Results for 'New Axioms'

959 found
Order:
  1. (2 other versions)The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. The hidden use of new axioms.Deborah Kant - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    This paper analyses the hidden use of new axioms in set-theoretic practice with a focus on large cardinal axioms and presents a general overview of set-theoretic practices using large cardinal axioms. The hidden use of a new axiom provides extrinsic reasons in support of this axiom via the idea of verifiable consequences, which is especially relevant for set-theoretic practitioners with an absolutist view. Besides that, the hidden use has pragmatic significance for further important sub-groups of the set-theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Axiom of choice in Quine's New Foundations for Mathematical Logic.Ernst P. Specker - 1954 - Journal of Symbolic Logic 19 (2):127-128.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  4. The axiom of infinity: A new presupposition of thought.Cassius Jackson Keyser - 1903 - Hibbert Journal 2:532-552.
    Download  
     
    Export citation  
     
    Bookmark  
  5. Maximality and ontology: how axiom content varies across philosophical frameworks.Sy-David Friedman & Neil Barton - 2017 - Synthese 197 (2):623-649.
    Discussion of new axioms for set theory has often focused on conceptions of maximality, and how these might relate to the iterative conception of set. This paper provides critical appraisal of how certain maximality axioms behave on different conceptions of ontology concerning the iterative conception. In particular, we argue that forms of multiversism (the view that any universe of a certain kind can be extended) and actualism (the view that there are universes that cannot be extended in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  6. Restricting Spinoza's Causal Axiom.John Morrison - 2015 - Philosophical Quarterly 65 (258):40-63.
    Spinoza's causal axiom is at the foundation of the Ethics. I motivate, develop and defend a new interpretation that I call the ‘causally restricted interpretation’. This interpretation solves several longstanding puzzles and helps us better understand Spinoza's arguments for some of his most famous doctrines, including his parallelism doctrine and his theory of sense perception. It also undermines a widespread view about the relationship between the three fundamental, undefined notions in Spinoza's metaphysics: causation, conception and inherence.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  7. Qualitative Axioms of Uncertainty as a Foundation for Probability and Decision-Making.Patrick Suppes - 2016 - Minds and Machines 26 (2):185-202.
    Although the concept of uncertainty is as old as Epicurus’s writings, and an excellent quantitative theory, with entropy as the measure of uncertainty having been developed in recent times, there has been little exploration of the qualitative theory. The purpose of the present paper is to give a qualitative axiomatization of uncertainty, in the spirit of the many studies of qualitative comparative probability. The qualitative axioms are fundamentally about the uncertainty of a partition of the probability space of events. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles.Boris Čulina - 2018 - Axiomathes 28 (2):155-180.
    In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us, all directions are the same to us and all units of length we use to create geometric figures are the same to us. On the other hand, through the process of algebraic simplification, this system of axioms directly provides (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Repairing Ontologies via Axiom Weakening.Daniele Porello & Oliver Kutz Nicolas Troquard, Roberto Confalonieri, Pietro Galliani, Rafael Peñaloza, Daniele Porello - 2018 - In Daniele Porello & Roberto Confalonieri Nicolas Troquard (eds.), Proceedings of the Thirty-Second {AAAI} Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th {AAAI} Symposium on Educational Advances in Artificial Intelligence (EAAI-18). pp. 1981--1988.
    Ontology engineering is a hard and error-prone task, in which small changes may lead to errors, or even produce an inconsistent ontology. As ontologies grow in size, the need for automated methods for repairing inconsistencies while preserving as much of the original knowledge as possible increases. Most previous approaches to this task are based on removing a few axioms from the ontology to regain consistency. We propose a new method based on weakening these axioms to make them less (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Foundation of all Axioms the Axioms of Consciousness (Consciousness and special relativity?).Frank de Silva - 1996 - Engineering in Medicine and Biology 15 (3):21-26.
    A description of consciousness leads to a contradiction with the postulation from special relativity that there can be no connections between simultaneous event. This contradiction points to consciousness involving quantum level mechanisms. The Quantum level description of the universe is re- evaluated in the light of what is observed in consciousness namely 4 Dimensional objects. A new improved interpretation of Quantum level observations is introduced. From this vantage point the following axioms of consciousness is presented. Consciousness consists of two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Goal → New Heuristic Model of Ideality: Logos → Coincidentia Oppositorum → Primordial Generating Structure.Vladimir Rogozhin - 2017 - Contest FQXi Essay 2017.
    Fundamental knowledge endures deep conceptual crisis manifested in total crisis of understanding, crisis of interpretation and representation, loss of certainty, troubles with physics, crisis of methodology. Crisis of understanding in fundamental science generates deep crisis of understanding in global society. What way should we choose for overcoming total crisis of understanding in fundamental science? It should be the way of metaphysical construction of new comprehensive model of ideality on the basis of the "modified ontology". Result of quarter-century wanderings: sum of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. A Revolutionary New Metaphysics, Based on Consciousness, and a Call to All Philosophers.Lorna Green - manuscript
    June 2022 A Revolutionary New Metaphysics, Based on Consciousness, and a Call to All Philosophers We are in a unique moment of our history unlike any previous moment ever. Virtually all human economies are based on the destruction of the Earth, and we are now at a place in our history where we can foresee if we continue on as we are, our own extinction. As I write, the planet is in deep trouble, heat, fires, great storms, and record flooding, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. A New Three Dimensional Bivalent Hypercube Description, Analysis, and Prospects for Research.Jeremy Horne - 2012 - Neuroquantology 10 (1):12.
    A three dimensional hypercube representing all of the 4,096 dyadic computations in a standard bivalent system has been created. It has been constructed from the 16 functions arrayed in a table of functional completeness that can compute a dyadic relationship. Each component of the dyad is an operator as well as a function, such as “implication” being a result, as well as an operation. Every function in the hypercube has been color keyed to enhance the display of emerging patterns. At (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. The Physical Numbers: A New Foundational Logic-Numerical Structure For Mathematics And Physics.Gomez-Ramirez Danny A. J. - manuscript
    The boundless nature of the natural numbers imposes paradoxically a high formal bound to the use of standard artificial computer programs for solving conceptually challenged problems in number theory. In the context of the new cognitive foundations for mathematics' and physics' program immersed in the setting of artificial mathematical intelligence, we proposed a refined numerical system, called the physical numbers, preserving most of the essential intuitions of the natural numbers. Even more, this new numerical structure additionally possesses the property of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. How Many Points are there in a Line Segment? – A new answer from Discrete-Cellular Space viewpoint.Victor Christianto & Florentin Smarandache - manuscript
    While it is known that Euclid’s five axioms include a proposition that a line consists at least of two points, modern geometry avoid consistently any discussion on the precise definition of point, line, etc. It is our aim to clarify one of notorious question in Euclidean geometry: how many points are there in a line segment? – from discrete-cellular space (DCS) viewpoint. In retrospect, it may offer an alternative of quantum gravity, i.e. by exploring discrete gravitational theories. To elucidate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Steel's Programme: Evidential Framework, the Core and Ultimate-L.Joan Bagaria & Claudio Ternullo - 2021 - Review of Symbolic Logic:1-25.
    We address Steel’s Programme to identify a ‘preferred’ universe of set theory and the best axioms extending ZFC by using his multiverse axioms MV and the ‘core hypothesis’. In the first part, we examine the evidential framework for MV, in particular the use of large cardinals and of ‘worlds’ obtained through forcing to ‘represent’ alternative extensions of ZFC. In the second part, we address the existence and the possible features of the core of MV_T (where T is ZFC+Large (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. On Forms of Justification in Set Theory.Neil Barton, Claudio Ternullo & Giorgio Venturi - 2020 - Australasian Journal of Logic 17 (4):158-200.
    In the contemporary philosophy of set theory, discussion of new axioms that purport to resolve independence necessitates an explanation of how they come to be justified. Ordinarily, justification is divided into two broad kinds: intrinsic justification relates to how `intuitively plausible' an axiom is, whereas extrinsic justification supports an axiom by identifying certain `desirable' consequences. This paper puts pressure on how this distinction is formulated and construed. In particular, we argue that the distinction as often presented is neither well-demarcated (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. (1 other version)Modal Logic vs. Ontological Argument.Andrezej Biłat - 2012 - European Journal for Philosophy of Religion 4 (2):179--185.
    The contemporary versions of the ontological argument that originated from Charles Hartshorne are formalized proofs based on unique modal theories. The simplest well-known theory of this kind arises from the b system of modal logic by adding two extra-logical axioms: “If the perfect being exists, then it necessarily exists‘ and “It is possible that the perfect being exists‘. In the paper a similar argument is presented, however none of the systems of modal logic is relevant to it. Its only (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Justice, Claims and Prioritarianism: Room for Desert?Matthew D. Adler - 2016
    Does individual desert matter for distributive justice? Is it relevant, for purposes of justice, that the pattern of distribution of justice’s “currency” (be it well-being, resources, preference-satisfaction, capabilities, or something else) is aligned in one or another way with the pattern of individual desert? -/- This paper examines the nexus between desert and distributive justice through the lens of individual claims. The concept of claims (specifically “claims across outcomes”) is a fruitful way to flesh out the content of distributive justice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Prospects for a Naive Theory of Classes.Hartry Field, Harvey Lederman & Tore Fjetland Øgaard - 2017 - Notre Dame Journal of Formal Logic 58 (4):461-506.
    The naive theory of properties states that for every condition there is a property instantiated by exactly the things which satisfy that condition. The naive theory of properties is inconsistent in classical logic, but there are many ways to obtain consistent naive theories of properties in nonclassical logics. The naive theory of classes adds to the naive theory of properties an extensionality rule or axiom, which states roughly that if two classes have exactly the same members, they are identical. In (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  23. The Eternal Unprovability Filter – Part I.Kiran Pai - 2016 - Dissertation, Thinkstrike
    I prove both the mathematical conjectures P ≠ NP and the Continuum Hypothesis are eternally unprovable using the same fundamental idea. Starting with the Saunders Maclane idea that a proof is eternal or it is not a proof, I use the indeterminacy of human biological capabilities in the eternal future to show that since both conjectures are independent of Axioms and have definitions connected with human biological capabilities, it would be impossible to prove them eternally without the creation and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Cognition according to Quantum Information: Three Epistemological Puzzles Solved.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (20):1-15.
    The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. Quantum in-variance designates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It should be equated to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Making Risk-Benefit Assessments of Medical Research Protocols.Alex Rajczi - 2004 - Journal of Law, Medicine and Ethics 32 (2):338-348.
    An axiom of medical research ethics is that a protocol is moral only if it has a “favorable risk-benefit ratio”. This axiom is usually interpreted in the following way: a medical research protocol is moral only if it has a positive expected value -- that is, if it is likely to do more good (to both subjects and society) than harm. I argue that, thus interpreted, the axiom has two problems. First, it is unusable, because it requires us to know (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  28. Consciousness and special relativity.F. de Silva - 1996 - IEEE Engineering in Medicine and Biology Magazine 15:21-26.
    A description of consciousness leads to a contradiction with the postulation from special relativity that there can be no connections between simultaneous event. This contradiction points to consciousness involving quantum level mechanisms. The Quantum level description of the universe is re- evaluated in the light of what is observed in consciousness namely 4 Dimensional objects. A new improved interpretation of Quantum level observations is introduced. From this vantage point the following axioms of consciousness is presented. Consciousness consists of two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. (1 other version)The Proper Formulation of the Minimalist Theory of Truth.Thomas Schindler & Julian J. Schlöder - forthcoming - The Philosophical Quarterly.
    Minimalism about truth is one of the main contenders for our best theory of truth, but minimalists face the charge of being unable to properly state their theory. Donald Davidson incisively pointed out that minimalists must generalize over occurrences of the same expression placed in two different contexts, which is futile. In order to meet the challenge, Paul Horwich argues that one can nevertheless characterize the axioms of the minimalist theory. Sten Lindström and Tim Button have independently argued that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Asymmetric Hybrids: Dialogues for Computational Concept Combination.Guendalina Righetti, Daniele Porello, Nicolas Troquard, Oliver Kutz, Maria Hedblom & Pietro Galliani - 2022 - In Fabian Neuhaus & Boyan Brodaric (eds.), Formal Ontology in Information Systems - Proceedings of the Twelfth International Conference, {FOIS} 2021, Bozen-Bolzano, Italy, September 11-18, 2021. Frontiers in Artificial Intelligence and Applications 344. IOS Press. pp. 81-96.
    When people combine concepts these are often characterised as “hybrid”, “impossible”, or “humorous”. However, when simply considering them in terms of extensional logic, the novel concepts understood as a conjunctive concept will often lack meaning having an empty extension (consider “a tooth that is a chair”, “a pet flower”, etc.). Still, people use different strategies to produce new non-empty concepts: additive or integrative combination of features, alignment of features, instantiation, etc. All these strategies involve the ability to deal with conflicting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. (1 other version)Model λ(φ^2n )_4,n≥2 Quantum Field Theory: A Nonstandard Approach Based on Nonstandard Pointwise-Defined Quantum Fields.Jaykov Foukzon - forthcoming - Journal of Physics: Conference Series:35. Translated by Jaykov Foukzon.
    A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field operator φ(x,t) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued function. We prove using this novel approach that the quantum field theory with Hamiltonian P(φ)_4 exists and that the corresponding C^*­ algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz covariance. We prove that the λ(φ^2n )_4,n≥2 quantum field theory models are Lorentz covariant.
    Download  
     
    Export citation  
     
    Bookmark  
  33. Accuracy Uncomposed: Against Calibrationism.Ben Levinstein - 2017 - Episteme 14 (1):59-69.
    Pettigrew offers new axiomatic constraints on legitimate measures of inaccuracy. His axiom called ‘Decomposition’ stipulates that legitimate measures of inaccuracy evaluate a credence function in part based on its level of calibration at a world. I argue that if calibration is valuable, as Pettigrew claims, then this fact is an explanandum for accuracy-rst epistemologists, not an explanans, for three reasons. First, the intuitive case for the importance of calibration isn’t as strong as Pettigrew believes. Second, calibration is a perniciously global (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. How can a line segment with extension be composed of extensionless points?Brian Reese, Michael Vazquez & Scott Weinstein - 2022 - Synthese 200 (2):1-28.
    We provide a new interpretation of Zeno’s Paradox of Measure that begins by giving a substantive account, drawn from Aristotle’s text, of the fact that points lack magnitude. The main elements of this account are (1) the Axiom of Archimedes which states that there are no infinitesimal magnitudes, and (2) the principle that all assignments of magnitude, or lack thereof, must be grounded in the magnitude of line segments, the primary objects to which the notion of linear magnitude applies. Armed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Arbitrary Reference in Logic and Mathematics.Massimiliano Carrara & Enrico Martino - 2024 - Springer Cham (Synthese Library 490).
    This book develops a new approach to plural arbitrary reference and examines mereology, including considering four theses on the alleged innocence of mereology. The authors have advanced the notion of plural arbitrary reference in terms of idealized plural acts of choice, performed by a suitable team of agents. In the first part of the book, readers will discover a revision of Boolosʼ interpretation of second order logic in terms of plural quantification and a sketched structuralist reconstruction of second-order arithmetic based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. What Isn’t Obvious about ‘obvious’: A Data-driven Approach to Philosophy of Logic.Moti Mizrahi - 2019 - In Andrew Aberdein & Matthew Inglis (eds.), Advances in Experimental Philosophy of Logic and Mathematics. London: Bloomsbury Academic. pp. 201-224.
    It is often said that ‘every logical truth is obvious’ (Quine 1970: 82), that the ‘axioms and rules of logic are true in an obvious way’ (Murawski 2014: 87), or that ‘logic is a theory of the obvious’ (Sher 1999: 207). In this chapter, I set out to test empirically how the idea that logic is obvious is reflected in the scholarly work of logicians and philosophers of logic. My approach is data-driven. That is to say, I propose that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37.  63
    Hypothesis and Convention in Poincaré’s Defense of Galilei Spacetime.Scott Walter - 2009 - In Michael Heidelberger & Gregor Schiemann (eds.), The Significance of the Hypothetical in Natural Science. De Gruyter. pp. 193-220.
    According to the conventionalist doctrine of space elaborated by the French philosopher-scientist Henri Poincaré in the 1890s, the geometry of physical space is a matter of definition, not of fact. Poincaré's Hertz-inspired view of the role of hypothesis in science guided his interpretation of the theory of relativity (1905), which he found to be in violation of the axiom of free mobility of invariable solids. In a quixotic effort to save the Euclidean geometry that relied on this axiom, Poincaré extended (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38.  64
    Proceedings of the International Conference “NeutroGeometry, NeutroAlgebra, and Their Applications,” Havana, Cuba, 12-14 August 2024.Florentin Smarandache, Mohamed Abdel-Basset, Maikel Yelandi Leyva Vázquez & Said Broumi (eds.) - 2024
    A special issue of the International Journal in Information Science and Engineering “Neutrosophic Sets and Systems” (vol. 71/2024) is dedicated to the Conference on NeutroGeometry, NeutroAlgebra, and Their Applications, organized by the Latin American Association of Neutrosophic Sciences. This event, which took place on August 12-14, 2024, in Havana, Cuba, was made possible by the valuable collaboration of the University of Havana, the University of Physical Culture and Sports Sciences "Manuel Fajardo," the José Antonio Echeverría University of Technology, University of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  40. Belief revision generalized: A joint characterization of Bayes's and Jeffrey's rules.Franz Dietrich, Christian List & Richard Bradley - 2015 - Journal of Economic Theory 162:352-371.
    We present a general framework for representing belief-revision rules and use it to characterize Bayes's rule as a classical example and Jeffrey's rule as a non-classical one. In Jeffrey's rule, the input to a belief revision is not simply the information that some event has occurred, as in Bayes's rule, but a new assignment of probabilities to some events. Despite their differences, Bayes's and Jeffrey's rules can be characterized in terms of the same axioms: "responsiveness", which requires that revised (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  41. Dutch Books, Coherence, and Logical Consistency.Anna Mahtani - 2014 - Noûs 49 (3):522-537.
    In this paper I present a new way of understanding Dutch Book Arguments: the idea is that an agent is shown to be incoherent iff he would accept as fair a set of bets that would result in a loss under any interpretation of the claims involved. This draws on a standard definition of logical inconsistency. On this new understanding, the Dutch Book Arguments for the probability axioms go through, but the Dutch Book Argument for Reflection fails. The question (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  42. Foundations for Knowledge-Based Decision Theories.Zeev Goldschmidt - 2024 - Australasian Journal of Philosophy 102 (4):939-958.
    Several philosophers have proposed Knowledge-Based Decision Theories (KDTs)—theories that require agents to maximize expected utility as yielded by utility and probability functions that depend on the agent’s knowledge. Proponents of KDTs argue that such theories are motivated by Knowledge-Reasons norms that require agents to act only on reasons that they know. However, no formal derivation of KDTs from Knowledge-Reasons norms has been suggested, and it is not clear how such norms justify the particular ways in which KDTs relate knowledge and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Paths to Triviality.Tore Fjetland Øgaard - 2016 - Journal of Philosophical Logic 45 (3):237-276.
    This paper presents a range of new triviality proofs pertaining to naïve truth theory formulated in paraconsistent relevant logics. It is shown that excluded middle together with various permutation principles such as A → (B → C)⊩B → (A → C) trivialize naïve truth theory. The paper also provides some new triviality proofs which utilize the axioms ((A → B)∧ (B → C)) → (A → C) and (A → ¬A) → ¬A, the fusion connective and the Ackermann constant. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  44. On the Concept of Creal: The Politico-Ethical Horizon of a Creative Absolute.Luis De Miranda - 2017 - In De Miranda Luis (ed.), The Dark Precursor: Deleuze and Artistic Research. Leuven University Press. pp. 510-516.
    Process philosophies tend to emphasise the value of continuous creation as the core of their discourse. For Bergson, Whitehead, Deleuze, and others the real is ultimately a creative becoming. Critics have argued that there is an irreducible element of (almost religious) belief in this re-evaluation of immanent creation. While I don’t think belief is necessarily a sign of philosophical and existential weakness, in this paper I will examine the possibility for the concept of universal creation to be a political and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  45. The Logic of Epistemic Entitlement.Maoyuan Zhu - 2024 - Dissertation, East China Normal University
    This paper develops a new class of justification logic, the logic of epistemic entitlement. The logic of epistemic entitlement invokes the notion of epistemic entitlement in epistemology, and interprets a justification formula in the form of???? ∶???? as follows: the warrant???? entitles the agent to believe????. In the logic of epistemic entitlement, the formula???? ∶???? is true if and only if???? is true in all possible worlds entitled to be conceived by????. In contrast to the standard epistemic semantics of justification (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Social Preference Under Twofold Uncertainty.Philippe Mongin & Marcus Pivato - 2016 - Economic Theory.
    We investigate the conflict between the ex ante and ex post criteria of social welfare in a new framework of individual and social decisions, which distinguishes between two sources of uncertainty, here interpreted as an objective and a subjective source respectively. This framework makes it possible to endow the individuals and society not only with ex ante and ex post preferences, as is usually done, but also with interim preferences of two kinds, and correspondingly, to introduce interim forms of the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  47.  66
    Truthmaker Semantics for Intuitionistic Modal Logic.Jon Erling Litland - forthcoming - Topoi.
    A truthmaker for a proposition P is exact if it contains nothing irrelevant to P. What are the exact truthmakers for necessitated propositions? This paper makes progress on this issue by showing how to extend Fine’s truthmaker semantics for intuitionistic logic to an exact truthmaker semantics for intuitionistic modal logic. The project is of interest also to the classical logician: while all distinctively classical theorems may be true, they differ from the intuitionistic ones in how they are made true. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. A First-Order Modal Theodicy: God, Evil, and Religious Determinism.Gesiel Borges da Silva & Fábio Bertato - 2019 - South American Journal of Logic 5 (1):49-80.
    Edward Nieznanski developed in 2007 and 2008 two different systems in formal logic which deal with the problem of evil. Particularly, his aim is to refute a version of the logical problem of evil associated with a form of religious determinism. In this paper, we revisit his first system to give a more suitable form to it, reformulating it in first-order modal logic. The new resulting system, called N1, has much of the original basic structure, and many axioms, definitions, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  50. Imagination Rather Than Observation in Econometrics: Ragnar Frisch’s Hypothetical Experiments as Thought Experiments.Catherine Https://Orcidorg Herfeld - 2019 - Hopos: The Journal of the International Society for the History of Philosophy of Science 9 (1):35-74.
    In economics, thought experiments are frequently justified by the difficulty of conducting controlled experiments. They serve several functions, such as establishing causal facts, isolating tendencies, and allowing inferences from models to reality. In this paper, I argue that thought experiments served a further function in economics: facilitating the quantitative definition and measurement of the theoretical concept of utility, thereby bridging the gap between theory and statistical data. I support my argument by a case study, the “hypothetical experiments” of the Norwegian (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 959