Stillwell, Reverse Mathematics: Proofs from the Inside Out. Princeton, NJ: Princeton University Press, 2018, pp. 200. ISBN 978-0-69-117717-5 (hbk), 978-0-69-119641-1 (pbk), 978-1-40-088903-7 (e-book).
    Download  
     
    Export citation  
     
    Bookmark  
  8. Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Towards an Evolutionary Account of Conceptual Change in Mathematics: Proofs and Refutations and the Axiomatic Variation of Concepts.Thomas Mormann - 2002 - In G. Kampis, L: Kvasz & M. Stöltzner (eds.), Appraising Lakatos: Mathematics, Methodology and the Man. Kluwer Academic Publishers. pp. 1--139.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Proofs for a price: Tomorrow’s ultra-rigorous mathematical culture.Silvia De Toffoli - 2024 - Bulletin (New Series) of the American Mathematical Society 61 (3):395–410.
    Computational tools might tempt us to renounce complete cer- tainty. By forgoing of rigorous proof, we could get (very) probable results for a fraction of the cost. But is it really true that proofs (as we know and love them) can lead us to certainty? Maybe not. Proofs do not wear their correct- ness on their sleeve, and we are not infallible in checking them. This suggests that we need help to check our results. When our fellow mathematicians will (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  12. Mathematical Justification without Proof.Silvia De Toffoli - forthcoming - In Giovanni Merlo, Giacomo Melis & Crispin Wright (eds.), Self-knowledge and Knowledge A Priori. Oxford University Press.
    According to a widely held view in the philosophy of mathematics, direct inferential justification for mathematical propositions (that are not axioms) requires proof. I challenge this view while accepting that mathematical justification requires arguments that are put forward as proofs. I argue that certain fallacious putative proofs considered by the relevant subjects to be correct can confer mathematical justification. But mathematical justification doesn’t come for cheap: not just any argument will do. I suggest that to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Proof in Mathematics: An Introduction.James Franklin - 1996 - Sydney, Australia: Quakers Hill Press.
    A textbook on proof in mathematics, inspired by an Aristotelian point of view on mathematics and proof. The book expounds the traditional view of proof as deduction of theorems from evident premises via obviously valid steps. It deals with the proof of "all" statements, "some" statements, multiple quantifiers and mathematical induction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Proof phenomenon as a function of the phenomenology of proving.Inês Hipólito - 2015 - Progress in Biophysics and Molecular Biology 119:360-367.
    Kurt Gödel wrote (1964, p. 272), after he had read Husserl, that the notion of objectivity raises a question: “the question of the objective existence of the objects of mathematical intuition (which, incidentally, is an exact replica of the question of the objective existence of the outer world)”. This “exact replica” brings to mind the close analogy Husserl saw between our intuition of essences in Wesensschau and of physical objects in perception. What is it like to experience a (...) proving process? What is the ontological status of a mathematical proof? Can computer assisted provers output a proof? Taking a naturalized world account, I will assess the relationship between mathematics, the physical world and consciousness by introducing a significant conceptual distinction between proving and proof. I will propose that proving is a phenomenological conscious experience. This experience involves a combination of what Kurt Gödel called intuition, and what Husserl called intentionality. In contrast, proof is a function of that process — the mathematical phenomenon — that objectively self-presents a property in the world, and that results from a spatiotemporal unity being subject to the exact laws of nature. In this essay, I apply phenomenology to mathematical proving as a performance of consciousness, that is, a lived experience expressed and formalized in language, in which there is the possibility of formulating intersubjectively shareable meanings. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more specifically, emphasises (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2017 - Philosophia Mathematica:nkx007.
    ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. The changing practices of proof in mathematics: Gilles Dowek: Computation, proof, machine. Cambridge: Cambridge University Press, 2015. Translation of Les Métamorphoses du calcul, Paris: Le Pommier, 2007. Translation from the French by Pierre Guillot and Marion Roman, $124.00HB, $40.99PB. [REVIEW]Andrew Arana - 2017 - Metascience 26 (1):131-135.
    Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
    Download  
     
    Export citation  
     
    Bookmark  
  18. Transferable and Fixable Proofs.William D'Alessandro - forthcoming - Episteme:1-12.
    A proof P of a theorem T is transferable when a typical expert can become convinced of T solely on the basis of their prior knowledge and the information contained in P. Easwaran has argued that transferability is a constraint on acceptable proof. Meanwhile, a proof P is fixable when it’s possible for other experts to correct any mistakes P contains without having to develop significant new mathematics. Habgood-Coote and Tanswell have observed that some acceptable proofs are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Group Knowledge and Mathematical Collaboration: A Philosophical Examination of the Classification of Finite Simple Groups.Joshua Habgood-Coote & Fenner Stanley Tanswell - 2023 - Episteme 20 (2):281-307.
    In this paper we apply social epistemology to mathematical proofs and their role in mathematical knowledge. The most famous modern collaborative mathematical proof effort is the Classification of Finite Simple Groups. The history and sociology of this proof have been well-documented by Alma Steingart (2012), who highlights a number of surprising and unusual features of this collaborative endeavour that set it apart from smaller-scale pieces of mathematics. These features raise a number of interesting philosophical issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  20. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value.John Corcoran - 1971 - Journal of Structural Learning 3 (2):1-16.
    1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a concern (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Mathematical Monsters.Andrew Aberdein - 2019 - In Diego Compagna & Stefanie Steinhart (eds.), Monsters, Monstrosities, and the Monstrous in Culture and Society. Vernon Press. pp. 391-412.
    Monsters lurk within mathematical as well as literary haunts. I propose to trace some pathways between these two monstrous habitats. I start from Jeffrey Jerome Cohen’s influential account of monster culture and explore how well mathematical monsters fit each of his seven theses. The mathematical monsters I discuss are drawn primarily from three distinct but overlapping domains. Firstly, late nineteenth-century mathematicians made numerous unsettling discoveries that threatened their understanding of their own discipline and challenged their intuitions. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem.G. D. Secco - 2017 - In Marcos Silva (ed.), How Colours Matter to Philosophy. Cham: Springer. pp. 289-307.
    The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  25. Discourse Grammars and the Structure of Mathematical Reasoning III: Two Theories of Proof,.John Corcoran - 1971 - Journal of Structural Learning 3 (3):1-24.
    ABSTRACT This part of the series has a dual purpose. In the first place we will discuss two kinds of theories of proof. The first kind will be called a theory of linear proof. The second has been called a theory of suppositional proof. The term "natural deduction" has often and correctly been used to refer to the second kind of theory, but I shall not do so here because many of the theories so-called are not of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Mathematical Gettier Cases and Their Implications.Neil Barton - manuscript
    Let mathematical justification be the kind of justification obtained when a mathematician provides a proof of a theorem. Are Gettier cases possible for this kind of justification? At first sight we might think not: The standard for mathematical justification is proof and, since proof is bound at the hip with truth, there is no possibility of having an epistemically lucky justification of a true mathematical proposition. In this paper, I argue that Gettier cases are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Diversity in proof appraisal.Matthew Inglis & Andrew Aberdein - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 163-179.
    We investigated whether mathematicians typically agree about the qualities of mathematical proofs. Between-mathematician consensus in proof appraisals is an implicit assumption of many arguments made by philosophers of mathematics, but to our knowledge the issue has not previously been empirically investigated. We asked a group of mathematicians to assess a specific proof on four dimensions, using the framework identified by Inglis and Aberdein (2015). We found widespread disagreement between our participants about the aesthetics, intricacy, precision and utility (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  28. What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  29. Consistency proof of a fragment of pv with substitution in bounded arithmetic.Yoriyuki Yamagata - 2018 - Journal of Symbolic Logic 83 (3):1063-1090.
    This paper presents proof that Buss's S22 can prove the consistency of a fragment of Cook and Urquhart's PV from which induction has been removed but substitution has been retained. This result improves Beckmann's result, which proves the consistency of such a system without substitution in bounded arithmetic S12. Our proof relies on the notion of "computation" of the terms of PV. In our work, we first prove that, in the system under consideration, if an equation is proved (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Takeuti's proof theory in the context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, he (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. What is Mathematical Rigor?John Burgess & Silvia De Toffoli - 2022 - Aphex 25:1-17.
    Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematical practice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  32. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. A Methodology for Teaching Logic-Based Skills to Mathematics Students.Arnold Cusmariu - 2016 - Symposion: Theoretical and Applied Inquiries in Philosophy and Social Sciences 3 (3):259-292.
    Mathematics textbooks teach logical reasoning by example, a practice started by Euclid; while logic textbooks treat logic as a subject in its own right without practical application to mathematics. Stuck in the middle are students seeking mathematical proficiency and educators seeking to provide it. To assist them, the article explains in practical detail how to teach logic-based skills such as: making mathematical reasoning fully explicit; moving from step to step in a mathematical proof in logically correct (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. On the alleged simplicity of impure proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. Springer. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between (...) statements and proofs. Mathematicians have paid little attention to specifying such distance measures precisely because in practice certain methods of proof have seemed self- evidently impure by design: think for instance of analytic geometry and analytic number theory. By contrast, mathematicians have paid considerable attention to whether such impurities are a good thing or to be avoided, and some have claimed that they are valuable because generally impure proofs are simpler than pure proofs. This article is an investigation of this claim, formulated more precisely by proof- theoretic means. After assembling evidence from proof theory that may be thought to support this claim, we will argue that on the contrary this evidence does not support the claim. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  38. Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  39. Probabilistic proofs and transferability.Kenny Easwaran - 2009 - Philosophia Mathematica 17 (3):341-362.
    In a series of papers, Don Fallis points out that although mathematicians are generally unwilling to accept merely probabilistic proofs, they do accept proofs that are incomplete, long and complicated, or partly carried out by computers. He argues that there are no epistemic grounds on which probabilistic proofs can be rejected while these other proofs are accepted. I defend the practice by presenting a property I call ‘transferability’, which probabilistic proofs lack and acceptable proofs have. I also consider what this (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  40. Explanatory Information in Mathematical Explanations of Physical Phenomena.Manuel Barrantes - 2020 - Australasian Journal of Philosophy 98 (3):590-603.
    In this paper I defend an intermediate position between the ‘bare mathematical results’ view and the ‘transmission’ view of mathematical explanations of physical phenomena (MEPPs). I argue that, in MEPPs, it is not enough to deduce the explanandum from the generalizations cited in the explanans. Rather, we must add information regarding why those generalizations obtain. However, I also argue that it is not necessary to provide explanatory proofs of the mathematical theorems that represent those generalizations. I illustrate (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41. Proof-Theoretic Semantics for Subsentential Phrases.Nissim Francez, Roy Dyckhoff & Gilad Ben-Avi - 2010 - Studia Logica 94 (3):381-401.
    The paper briefly surveys the sentential proof-theoretic semantics for fragment of English. Then, appealing to a version of Frege’s context-principle (specified to fit type-logical grammar), a method is presented for deriving proof-theoretic meanings for sub-sentential phrases, down to lexical units (words). The sentential meaning is decomposed according to the function-argument structure as determined by the type-logical grammar. In doing so, the paper presents a novel proof-theoretic interpretation of simple type, replacing Montague’s model-theoretic type interpretation (in arbitrary Henkin (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  42. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  43. Mathematics as language.Adam Morton - 1996 - In Adam Morton & Stephen P. Stich (eds.), Benacerraf and His Critics. Blackwell. pp. 213--227.
    I discuss ways in which the linguistic form of mathimatics helps us think mathematically.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  44. Astronomy, Geometry, and Logic, Rev. 1c: An ontological proof of the natural principles that enable and sustain reality and mathematics.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The latest draft (posted 05/14/22) of this short, concise work of proof, theory, and metatheory provides summary meta-proofs and verification of the work and results presented in the Theory and Metatheory of Atemporal Primacy and Riemann, Metatheory, and Proof. In this version, several new and revised definitions of terms were added to subsection SS.1; and many corrected equations, theorems, metatheorems, proofs, and explanations are included in the main text. The body of the text is approximately 18 pages, with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  46.  35
    Mathematizing Bodies. Leibniz on the Application of Mathematics to Nature, and its Metaphysical Ground.Lucia Oliveri - 2023 - Studia Leibnitiana 55 (1-2):190-208.
    There are two axes of Leibniz’s philosophy about bodies that are deeply inter- twined, as this paper shows: the scientific investigation of bodies due to the application of mathematics to nature – Leibniz’s mixed mathematics – and the issue of matter/bodies ide- alism. This intertwinement raises an issue: How did Leibniz frame the relationship between mathematics, natural sciences, and metaphysics? Due to the increasing application of mathe- matics to natural sciences, especially physics, philosophers of the early modern period used the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Proof in C17 Algebra.Brendan Larvor - 2005 - Philosophia Scientiae:43-59.
    By the middle of the seventeenth century we that find that algebra is able to offer proofs in its own right. That is, by that time algebraic argument had achieved the status of proof. How did this transformation come about?
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  48. Virtue theory of mathematical practices: an introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - 2021 - Synthese 199 (3-4):10167-10180.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, ready to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  49. Semantic Epistemology Redux: Proof and Validity in Quantum Mechanics.Arnold Cusmariu - 2016 - Logos and Episteme 7 (3):287-303.
    Definitions I presented in a previous article as part of a semantic approach in epistemology assumed that the concept of derivability from standard logic held across all mathematical and scientific disciplines. The present article argues that this assumption is not true for quantum mechanics (QM) by showing that concepts of validity applicable to proofs in mathematics and in classical mechanics are inapplicable to proofs in QM. Because semantic epistemology must include this important theory, revision is necessary. The one I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem?Annie Selden - 2003 - Journal for Mathematics Education Research 34 (1):4-36.
    We report on an exploratory study of the way eight mid-level undergraduate mathematics majors read and reflected on four student-generated arguments purported to be proofs of a single theorem. The results suggest that mid-level undergraduates tend to focus on surface features of such arguments and that their ability to determine whether arguments are proofs is very limited -- perhaps more so than either they or their instructors recognize. We begin by discussing arguments (purported proofs) regarded as texts and validations of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 948