JOHN CORCORAN AND WILIAM FRANK. Surprises in logic. Bulletin of Symbolic Logic. 19 253. Some people, not just beginning students, are at first surprised to learn that the proposition “If zero is odd, then zero is not odd” is not self-contradictory. Some people are surprised to find out that there are logically equivalent false universal propositions that have no counterexamples in common, i. e., that no counterexample for one is a counterexample for the other. Some people would be surprised (...) to find out that in normal first-order logic existential import is quite common: some universals “Everything that is S is P” —actually quite a few—imply their corresponding existentials “Something that is S is P”. Anyway, perhaps contrary to its title, this paper is not a cataloging of surprises in logic but rather about the mistakes that did or might have or might still lead people to think that there are no surprises in logic. The paper cataloging of surprises in logic is on our “to-do” list. -/- ► JOHN CORCORAN AND WILIAM FRANK, Surprises in logic. Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu There are many surprises in logic. Peirce gave us a few. Russell gave Frege one. Löwenheim gave Zermelo one. Gödel gave some to Hilbert. Tarski gave us several. When we get a surprise, we are often delighted, puzzled, or skeptical. Sometimes we feel or say “Nice!”, “Wow, I didn’t know that!”, “Is that so?”, or the like. Every surprise belongs to someone. There are no disembodied surprises. Saying there are surprises in logic means that logicians experience surprises doing logic—not that among logical propositions some are intrinsically or objectively “surprising”. The expression “That isn’t surprising” often denigrates logical results. Logicians often aim for surprises. In fact, [1] argues that logic’s potential for surprises helps motivate its study and, indeed, helps justify logic’s existence as a discipline. Besides big surprises that change logicians’ perspectives, the logician’s daily life brings little surprises, e.g. that Gödel’s induction axiom alone implies Robinson’s axiom. Sometimes wild guesses succeed. Sometimes promising ideas fail. Perhaps one of the least surprising things about logic is that it is full of surprises. Against the above is Wittgenstein’s surprising conclusion : “Hence there can never be surprises in logic”. This paper unearths basic mistakes in [2] that might help to explain how Wittgenstein arrived at his false conclusion and why he never caught it. The mistakes include: unawareness that surprise is personal, confusing logicians having certainty with propositions having logical necessity, confusing definitions with criteria, and thinking that facts demonstrate truths. People demonstrate truths using their deductive know-how and their knowledge of facts: facts per se are epistemically inert. [1] JOHN CORCORAN, Hidden consequence and hidden independence. This Bulletin, vol.16, p. 443. [2] LUDWIG WITTGENSTEIN, Tractatus Logico-Philosophicus, Kegan Paul, London, 1921. -/-. (shrink)
Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08. -/- Constance Reid was an insider of the Berkeley-Stanford logic circle. Her San Francisco home was in Ashbury Heights near the homes of logicians such as Dana Scott and John Corcoran. Her sister Julia Robinson was one of the top mathematical logicians of her generation, as was Julia’s husband Raphael Robinson for whom Robinson Arithmetic was named. Julia was a Tarski PhD and, in (...) recognition of a distinguished career, was elected President of the American Mathematics Society. https://en.wikipedia.org/wiki/Julia_Robinson http://www.awm-math.org/noetherbrochure/Robinson82.html. (shrink)
JUNE 2015 UPDATE: A BIBLIOGRAPHY: JOHN CORCORAN’S PUBLICATIONS ON ARISTOTLE 1972–2015 By John Corcoran -/- This presentation includes a complete bibliography of John Corcoran’s publications relevant to his research on Aristotle’s logic. Sections I, II, III, and IV list 21 articles, 44 abstracts, 3 books, and 11 reviews. It starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article from Corcoran’s Philadelphia period that antedates his Aristotle studies and the Journal of Symbolic (...) Logic article from his Buffalo period first reporting his original results; it ends with works published in 2015. A few of the items are annotated as listed or with endnotes connecting them with other work and pointing out passages that in-retrospect are seen to be misleading and in a few places erroneous. In addition, Section V, “Discussions”, is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 8 items published in the 1970s, 23 in the 1980s, 42 in the 1990s, 56 in the 2000s, and 69 in the current decade. The secondary bibliography is also annotated as listed or with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. Section VI, “Alternatives”, lists recent works on Aristotle’s logic oblivious of Corcoran’s research and, more generally, of the Lukasiewicz-initiated tradition. As is evident from Section VII, “Acknowledgements”, Corcoran’s publications benefited from consultation with other scholars, most notably Timothy Smiley, Michael Scanlan, Roberto Torretti, and Kevin Tracy. All of Corcoran’s Greek translations were done in collaboration with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. -/- REQUEST: Please send errors, omissions, and suggestions. I am especially interested in citations made in non-English publications. Also, let me know of passages I should comment on. (shrink)
Corcoran reviews Boute’s 2013 paper “How to calculate proofs”. -/- There are tricky aspects to classifying occurrences of variables: is an occurrence of ‘x’ free as in ‘x + 1’, is it bound as in ‘{x: x = 1}’, or is it orthographic as in ‘extra’? The trickiness is compounded failure to employ conventions to separate use of expressions from their mention. The variable occurrence is free in the term ‘x + 1’ but it is orthographic in that term’s (...) quotes name ‘‘{x: x = 1}’’. The term has no quotes, the term’s name has one set of quotes, and the name of the term’s name has two sets of quotes. The trickiness is further compounded by failure to explicitly distinguish a variable’s values from it substituents. The variable ranges over its values but its occurrences are replaced by occurrences of its substituents. In arithmetic the values are numbers not numerals but the substituents are numerals not numbers. See https://www.academia.edu/s/1eddee0c62?source=link -/- Raymond Boute tries to criticize Daniel Velleman for mistakes in this area. However, Corcoran finds mistakes in Boute’s handling of the material. The reader is invited to find mistakes in Corcoran’s handling of this tricky material. -/- The paper and the review treat other issues as well. -/- Acknowledgements: Raymond Boute, Joaquin Miller, Daniel Velleman, George Weaver, and others. (shrink)
This presentation includes a complete bibliography of John Corcoran’s publications devoted at least in part to Aristotle’s logic. Sections I–IV list 20 articles, 43 abstracts, 3 books, and 10 reviews. It starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article that antedates Corcoran’s Aristotle’s studies and the Journal of Symbolic Logic article first reporting his original results; it ends with works published in 2015. A few of the items are annotated with endnotes connecting (...) them with other work. In addition, Section V “Discussions” is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 8 items published in the 1970s, 22 in the 1980s, 39 in the 1990s, 56 in the 2000s, and 65 in the current decade. The secondary bibliography is annotated with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. As is evident from the Acknowledgements sections, all of Corcoran’s publications benefited from correspondence with other scholars, most notably Timothy Smiley, Michael Scanlan, and Kevin Tracy. All of Corcoran’s Greek translations were done in consultation with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. REQUEST: Please send errors, omissions, and suggestions. I am especially interested in citations made in non-English publications. (shrink)
This presentation includes a complete bibliography of John Corcoran’s publications relevant on Aristotle’s logic. The Sections I, II, III, and IV list respectively 23 articles, 44 abstracts, 3 books, and 11 reviews. Section I starts with two watershed articles published in 1972: the Philosophy & Phenomenological Research article—from Corcoran’s Philadelphia period that antedates his discovery of Aristotle’s natural deduction system—and the Journal of Symbolic Logic article—from his Buffalo period first reporting his original results. It ends with works published (...) in 2015. Some items are annotated as listed or with endnotes connecting them with other work and pointing out passages that, in retrospect, are seen to be misleading and in a few places erroneous. In addition, Section V, “Discussions”, is a nearly complete secondary bibliography of works describing, interpreting, extending, improving, supporting, and criticizing Corcoran’s work: 10 items published in the 1970s, 24 in the 1980s, 42 in the 1990s, 60 in the 2000s, and 70 in the current decade. The secondary bibliography is also annotated as listed or with endnotes: some simply quoting from the cited item, but several answering criticisms and identifying errors. Section VI, “Alternatives”, lists recent works on Aristotle’s logic oblivious of Corcoran’s research and, more generally in some cases, even of the Łukasiewicz-initiated tradition. As is evident from Section VII, “Acknowledgements”, Corcoran’s publications benefited from consultation with other scholars, most notably George Boger, Charles Kahn, John Mulhern, Mary Mulhern, Anthony Preus, Timothy Smiley, Michael Scanlan, Roberto Torretti, and Kevin Tracy. All of Corcoran’s Greek translations were done in collaboration with two or more classicists. Corcoran never published a sentence without discussing it with his colleagues and students. (shrink)
Corcoran’s 27 entries in the 1999 second edition of Robert Audi’s Cambridge Dictionary of Philosophy [Cambridge: Cambridge UP]. -/- ancestral, axiomatic method, borderline case, categoricity, Church (Alonzo), conditional, convention T, converse (outer and inner), corresponding conditional, degenerate case, domain, De Morgan, ellipsis, laws of thought, limiting case, logical form, logical subject, material adequacy, mathematical analysis, omega, proof by recursion, recursive function theory, scheme, scope, Tarski (Alfred), tautology, universe of discourse. -/- The entire work is available online free at more (...) than one website. Paste the whole URL. http://archive.org/stream/RobertiAudi_The.Cambridge.Dictionary.of.Philosophy/Robert.Audi_The.Cambrid ge.Dictionary.of.Philosophy -/- The 2015 third edition will be available soon. Before you think of buying it read some reviews on Amazon and read reviews of its competition: For example, my review of the 2008 Oxford Companion to Philosophy, History and Philosophy of Logic,29:3,291-292. URL: http://dx.doi.org/10.1080/01445340701300429 -/- Some of the entries have already been found to be flawed. For example, Tarski’s expression ‘materially adequate’ was misinterpreted in at least one article and it was misused in another where ‘materially correct’ should have been used. The discussion provides an opportunity to bring more flaws to light. -/- Acknowledgements: Each of these entries was presented at meetings of The Buffalo Logic Dictionary Project sponsored by The Buffalo Logic Colloquium. The members of the colloquium read drafts before the meetings and were generous with corrections, objections, and suggestions. Usually one 90-minute meeting was devoted to one entry although in some cases, for example, “axiomatic method”, took more than one meeting. Moreover, about half of the entries are rewrites of similarly named entries in the 1995 first edition. Besides the help received from people in Buffalo, help from elsewhere was received by email. We gratefully acknowledge the following: José Miguel Sagüillo, John Zeis, Stewart Shapiro, Davis Plache, Joseph Ernst, Richard Hull, Concha Martinez, Laura Arcila, James Gasser, Barry Smith, Randall Dipert, Stanley Ziewacz, Gerald Rising, Leonard Jacuzzo, George Boger, William Demopolous, David Hitchcock, John Dawson, Daniel Halpern, William Lawvere, John Kearns, Ky Herreid, Nicolas Goodman, William Parry, Charles Lambros, Harvey Friedman, George Weaver, Hughes Leblanc, James Munz, Herbert Bohnert, Robert Tragesser, David Levin, Sriram Nambiar, and others. -/- . (shrink)
CORCORAN REVIEWS THE 4 VOLUMES OF TARSKI’S COLLECTED PAPERS Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in volume, but (...) most of the Aristotelian corpus is not about logic, whereas virtually everything written by Tarski concerns logic more or less directly. There is no doubt that Tarski wrote more on logic than any other author; he started publishing on logic in 1921 at the age of 20 and continued until his death at the age of 82. (shrink)
It is widely agreed by philosophers that the so-called “Frege-Russell definition of natural number” is actually an assertion concerning the nature of the numbers and that it cannot be regarded as a definition in the ordinary mathematical sense. On the basis of the reasoning in this paper it is clear that the Frege-Russell definition contradicts the following three principles (taken together): (1) each number is the same entity in each possible world, (2) each number exists in each possible world, (3) (...) some entities existing in the actual world do not exist in every possible world. Since these principles seem to be true, the paper is a refutation of the Frege-Russell definition. The paper does more. It shows that the contradictory of the Frege-Russell definition follows even when principles 2 and 3 are replaced by one considerably weaker principle. The ideas contained in the paper are related to two earlier objections to the definition. The first, sometimes attributed to the mathematician, C. S. Keyser, is that existence of the numbers as defined implies the existence of infinitely many particulars in each possible world. The second is, in effect, an idea which is said to have led Whitehead to reject the definition of number to which he had subscribed in Principia Mathematica. Whitehead is supposed to have said that he could not believe that the number two changes every “time twins are born”. The mathematician H. Jeffreys expressed similar ideas [Philos. of Sci. 5 (1938), 434–451]. One of the merits of the author’s work is that it refutes the Frege-Russell definition without the need to take sides on controversial points presupposed by the Keyser and Whitehead objections. The objections made by the author are therefore not to be identified with the Keyser and Whitehead objections. Even if the author’s work is to be regarded as a refinement and integration of previous ideas, it is nevertheless a contribution—not only because the basic points are well worth repeating but also because the refinements are logically significant improvements and because the author has stated them clearly and concisely in the idiom of contemporary philosophy. (shrink)
PUTNAM has made highly regarded contributions to mathematics, to philosophy of logic and to philosophy of science, and in this book he brings his ideas in these three areas to bear on the traditional philosophic problem of materialism versus (objective) idealism. The book assumes that contemporary science (mathematical and physical) is largely correct as far as it goes, or at least that it is rational to believe in it. The main thesis of the book is that consistent acceptance of contemporary (...) science requires the acceptance of some sort of Platonistic idealism affirming the existence of abstract, non-temporal, non-material, non-mental entities (numbers, scientific laws, mathematical formulas, etc.). The author is thus in direct opposition to the extreme materialism which had dominated philosophy of science in the first three quarters of this century. The book can be recommended to the scientifically literate, general reader whose acquaintance with these areas is limited to the literature of the 1950’s and before, when it had been assumed that empiricistic materialism was the only philosophy compatible with a scientific outlook. To this group the book presents an eye-opening challenge fulfilling the author’s intention of “shaking up preconceptions and stimulating further discussion”. QUINE’S book is not easy to read, partly because the level of sophistication fluctuates at high frequency between remote extremes and partly because of convoluted English prose style and devilish terminology. Almost all of the minor but troublesome technical errata in the first printing have been corrected [see reviews, e.g., the reviewer, Philos. Sci. 39 (1972), no. 1, 97–99]. In the opinion of the reviewer the book is not suitable for undergraduate instruction, and without external motivation few mathematicians are likely to have the patience to appreciate it. Nevertheless, a careful study of the book will more than repay the effort and one should expect to find frequent references to this book in coming years. (shrink)
This accessible essay treats knowledge and belief in a usable and applicable way. Many of its basic ideas have been developed recently in Corcoran-Hamid 2014: Investigating knowledge and opinion. The Road to Universal Logic. Vol. I. Arthur Buchsbaum and Arnold Koslow, Editors. Springer. Pp. 95-126. http://www.springer.com/birkhauser/mathematics/book/978-3-319-10192-7 .
This presentation of Aristotle's natural deduction system supplements earlier presentations and gives more historical evidence. Some fine-tunings resulted from conversations with Timothy Smiley, Charles Kahn, Josiah Gould, John Kearns,John Glanvillle, and William Parry.The criticism of Aristotle's theory of propositions found at the end of this 1974 presentation was retracted in Corcoran's 2009 HPL article "Aristotle's demonstrative logic".
Creativity pervades human life. It is the mark of individuality, the vehicle of self-expression, and the engine of progress in every human endeavor. It also raises a wealth of neglected and yet evocative philosophical questions: What is the role of consciousness in the creative process? How does the audience for a work for art influence its creation? How can creativity emerge through childhood pretending? Do great works of literature give us insight into human nature? Can a computer program really be (...) creative? How do we define creativity in the first place? Is it a virtue? What is the difference between creativity in science and art? Can creativity be taught? -/- The new essays that comprise The Philosophy of Creativity take up these and other key questions and, in doing so, illustrate the value of interdisciplinary exchange. Written by leading philosophers and psychologists involved in studying creativity, the essays integrate philosophical insights with empirical research. -/- CONTENTS -/- I. Introduction Introducing The Philosophy of Creativity Elliot Samuel Paul and Scott Barry Kaufman -/- II. The Concept of Creativity 1. An Experiential Account of Creativity Bence Nanay -/- III. Aesthetics & Philosophy of Art 2. Creativity and Insight Gregory Currie 3. The Creative Audience: Some Ways in which Readers, Viewers and/or Listeners Use their Imaginations to Engage Fictional Artworks Noël Carroll 4. The Products of Musical Creativity Christopher Peacocke -/- IV. Ethics & Value Theory 5. Performing Oneself Owen Flanagan 6. Creativity as a Virtue of Character Matthew Kieran -/- V. Philosophy of Mind & Cognitive Science 7. Creativity and Not So Dumb Luck Simon Blackburn 8. The Role of Imagination in Creativity Dustin Stokes 9. Creativity, Consciousness, and Free Will: Evidence from Psychology Experiments Roy F. Baumeister, Brandon J. Schmeichel, and C. Nathan DeWall 10. The Origins of Creativity Elizabeth Picciuto and Peter Carruthers 11. Creativity and Artificial Intelligence: a Contradiction in Terms? Margaret Boden -/- VI. Philosophy of Science 12. Hierarchies of Creative Domains: Disciplinary Constraints on Blind-Variation and Selective-Retention Dean Keith Simonton -/- VII. Philosophy of Education (& Education of Philosophy) 13. Educating for Creativity Berys Gaut 14. Philosophical Heuristics Alan Hájek. (shrink)
Corcoran, John. 2005. Meanings of word: type-occurrence-token. Bulletin of Symbolic Logic 11(2005) 117. -/- Once we are aware of the various senses of ‘word’, we realize that self-referential statements use ambiguous sentences. If a statement is made using the sentence ‘this is a pronoun’, is the speaker referring to an interpreted string, a string-type, a string-occurrence, a string-token, or what? The listeners can wonder “this what?”. -/- John Corcoran, Meanings of word: type-occurrence-token Philosophy, University at Buffalo, Buffalo, NY (...) 14260-4150 E-mail: corcoran@buffalo.edu The four-letter written-English expression ‘word’, which plays important roles in applications and expositions of logic and philosophy of logic, is ambiguous (multisense, or polysemic) in that it has multiple normal meanings (senses, or definitions). Several of its meanings are vague (imprecise, or indefinite) in that they admit of borderline (marginal, or fringe) cases. This paper juxtaposes, distinguishes, and analyses several senses of ‘word’ focusing on a constellation of senses analogous to constellations of senses of other expression words such as ‘expression’, ‘symbol’, ‘character’, ‘letter’, ‘term’, ‘phrase’, ‘formula’, ‘sentence’, ‘derivation’, ‘paragraph’, and ‘discourse’. Consider, e.g., the word ‘letter’. In one sense there are exactly twenty-six letters (letter-types or ideal letters) in the English alphabet and there are exactly four letters in the word ‘letter’. In another sense, there are exactly six letters (letter-repetitions or letter-occurrences) in the word-type ‘letter’. In yet another sense, every new inscription (act of writing or printing) of ‘letter’ brings into existence six new letters (letter-tokens or ink-letters) and one new word that had not previously existed. The number of letter-occurrences (occurrences of a letter-type) in a given word-type is the same as the number of letter-tokens (tokens of a letter-type) in a single token of the given word. Many logicians fail to distinguish “token” from “occurrence” and a few actually confuse the two concepts. Epistemological and ontological problems concerning word-types, word-occurrences, and word-tokens are described in philosophically neutral terms. This paper presents a theoretical framework of concepts and principles concerning logicography, including use of English in logic. The framework is applied to analytical exposition and critical evaluation of classic passages in the works of philosophers and logicians including Boole, Peirce, Frege, Russell, Tarski, Church and Quine. This paper is intended as a philosophical sequel to Corcoran et al. “String Theory”, Journal of Symbolic Logic 39(1974) 625-637. https://www.academia.edu/s/cdfa6c854e?source=link -/- . (shrink)
This interesting and imaginative monograph is based on the author’s PhD dissertation supervised by Saul Kripke. It is dedicated to Timothy Smiley, whose interpretation of PRIOR ANALYTICS informs its approach. As suggested by its title, this short work demonstrates conclusively that Aristotle’s syllogistic is a suitable vehicle for fruitful discussion of contemporary issues in logical theory. Aristotle’s syllogistic is represented by Corcoran’s 1972 reconstruction. The review studies Lear’s treatment of Aristotle’s logic, his appreciation of the Corcoran-Smiley paradigm, and (...) his understanding of modern logical theory. In the process Corcoran and Scanlan present new, previously unpublished results. Corcoran regards this review as an important contribution to contemporary study of PRIOR ANALYTICS: both the book and the review deserve to be better known. (shrink)
Chapin reviewed this 1972 ZEITSCHRIFT paper that proves the completeness theorem for the logic of variable-binding-term operators created by Corcoran and his student John Herring in the 1971 LOGIQUE ET ANALYSE paper in which the theorem was conjectured. This leveraging proof extends completeness of ordinary first-order logic to the extension with vbtos. Newton da Costa independently proved the same theorem about the same time using a Henkin-type proof. This 1972 paper builds on the 1971 “Notes on a Semantic Analysis (...) of Variable Binding Term Operators” (Co-author John Herring), Logique et Analyse 55, 646–57. MR0307874 (46 #6989). A variable binding term operator (vbto) is a non-logical constant, say v, which combines with a variable y and a formula F containing y free to form a term (vy:F) whose free variables are exact ly those of F, excluding y. Kalish-Montague 1964 proposed using vbtos to formalize definite descriptions “the x: x+x=2”, set abstracts {x: F}, minimization in recursive function theory “the least x: x+x>2”, etc. However, they gave no semantics for vbtos. Hatcher 1968 gave a semantics but one that has flaws described in the 1971 paper and admitted by Hatcher. In 1971 we give a correct semantic analysis of vbtos. We also give axioms for using them in deductions. And we conjecture strong completeness for the deductions with respect to the semantics. The conjecture, proved in this paper with Hatcher’s help, was proved independently about the same time by Newton da Costa. (shrink)
One innovation in this paper is its identification, analysis, and description of a troubling ambiguity in the word ‘argument’. In one sense ‘argument’ denotes a premise-conclusion argument: a two-part system composed of a set of sentences—the premises—and a single sentence—the conclusion. In another sense it denotes a premise-conclusion-mediation argument—later called an argumentation: a three-part system composed of a set of sentences—the premises—a single sentence—the conclusion—and complex of sentences—the mediation. The latter is often intended to show that the conclusion follows from (...) the premises. The complementarity and interrelation of premise-conclusion arguments and premise-conclusion-mediation arguments resonate throughout the rest of the paper which articulates the conceptual structure found in logic from Aristotle to Tarski. This 1972 paper can be seen as anticipating Corcoran’s signature work: the more widely read 1989 paper, Argumentations and Logic, Argumentation 3, 17–43. MR91b:03006. The 1972 paper was translated into Portuguese. The 1989 paper was translated into Spanish, Portuguese, and Persian. (shrink)
SEMANTIC ARITHMETIC: A PREFACE John Corcoran Abstract Number theory, or pure arithmetic, concerns the natural numbers themselves, not the notation used, and in particular not the numerals. String theory, or pure syntax, concems the numerals as strings of «uninterpreted» characters without regard to the numbe~s they may be used to denote. Number theory is purely arithmetic; string theory is purely syntactical... in so far as the universe of discourse alone is considered. Semantic arithmetic is a broad subject which begins (...) when numerals are mentioned (not just used) and mentioned as names of numbers (not just as syntactic objects). Semantic arithmetic leads to many fascinating and surprising algorithms and decision procedures; it reveals in a vivid way the experiential import of mathematical propositions and the predictive power of mathematical knowledge; it provides an interesting perspective for philosophical, historical, and pedagogical studies of the growth of scientific knowledge and of the role metalinguistic discourse in scientific thought. (shrink)
John Corcoran ’s “Meanings of Implication” outlines and discusses 12 distinct uses of the term “implies” while also commenting on the ways in which these different notions of implication might be confused or conflated. Readers may take special note of Corcoran ’s analysis of Russell’s truth-functional account of “implication” and its historical function as logical consequence, as well as Corcoran ’s discussion of Bolzano’s previously obscure and rarely mentioned notion of “relative implication.”.
Corcoran, J. 2007. Psychologism. American Philosophy: an Encyclopedia. Eds. John Lachs and Robert Talisse. New York: Routledge. Pages 628-9. -/- Psychologism with respect to a given branch of knowledge, in the broadest neutral sense, is the view that the branch is ultimately reducible to, or at least is essentially dependent on, psychology. The parallel with logicism is incomplete. Logicism with respect to a given branch of knowledge is the view that the branch is ultimately reducible to logic. Every branch (...) of knowledge depends on logic. Psychologism is found in several fields including history, political science, economics, ethics, epistemology, linguistics, aesthetics, mathematics, and logic. Logicism is found mainly in branches of mathematics: number theory, analysis, and, more rarely, geometry. Although the ambiguous term ‘psychologism’ has senses with entirely descriptive connotations, it is widely used in senses that are derogatory. No writers with any appreciation of this point will label their own views as psychologistic. It is usually used pejoratively by people who disapprove of psychologism. The term ‘scientism’ is similar in that it too has both pejorative and descriptive senses but its descriptive senses are rarely used any more. It is almost a law of linguistics that the negative connotations tend to drive out the neutral and the positive. Dictionaries sometimes mark both words with a usage label such as “Usually disparaging”. In this article, the word is used descriptively mainly because there are many psychologistic views that are perfectly respectable and even endorsed by people who would be offended to have their views labeled psychologism. A person who subscribes to logicism is called a logicist, but there is no standard word for a person who subscribes to psychologism. ‘Psychologist’, which is not suitable, occurs in this sense. ‘Psychologician’, with stress on the second syllable as in ‘psychologist’, has been proposed. In the last century, some of the most prominent forms of psychologism pertained to logic; the rest of this article treats only such forms. Psychologism in logic is very “natural”. After all, logic studies reasoning, which is done by the mind, whose nature and functioning is studied in psychology—using the word ‘psychology’ in its broadest etymological sense. (shrink)
John Corcoran and George Boger. Aristotelian logic and Euclidean geometry. Bulletin of Symbolic Logic. 20 (2014) 131. -/- By an Aristotelian logic we mean any system of direct and indirect deductions, chains of reasoning linking conclusions to premises—complete syllogisms, to use Aristotle’s phrase—1) intended to show that their conclusions follow logically from their respective premises and 2) resembling those in Aristotle’s Prior Analytics. Such systems presuppose existence of cases where it is not obvious that the conclusion follows from the (...) premises: there must be something deductions can show. Corcoran calls a proposition that follows from given premises a hidden consequence of those premises if it is not obvious that the proposition follows from those premises. By a Euclidean geometry we mean an extended discourse beginning with basic premises—axioms, postulates, definitions—1) treating a universe of geometrical figures and 2) resembling Euclid’s Elements. There were Euclidean geometries before Euclid (fl. 300 BCE), even before Aristotle (384–322 BCE). Bochenski, Lukasiewicz, Patzig and others never new this or if they did they found it inconvenient to mention. Euclid shows no awareness of Aristotle. It is obvious today—as it should have been obvious in Euclid’s time, if anyone knew both—that Aristotle’s logic was insufficient for Euclid’s geometry: few if any geometrical theorems can be deduced from Euclid’s premises by means of Aristotle’s deductions. Aristotle’s writings don’t say whether his logic is sufficient for Euclidean geometry. But, there is not even one fully-presented example. However, Aristotle’s writings do make clear that he endorsed the goal of a sufficient system. Nevertheless, incredible as this is today, many logicians after Aristotle claimed that Aristotelian logics are sufficient for Euclidean geometries. This paper reviews and analyses such claims by Mill, Boole, De Morgan, Russell, Poincaré, and others. It also examines early contrary statements by Hintikka, Mueller, Smith, and others. Special attention is given to the argumentations pro or con and especially to their logical, epistemic, and ontological presuppositions. What methodology is necessary or sufficient to show that a given logic is adequate or inadequate to serve as the underlying logi of a given science. (shrink)
A Mathematical Review by John Corcoran, SUNY/Buffalo -/- Macbeth, Danielle Diagrammatic reasoning in Frege's Begriffsschrift. Synthese 186 (2012), no. 1, 289–314. ABSTRACT This review begins with two quotations from the paper: its abstract and the first paragraph of the conclusion. The point of the quotations is to make clear by the “give-them-enough-rope” strategy how murky, incompetent, and badly written the paper is. I know I am asking a lot, but I have to ask you to read the quoted passages—aloud (...) if possible. Don’t miss the silly attempt to recycle Kant’s quip “Concepts without intuitions are empty; intuitions without concepts are blind”. What the paper was aiming at includes the absurdity: “Proofs without definitions are empty; definitions without proofs are, if not blind, then dumb.” But the author even bollixed this. The editor didn’t even notice. The copy-editor missed it. And the author’s proof-reading did not catch it. In order not to torment you I will quote the sentence as it appears: “In a slogan: proofs without definitions are empty, merely the aimless manipulation of signs according to rules; and definitions without proofs are, if no blind, then dumb.”[sic] The rest of my review discusses the paper’s astounding misattribution to contemporary logicians of the information-theoretic approach. This approach was cruelly trashed by Quine in his 1970 Philosophy of Logic, and thereafter ignored by every text I know of. The paper under review attributes generally to modern philosophers and logicians views that were never espoused by any of the prominent logicians—such as Hilbert, Gödel, Tarski, Church, and Quine—apparently in an attempt to distance them from Frege: the focus of the article. On page 310 we find the following paragraph. “In our logics it is assumed that inference potential is given by truth-conditions. Hence, we think, deduction can be nothing more than a matter of making explicit information that is already contained in one’s premises. If the deduction is valid then the information contained in the conclusion must be contained already in the premises; if that information is not contained already in the premises […], then the argument cannot be valid.” Although the paper is meticulous in citing supporting literature for less questionable points, no references are given for this. In fact, the view that deduction is the making explicit of information that is only implicit in premises has not been espoused by any standard symbolic logic books. It has only recently been articulated by a small number of philosophical logicians from a younger generation, for example, in the prize-winning essay by J. Sagüillo, Methodological practice and complementary concepts of logical consequence: Tarski’s model-theoretic consequence and Corcoran’s information-theoretic consequence, History and Philosophy of Logic, 30 (2009), pp. 21–48. The paper omits definitions of key terms including ‘ampliative’, ‘explicatory’, ‘inference potential’, ‘truth-condition’, and ‘information’. The definition of prime number on page 292 is as follows: “To say that a number is prime is to say that it is not divisible without remainder by another number”. This would make one be the only prime number. The paper being reviewed had the benefit of two anonymous referees who contributed “very helpful comments on an earlier draft”. Could these anonymous referees have read the paper? -/- J. Corcoran, U of Buffalo, SUNY -/- PS By the way, if anyone has a paper that has been turned down by other journals, any journal that would publish something like this might be worth trying. (shrink)
Corcoran, J. 2007. Syntactics, American Philosophy: an Encyclopedia. 2007. Eds. John Lachs and Robert Talisse. New York: Routledge. pp.745-6. -/- Syntactics, semantics, and pragmatics are the three levels of investigation into semiotics, or the comprehensive study of systems of communication, as described in 1938 by the American philosopher Charles Morris (1903-1979). Syntactics studies signs themselves and their interrelations in abstraction from their meanings and from their uses and users. Semantics studies signs in relation to their meanings, but still in (...) abstraction from their uses and users. Pragmatics studies signs as meaningful entities used in various ways by humans. Taking current written English as the system of communication under investigation, it is a matter of syntactics that the two four-character strings ‘tact’ and ‘tics’ both occur in the ten-character string ‘syntactics’. It is a matter of semantics that the ten-character string ‘syntactics’ has only one sense and, in that sense, it denotes a branch of semiotics. It is a matter of pragmatics that the ten-character string ‘syntactics’ was not used as an English word before 1937 and that it is sometimes confused with the much older six-character string ‘syntax’. Syntactics is the simplest and most abstract branch of semiotics. At the same time, it is the most basic. Pragmatics presupposes semantics and syntactics; semantics presupposes syntactics. The basic terms of syntactics include the following: ‘character’ as alphabetic letters, numeric digits, and punctuation marks; ‘string’ as sign composed of a concatenation of characters; ‘occur’ as ‘t’ and ‘c’ both occur twice in ‘syntactics’. However, perhaps the most basic terms of syntactics are ‘type’ and ‘token’ in the senses introduced by Charles Sanders Peirce (1839-1914), America’s greatest logician, who could be considered the grandfather of syntactics, if not the father. These are explained below. (shrink)
Equality and identity. Bulletin of Symbolic Logic. 19 (2013) 255-6. (Coauthor: Anthony Ramnauth) Also see https://www.academia.edu/s/a6bf02aaab This article uses ‘equals’ [‘is equal to’] and ‘is’ [‘is identical to’, ‘is one and the same as’] as they are used in ordinary exact English. In a logically perfect language the oxymoron ‘the numbers 3 and 2+1 are the same number’ could not be said. Likewise, ‘the number 3 and the number 2+1 are one number’ is just as bad from a logical point (...) of view. In normal English these two sentences are idiomatically taken to express the true proposition that ‘the number 3 is the number 2+1’. Another idiomatic convention that interferes with clarity about equality and identity occurs in discussion of numbers: it is usual to write ‘3 equals 2+1’ when “3 is 2+1” is meant. When ‘3 equals 2+1’ is written there is a suggestion that 3 is not exactly the same number as 2+1 but that they merely have the same value. This becomes clear when we say that two of the sides of a triangle are equal if the two angles they subtend are equal or have the same measure. -/- Acknowledgements: Robert Barnes, Mark Brown, Jack Foran, Ivor Grattan-Guinness, Forest Hansen, David Hitchcock, Spaulding Hoffman, Calvin Jongsma, Justin Legault, Joaquin Miller, Tania Miller, and Wyman Park. -/- ► JOHN CORCORAN AND ANTHONY RAMNAUTH, Equality and identity. Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu The two halves of one line are equal but not identical [one and the same]. Otherwise the line would have only one half! Every line equals infinitely many other lines, but no line is [identical to] any other line—taking ‘identical’ strictly here and below. Knowing that two lines equaling a third are equal is useful; the condition “two lines equaling a third” often holds. In fact any two sides of an equilateral triangle is equal to the remaining side! But could knowing that two lines being [identical to] a third are identical be useful? The antecedent condition “two things identical to a third” never holds, nor does the consequent condition “two things being identical”. If two things were identical to a third, they would be the third and thus not be two things but only one. The plural predicate ‘are equal’ as in ‘All diameters of a given circle are equal’ is useful and natural. ‘Are identical’ as in ‘All centers of a given circle are identical’ is awkward or worse; it suggests that a circle has multiple centers. Substituting equals for equals [replacing one of two equals by the other] makes sense. Substituting identicals for identicals is empty—a thing is identical only to itself; substituting one thing for itself leaves that thing alone, does nothing. There are as many types of equality as magnitudes: angles, lines, planes, solids, times, etc. Each admits unit magnitudes. And each such equality analyzes as identity of magnitude: two lines are equal [in length] if the one’s length is identical to the other’s. Tarski [1] hardly mentioned equality-identity distinctions (pp. 54-63). His discussion begins: -/- Among the logical concepts […], the concept of IDENTITY or EQUALITY […] has the greatest importance. -/- Not until page 62 is there an equality-identity distinction. His only “notion of equality”, if such it is, is geometrical congruence—having the same size and shape—an equivalence relation not admitting any unit. Does anyone but Tarski ever say ‘this triangle is equal to that’ to mean that the first is congruent to that? What would motivate him to say such a thing? This lecture treats the history and philosophy of equality-identity distinctions. [1] ALFRED TARSKI, Introduction to Logic, Dover, New York, 1995. [This is expanded from the printed abstract.] . (shrink)
Imagine an equilateral triangle “pointing upward”—its horizontal base under its apex angle. A semiotic triangle has the following three “vertexes”: (apex) an expression, (lower-left) one of the expression’s conceptual meanings or senses, and (lower-right) the referent or denotation determined by the sense [1, pp. 88ff]. One example: the eight-letter string ‘coleslaw’ (apex), the concept “coleslaw” (lower-left), and the salad coleslaw (lower-right) [1, p. 84f]. Using Church’s terminology [2, pp. 6, 41]—modifying Frege’s—the word ‘coleslaw’ expresses the concept “coleslaw”, the word ‘coleslaw’ (...) denotes or names the salad coleslaw, and the concept “coleslaw” determines the salad coleslaw—recalling Frege’s principle that sense determines denotation. Church [2, p. 6] wrote: -/- We shall say that a name denotes or names its denotation and expresses its sense. […] Of the sense we say that it determines its denotation, or is a concept of the denotation. -/- Aristotle seems cognizant of distinctions going beyond those in semiotic triangles. The expression Aristotle’s semiotic pyramids seem warranted by Aristotle’s Categories, 1a1: -/- When [two] things have a name (onoma) in common and the concept (logos) of being (ousia) which corresponds to the name in each case is different, they are called same-named (homonuma). Thus, for example, both a man and a picture [of an animal] are called animals. These have only a name in common. In each case the name’s concept of being [an animal] is different; for if one says what being an animal is for each of them, one will give two distinct concepts. -/- Semiotic triangles and pyramids in Aristotle’s logic are compared to those in Church’s [2]. [1] JOHN CORCORAN, Sentence, proposition, judgment, statement, and fact, Many Sides of Logic, College Publications, 2009. [2] ALONZO CHURCH, Introduction to Mathematical Logic, Princeton, 1956. -/- The semiotic pyramid in Categories, 1a1 has a square base under the vertex ‘animal’. On the corners of the square are: the concept “animal”, the concept “animal picture”, the animals, and the animal pictures. The animals are homonymous with the animal pictures. People find Aristotle’s example far-fetched or inept even if the experience of pointing to a picture while saying “That is Tarski” is familiar. Imagine looking at a painting while thinking “That is an animal”. Without putting too fine a point on this, notice that in Aristotle’s sense it is individual things that are homonymous, not words. It would be natural to say also in his sense that two things are homonyms if one is homonymous with the other. In contrast, we use the words homonym and homonymous to relate words that are spelled the same and pronounced the same but have different meaning. Consider the noun ‘center’ and the verb ‘center’. Consider the noun ‘smell’ and the verb ‘smell’. The spelling of two homonyms is an ambiguity, or an ambiguous spelling. We need appropriate adjectives to distinguish the Categorical senses of ‘homonym’ and ‘homonymous’ from the current English sense just mentioned. I propose ‘ontological’ for the sense relating things and ‘linguistic’ for that relating words. Given that all words are things but not all things are words, we ask are words that are linguistically homonymous also ontologically homonymous? END OF POST ABSTRACT. (shrink)
This self-contained lecture examines uses and misuses of the adverb conversely with special attention to logic and logic-related fields. Sometimes adding conversely after a conjunction such as and signals redundantly that a converse of what preceded will follow. -/- (1) Tarski read Church and, conversely, Church read Tarski. -/- In such cases, conversely serves as an extrapropositional constituent of the sentence in which it occurs: deleting conversely doesn’t change the proposition expressed. Nevertheless it does introduce new implicatures: a speaker would (...) implicate belief that the second sentence expresses a converse of what the first expresses. Perhaps because such usage is familiar, the word conversely can be used as “sentential pronoun”—or prosentence—representing a sentence expressing a converse of what the preceding sentence expresses. -/- (2) Tarski read Church and conversely. -/- This would be understood as expressing the proposition expressed by (1). Prosentential usage introduces ambiguity when the initial proposition has more than one converse. Confusion can occur if the initial proposition has non-equivalent converses. -/- Every proposition that is the negation of a false proposition is true and conversely. -/- One sense implies that every proposition that is the negation of a true proposition is false, which is true of course. But another sense, probably more likely, implies that every proposition that is true is the negation of a false proposition, which is false: the proposition that one precedes two is not a negation and thus is not the negation of a false proposition. The above also applies to synonyms of conversely such as vice versa. Although prosentence has no synonym, extrapropositional constituents are sometimes called redundant rhetoric, filler, or expletive. Authors discussed include Aristotle, Boole, De Morgan, Peirce, Frege, Russell, Tarski, and Church. END OF PUBLISHED ABSTRACT -/- See also: Corcoran, John. 2015. Converses, inner and outer. 2015. Cambridge Dictionary of Philosophy, third edition, Robert Audi (editor). Cambridge: Cambridge UP. https://www.academia.edu/10396347/Corcoran_s_27_entries_in_the_1999_second_edition_Audi_s_Cambridge_ Dictionary_of_Philosophy . (shrink)
Corcoran, J. 2005. Counterexamples and proexamples. Bulletin of Symbolic Logic 11(2005) 460. -/- John Corcoran, Counterexamples and Proexamples. Philosophy, University at Buffalo, Buffalo, NY 14260-4150 E-mail: corcoran@buffalo.edu Every perfect number that is not even is a counterexample for the universal proposition that every perfect number is even. Conversely, every counterexample for the proposition “every perfect number is even” is a perfect number that is not even. Every perfect number that is odd is a proexample for the existential (...) proposition that some perfect number is odd. Conversely, every proexample for the proposition “some perfect number is odd” is a perfect number that is odd. As trivial these remarks may seem, they can not be taken for granted, even in mathematical and logical texts designed to introduce their respective subjects. One well-reviewed book on counterexamples in analysis says that in order to demonstrate that a universal proposition is false it is necessary and sufficient to construct a counterexample. It is easy to see that it is not necessary to construct a counterexample to demonstrate that the proposition “every true proposition is known to be true” is false–necessity fails. Moreover the mere construction of an object that happens to be a counterexample does not by itself demonstrate that it is a counterexample–sufficiency fails. In order to demonstrate that a universal proposition is false it is neither necessary nor sufficient to construct a counterexample. Likewise, of course, in order to demonstrate that an existential proposition is true it is neither necessary nor sufficient to construct a proexample. This article defines the above relational concepts of counterexample and of proexample, it discusses their surprising history and philosophy, it gives many examples of uses of these and related concepts in the literature and it discusses some of the many errors that have been made as a result of overlooking the challenging subtlety of the proper use of these two basic and indispensable concepts. (shrink)
►JOHN CORCORAN AND IDRIS SAMAWI HAMID, Two-method errors: having it both ways. Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu Philosophy, Colorado State University, Fort Collins, CO 80523-1781 USA E-mail: ishamid@colostate.edu Where two methods produce similar results, mixing the two sometimes creates errors we call two-method errors, TMEs: in style, syntax, semantics, pragmatics, implicature, logic, or action. This lecture analyzes examples found in technical and in non-technical contexts. One can say “Abe knows whether Ben draws” in (...) two other ways: ‘Abe knows whether or not Ben draws’ or ‘Abe knows whether Ben draws or not’. But a stylistic TME occurs in ‘Abe knows whether or not Ben draws or not’. One can say “Abe knows how Ben looks” using ‘Abe knows what Ben looks like’. But syntactical TMEs are in ‘Abe knows what Ben looks’ and in ‘Abe knows how Ben looks like’. One can deny that Abe knows Ben by prefixing ‘It isn’t that’ or by interpolating ‘doesn’t’. But a pragmatic TME occurs in trying to deny that Abe knows Ben by using ‘It isn’t that Abe doesn’t know Ben’. There are several standard ways of defining truth using sequences. Quine’s discussions in the 1970 first printing of Philosophy of logic [3] and in previous lectures were vitiated by mixing two [1, p. 98]. The logical TME in [3], which eluded Quine’s colleagues, was corrected in the 1978 sixth printing [2]. But Quine never explicitly acknowledged, described, or even mentioned the error. This lecture presents and analyses two-method errors in the logic literature. [1] JOHN CORCORAN, Review of Quine’s 1970 Philosophy of Logic. In Philosophy of Science, vol. 39 (1972), pp. 97–99. [2] JOHN CORCORAN, Review of sixth printing of Quine’s 1970 Philosophy of Logic. In Mathematical Reviews MR0469684 (1979): 57 #9465. [3] WILLARD VAN ORMAN QUINE, Philosophy of logic, Harvard, 1970/1986. (shrink)
We discuss misinformation about “the liar antinomy” with special reference to Tarski’s 1933 truth-definition paper [1]. Lies are speech-acts, not merely sentences or propositions. Roughly, lies are statements of propositions not believed by their speakers. Speakers who state their false beliefs are often not lying. And speakers who state true propositions that they don’t believe are often lying—regardless of whether the non-belief is disbelief. Persons who state propositions on which they have no opinion are lying as much as those who (...) state propositions they believe to be false. Not all lies are statements of false propositions—some lies are true; some have no truth-value. People who only occasionally lie are not liars: roughly, liars repeatedly and habitually lie. Some half-truths are statements intended to mislead even though the speakers “interpret” the sentences used as expressing true propositions. Others are statements of propositions believed by the speakers to be questionable but without revealing their supposed problematic nature. The two “formulations” of “the antinomy of the liar” in [1], pp.157–8 and 161–2, have nothing to do with lying or liars. The first focuses on an “expression” Tarski calls ‘c’, namely the following. -/- c is not a true sentence -/- The second focuses on another “expression”, also called ‘c’, namely the following. -/- for all p, if c is identical with the sentence ‘p’, then not p -/- Without argumentation or even discussion, Tarski implies that these strange “expressions” are English sentences. [1] Alfred Tarski, The concept of truth in formalized languages, pp. 152–278, Logic, Semantics, Metamathematics, papers from 1923 to 1938, ed. John Corcoran, Hackett, Indianapolis 1983. -/- https://www.academia.edu/12525833/Sentence_Proposition_Judgment_Statement_and_Fact_Speaking_about_th e_Written_English_Used_in_Logic. (shrink)
John Corcoran. 1979 Review of Hintikka and Remes. The Method of Analysis (Reidel, 1974). Mathematical Reviews 58 3202 #21388. -/- The “method of analysis” is a technique used by ancient Greek mathematicians (and perhaps by Descartes, Newton, and others) in connection with discovery of proofs of difficult theorems and in connection with discovery of constructions of elusive geometric figures. Although this method was originally applied in geometry, its later application to number played an important role in the early development (...) of algebra [Jacob Klein, English translation, Greek mathematical thought and the origin of algebra, especially pp. 154–157, M.I.T. Press, Cambridge, Mass., 1968]. -/- It is universally agreed that the method of analysis begins by “assuming the thing sought after” (e.g., in geometry, the truth of the proposition to be proved or the existence of the geometric figure to be constructed). Aside from this, little else can be taken for granted. There is disagreement concerning the “direction of analysis”, i.e. whether one is to seek implications of the assumption or whether one is to seek implicants of it. There is also disagreement concerning what is to be “anatomized” (analyzed), i.e., whether one analyzes mathematical objects (figures), mathematical propositions (the axioms, known theorems, and analytic assumption) or an imagined proof (of the analytic assumption from axioms and known theorems). (shrink)
CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
Cosmic Justice Hypotheses. -/- This applied-logic lecture builds on [1] arguing that character traits fostered by logic serve clarity and understanding in ethics, confirming hopeful views of Alfred Tarski [2, Preface, and personal communication]. Hypotheses in one strict usage are propositions not known to be true and not known to be false or—more loosely—propositions so considered for discussion purposes [1, p. 38]. Logic studies hypotheses by determining their implications (propositions they imply) and their implicants (propositions that imply them). Logic also (...) studies hypotheses by seeing how variations affect implications and implicants. People versed in logical methods are more inclined to enjoy working with hypotheses and less inclined to dismiss them or to accept them without sufficient evidence. Cosmic Justice Hypotheses (CJHs), such as “in the fullness of time every act will be rewarded or punished in exact proportion to its goodness or badness”, have been entertained by intelligent thinkers. Absolute CJHs, ACHJs, imply that it is pointless to make sacrifices, make pilgrimages, or ask divine forgiveness: once acts are done, doers must ready themselves for the inevitable payback, since the cosmos works inexorably toward justice. Ceteris Paribus CJHs, CPCJHs, on the other hand, such as “in the fullness of time every act will be rewarded or punished in exact proportion to its goodness or badness—other things being equal”, leave room for exceptions. For example, some people subscribing to Ceteris Paribus CJHs think that certain bad acts can be performed with impunity as long as certain procedures are carried out previous to, or simultaneous with, or even after the acts. Belief Ceteris Paribus CJHs has been exploited by unscrupulous “spiritual leaders” who claim to have power to grant exceptions. In opposition to belief in CPCJHs are CJHs that hold belief in CPCJHs to be inherently wrong and subject to punishment. Other variants of CJHs are Cumulative Cosmic Justice Hypotheses, such as “in the fullness of time every person will be rewarded or punished in exact proportion to the net goodness or badness of their acts”. Still other variants include the Hereditary Cumulative Cosmic Justice Hypotheses, such as “in the fullness of time every person will be rewarded or punished in exact proportion to the net goodness or badness of their ancestors’ acts”. [1] JOHN CORCORAN, Inseparability of Logic and Ethics, Free Inquiry, S. 1989, pp. 37–40. [2] ALFRED TARSKI, Introduction to Logic, Dover, 1995. (shrink)
JOHN CORCORAN AND WAGNER SANZ, Disbelief Logic Complements Belief Logic. Philosophy, University at Buffalo, Buffalo, NY 14260-4150 USA E-mail: corcoran@buffalo.edu Filosofia, Universidade Federal de Goiás, Goiás, GO 74001-970 Brazil E-mail: sanz@fchf.ufg.br -/- Consider two doxastic states belief and disbelief. Belief is taking a proposition to be true and disbelief taking it to be false. Judging also dichotomizes: accepting a proposition results in belief and rejecting in disbelief. Stating follows suit: asserting a proposition conveys belief and denying conveys disbelief. (...) Traditional logic implicitly focused on logical relations and processes needed in expanding and organizing systems of beliefs. Deducing a conclusion from beliefs results in belief of the conclusion. Deduction presupposes consequence: one proposition is a consequence of a set of a propositions if the latter logically implies the former. The role of consequence depends on its being truth-preserving: every consequence of a set of truths is true. This paper, which builds on previous work by the second author, explores roles of logic in expanding and organizing systems of disbeliefs. Aducing a conclusion from disbeliefs results in disbelief of the conclusion. Aduction presupposes contrequence: one proposition is a contrequence of a set of propositions if the set of negations or contradictory opposites of the latter logically implies that of the former. The role of contrequence depends on its being falsity-preserving: every contrequence of a set of falsehoods is false. A system of aductions that includes, for every contrequence of a given set, an aduction of the contrequence from the set is said to be complete. Historical and philosophical discussion is illustrated and enriched by presenting complete systems of aductions constructed by the second author. One such, a natural aduction system for Aristotelian categorical propositions, is based on a natural deduction system attributed to Aristotle by the first author and others. ADDED NOTE: Wagner Sanz reconstructed Aristotle’s logic the way it would have been had Aristole focused on constructing “anti-sciences” instead of sciences: more generally, on systems of disbeliefs. (shrink)
CRITICAL THINKING AND PEDAGOGICAL LICENSE https://www.academia.edu/9273154/CRITICAL_THINKING_AND_PEDAGOGICAL_LICENSE JOHN CORCORAN.1999. Critical thinking and pedagogical license. Manuscrito XXII, 109–116. Persian translation by Hassan Masoud. Please post your suggestions for corrections and alternative translations. -/- Critical thinking involves deliberate application of tests and standards to beliefs per se and to methods used to arrive at beliefs. Pedagogical license is authorization accorded to teachers permitting them to use otherwise illicit means in order to achieve pedagogical goals. Pedagogical license is thus analogous to poetic license (...) or, more generally, to artistic license. Pedagogical license will be found to be pervasive in college teaching. This presentation suggests that critical thinking courses emphasize two topics: first, the nature and usefulness of critical thinking; second, the nature and pervasiveness of pedagogical license. Awareness of pedagogical license alerts the student to the need for critical thinking. (shrink)
This book is best regarded as a concise essay developing the personal views of a major philosopher of logic and as such it is to be welcomed by scholars in the field. It is not (and does not purport to be) a treatment of a significant portion of those philosophical problems generally thought to be germane to logic. It would be easy to list many popular topics in philosophy of logic which it does not mention. Even its "definition" of logic-"the (...) systematic study of logical truth"-is peculiar to the author and would be regarded as inappropriately restrictive by many logicians There are several standard ways of defining truth using sequences. Quine’s discussions in the 1970 first printing of Philosophy of logic and in previous lectures were vitiated by mixing two. Quine’s logical Two-Method Error, which eluded Quine’s colleagues, was corrected in the 1978 sixth printing. But Quine never explicitly acknowledged, described, or even mentioned the error in print although in correspondence he did thank Corcoran for bringing it to his attention. In regard to style one may note that the book is rich in metaphorical and sometimes even cryptic passages one of the more remarkable of which occurs in the Preface and seems to imply that deductive logic does not warrant distinctive philosophical treatment. Moreover, the author's sesquipedalian performances sometimes subvert perspicuity. (shrink)
The premise-fact confusion in Aristotle’s PRIOR ANALYTICS. -/- The premise-fact fallacy is talking about premises when the facts are what matters or talking about facts when the premises are what matters. It is not useful to put too fine a point on this pencil. -/- In one form it is thinking that the truth-values of premises are relevant to what their consequences in fact are, or relevant to determining what their consequences are. Thus, e.g., someone commits the premise-fact fallacy if (...) they think that a proposition has different consequences were it true than it would have if false. C. I. Lewis said that confusing logical consequence with material consequence leads to this fallacy. See Corcoran’s 1973 “Meanings of implication” [available on Academia. edu]. -/- The premise-fact confusion occurs in a written passage that implies the premise-fact fallacy or that suggests that the writer isn’t clear about the issues involved in the premise-fact fallacy. Here are some examples. -/- E1: If Abe is Ben and Ben swims, then it would follow that Abe swims. -/- Comment: The truth is that from “Abe is Ben and Ben swims”, the proposition “Abe swims” follows. Whether in fact Abe is Ben and Ben swims is irrelevant to whether “Abe swims” follows from “Abe is Ben and Ben swims”. -/- E1 suggests that maybe “Abe swims” wouldn’t follow from “Abe is Ben and Ben swims” if the latter were false. -/- E2: The truth of “Abe is Ben and Ben swims” implies that Abe swims. -/- E3: Indirect deduction requires assuming something false. -/- Comment: If the premises of an indirect deduction are true the conclusion is true and thus the “reductio” assumption is false. But deduction, whether direct or indirect, does not require true premises. In fact, indirect deduction is often used to determine that the premises are not all true. -/- Anyway, the one-page paper accompanying this abstract reports one of dozens of premise-fact errors in PRIOR ANALYTICS. In the session, people can add their own examples and comment on them. For example, is the one at 25b32 the first? What is the next premise-fact error after 25b32? Which translators or commentators discuss this? -/- . (shrink)
DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...) from the hypothesis augmented by a set of premises known to be true. A “direct proof of a hypothesis" is an argumentation that actually deduces the hypothesis itself from premises known to be true. Since `appears', `believes' and `knows' all make elliptical reference to a participant, it is clear that `paradox', `indirect proof' and `direct proof' are all participant-relative. PARTICIPANT RELATIVITY In normal mathematical writing the participant is presumed to be “the community of mathematicians" or some more or less well-defined subcommunity and, therefore, omission of explicit reference to the participant is often warranted. However, in historical, critical, or philosophical writing focused on emerging branches of mathematics such omission often invites confusion. One and the same argumentation has been a paradox for one mathematician, an inconsistency proof for another, and an indirect proof to a third. One and the same argumentation-text can appear to one mathematician to express an indirect proof while appearing to another mathematician to express a direct proof. WHAT IS A PARADOX’S SOLUTION? Of the above four sorts of argumentation only the paradox invites “solution" or “resolution", and ordinarily this is to be accomplished either by discovering a logical fallacy in the “reasoning" of the argumentation or by discovering that the conclusion is not really false or by discovering that one of the premises is not really true. Resolution of a paradox by a participant amounts to reclassifying a formerly paradoxical argumentation either as a “fallacy", as a direct proof of its conclusion, as an indirect proof of the negation of one of its premises, as an inconsistency proof, or as something else depending on the participant's state of knowledge or belief. This illustrates why an argumentation which is a paradox to a given mathematician at a given time may well not be a paradox to the same mathematician at a later time. -/- The present article considers several set-theoretic argumentations that appeared in the period 1903-1908. The year 1903 saw the publication of B. Russell's Principles of mathematics, [Cambridge Univ. Press, Cambridge, 1903; Jbuch 34, 62]. The year 1908 saw the publication of Russell's article on type theory as well as Ernst Zermelo's two watershed articles on the axiom of choice and the foundations of set theory. The argumentations discussed concern “the largest cardinal", “the largest ordinal", the well-ordering principle, “the well-ordering of the continuum", denumerability of ordinals and denumerability of reals. The article shows that these argumentations were variously classified by various mathematicians and that the surrounding atmosphere was one of confusion and misunderstanding, partly as a result of failure to make or to heed distinctions similar to those made above. The article implies that historians have made the situation worse by not observing or not analysing the nature of the confusion. -/- RECOMMENDATION This well-written and well-documented article exemplifies the fact that clarification of history can be achieved through articulation of distinctions that had not been articulated (or were not being heeded) at the time. The article presupposes extensive knowledge of the history of mathematics, of mathematics itself (especially set theory) and of philosophy. It is therefore not to be recommended for casual reading. AFTERWORD: This review was written at the same time Corcoran was writing his signature “Argumentations and logic”[249] that covers much of the same ground in much more detail. https://www.academia.edu/14089432/Argumentations_and_Logic . (shrink)
Articles by Ian Mueller, Ronald Zirin, Norman Kretzmann, John Corcoran, John Mulhern, Mary Mulhern,Josiah Gould, and others. Topics: Aristotle's Syllogistic, Stoic Logic, Modern Research in Ancient Logic.
Many of our most important goals require months or even years of effort to achieve, and some never get achieved at all. As social psychologists have lately emphasized, success in pursuing such goals requires the capacity for perseverance, or "grit." Philosophers have had little to say about grit, however, insofar as it differs from more familiar notions of willpower or continence. This leaves us ill-equipped to assess the social and moral implications of promoting grit. We propose that grit has an (...) important epistemic component, in that failures of perseverance are often caused by a significant loss of confidence that one will succeed if one continues to try. Correspondingly, successful exercises of grit often involve a kind of epistemic resilience in the face of failure, injury, rejection, and other setbacks that constitute genuine evidence that success is not forthcoming. Given this, we discuss whether and to what extent displays of grit can be epistemically as well as practically rational. We conclude that they can be (although many are not), and that the rationality of grit will depend partly on features of the context the agent normally finds herself in. In particular, grit-friendly norms of deliberation might be irrational to use in contexts of severe material scarcity or oppression. (shrink)
The question I want to explore is whether experience supports an antireductionist ontology of time, that is, whether we should take it to support an ontology that includes a primitive, monadic property of nowness responsible for the special feel of events in the present, and a relation of passage that events instantiate in virtue of literally passing from the future, to the present, and then into the past.
In this manuscript, published here for the first time, Tarski explores the concept of logical notion. He draws on Klein's Erlanger Programm to locate the logical notions of ordinary geometry as those invariant under all transformations of space. Generalizing, he explicates the concept of logical notion of an arbitrary discipline.
Suppose some person 'A' sets out to accomplish a difficult, long-term goal such as writing a passable Ph.D. thesis. What should you believe about whether A will succeed? The default answer is that you should believe whatever the total accessible evidence concerning A's abilities, circumstances, capacity for self-discipline, and so forth supports. But could it be that what you should believe depends in part on the relationship you have with A? We argue that it does, in the case where A (...) is yourself. The capacity for "grit" involves a kind of epistemic resilience in the face of evidence suggesting that one might fail, and this makes it rational to respond to the relevant evidence differently when you are the agent in question. We then explore whether similar arguments extend to the case of "believing in" our significant others -- our friends, lovers, family members, colleagues, patients, and students. (shrink)
I defend a one category ontology: an ontology that denies that we need more than one fundamental category to support the ontological structure of the world. Categorical fundamentality is understood in terms of the metaphysically prior, as that in which everything else in the world consists. One category ontologies are deeply appealing, because their ontological simplicity gives them an unmatched elegance and spareness. I’m a fan of a one category ontology that collapses the distinction between particular and property, replacing it (...) with a single fundamental category of intrinsic characters or qualities. We may describe the qualities as qualitative charactersor as modes, perhaps on the model of Aristotelian qualitative (nonsubstantial) kinds, and I will use the term “properties” interchangeably with “qualities”. The qualities are repeatable and reasonably sparse, although, as I discuss in section 2.6, there are empirical reasons that may suggest, depending on one’s preferred fundamental physical theory, that they include irreducibly intensive qualities. There are no uninstantiated qualities. I also assume that the fundamental qualitative natures are intrinsic, although physics may ultimately suggest that some of them are extrinsic. On my view, matter, concrete objects, abstract objects, and perhaps even spacetime are constructed from mereological fusions of qualities, so the world is simply a vast mixture of qualities, including polyadic properties (i.e., relations). This means that everything there is, including concrete objects like persons or stars, is a quality, a qualitative fusion, or a portion of the extended qualitative fusion that is the worldwhole. I call my view mereological bundle theory. (shrink)
I argue that we can understand the de se by employing the subjective mode of presentation or, if one’s ontology permits it, by defending an abundant ontology of perspectival personal properties or facts. I do this in the context of a discussion of Cappelen and Dever’s recent criticisms of the de se. Then, I discuss the distinctive role of the first personal perspective in discussions about empathy, rational deference, and self-understanding, and develop a way to frame the problem of lacking (...) prospective access to your future self as a problem with your capacity to imaginatively empathize with your future selves. (shrink)
When we define something as a crime, we generally thereby criminalize the attempt to commit that crime. However, it is a vexing puzzle to specify what must be the case in order for a criminal attempt to have occurred, given that the results element of the crime fails to come about. I argue that the philosophy of action can assist the criminal law in clarifying what kinds of events are properly categorized as criminal attempts. A natural thought is that this (...) project should take the form of specifying what it is in general to attempt or try to perform an action, and then to define criminal attempts as attempts to commit crimes. Focusing on Gideon Yaffe's resourceful work in Attempts (Oxford University Press, 2010) as an example of this strategy, I argue that it results in a view that is overly inclusive: one will count as trying to commit a crime even in the far remote preparatory stages that we in fact have good reason not to criminalize. I offer an alternative proposal to distinguish between mere preparations and genuine attempts that has its basis not in trying, but doing: a criminal attempt is underway once what the agent is doing is a crime. Working out the details of this schema turns out to have important implications for action theory. A recently burgeoning view known as Naive Action Theory holds that all action can be explained by appeal to some further thing that the agent is doing, and that that the same explanatory nexus is at work even when we appeal to what the agent is intending, trying, or preparing to do -- these notions do explanatory work because they too refer to actions that are in progress, albeit in their infancy. If this is right, than the notion of 'doing' will also be too inclusive for the purposes of the criminal law. I argue that we should draw the reverse conclusion: the distinctions between pure intending, trying, preparing, and doing serve an important purpose in the criminal law, and this fact lends support to the view that they are genuine metaphysical and explanatory distinctions. (shrink)
The five English words—sentence, proposition, judgment, statement, and fact—are central to coherent discussion in logic. However, each is ambiguous in that logicians use each with multiple normal meanings. Several of their meanings are vague in the sense of admitting borderline cases. In the course of displaying and describing the phenomena discussed using these words, this paper juxtaposes, distinguishes, and analyzes several senses of these and related words, focusing on a constellation of recommended senses. One of the purposes of this paper (...) is to demonstrate that ordinary English properly used has the resources for intricate and philosophically sound investigation of rather deep issues in logic and philosophy of language. No mathematical, logical, or linguistic symbols are used. Meanings need to be identified and clarified before being expressed in symbols. We hope to establish that clarity is served by deferring the extensive use of formalized or logically perfect languages until a solid “informal” foundation has been established. Questions of “ontological status”—e.g., whether propositions or sentences, or for that matter characters, numbers, truth-values, or instants, are “real entities”, are “idealizations”, or are “theoretical constructs”—plays no role in this paper. As is suggested by the title, this paper is written to be read aloud. -/- I hope that reading this aloud in groups will unite people in the enjoyment of the humanistic spirit of analytic philosophy. (shrink)
Argumentations are at the heart of the deductive and the hypothetico-deductive methods, which are involved in attempts to reduce currently open problems to problems already solved. These two methods span the entire spectrum of problem-oriented reasoning from the simplest and most practical to the most complex and most theoretical, thereby uniting all objective thought whether ancient or contemporary, whether humanistic or scientific, whether normative or descriptive, whether concrete or abstract. Analysis, synthesis, evaluation, and function of argumentations are described. Perennial philosophic (...) problems, epistemic and ontic, related to argumentations are put in perspective. So much of what has been regarded as logic is seen to be involved in the study of argumentations that logic may be usefully defined as the systematic study of argumentations, which is virtually identical to the quest of objective understanding of objectivity. (shrink)
Prior Analytics by the Greek philosopher Aristotle (384 – 322 BCE) and Laws of Thought by the English mathematician George Boole (1815 – 1864) are the two most important surviving original logical works from before the advent of modern logic. This article has a single goal: to compare Aristotle’s system with the system that Boole constructed over twenty-two centuries later intending to extend and perfect what Aristotle had started. This comparison merits an article itself. Accordingly, this article does not discuss (...) many other historically and philosophically important aspects of Boole’s book, e.g. his confused attempt to apply differential calculus to logic, his misguided effort to make his system of ‘class logic’ serve as a kind of ‘truth-functional logic’, his now almost forgotten foray into probability theory, or his blindness to the fact that a truth-functional combination of equations that follows from a given truth-functional combination of equations need not follow truth-functionally. One of the main conclusions is that Boole’s contribution widened logic and changed its nature to such an extent that he fully deserves to share with Aristotle the status of being a founding figure in logic. By setting forth in clear and systematic fashion the basic methods for establishing validity and for establishing invalidity, Aristotle became the founder of logic as formal epistemology. By making the first unmistakable steps toward opening logic to the study of ‘laws of thought’—tautologies and laws such as excluded middle and non-contradiction—Boole became the founder of logic as formal ontology. (shrink)
This essay takes logic and ethics in broad senses: logic as the science of evidence; ethics as the science justice. One of its main conclusions is that neither science can be fruitfully pursued without the virtues fostered by the other: logic is pointless without fairness and compassion; ethics is pointless without rigor and objectivity. The logician urging us to be dispassionate is in resonance and harmony with the ethicist urging us to be compassionate.
C. I. Lewis (I883-I964) was the first major figure in history and philosophy of logic—-a field that has come to be recognized as a separate specialty after years of work by Ivor Grattan-Guinness and others (Dawson 2003, 257).Lewis was among the earliest to accept the challenges offered by this field; he was the first who had the philosophical and mathematical talent, the philosophical, logical, and historical background, and the patience and dedication to objectivity needed to excel. He was blessed with (...) many fortunate circumstances, not least of which was entering the field when mathematical logic, after only six decades of toil, had just reaped one of its most important harvests with publication of the monumental Principia Mathematica. It was a time of joyful optimism which demanded an historical account and a sober philosophical critique. Lewis was one of the first to apply to mathematical logic the Aristotelian dictum that we do not understand a living institution until we see it growing from its birth. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.