Results for 'mathematical concept '

942 found
Order:
  1. Incomplete understanding of complex numbers Girolamo Cardano: a case study in the acquisition of mathematical concepts.Denis Buehler - 2014 - Synthese 191 (17):4231-4252.
    In this paper, I present the case of the discovery of complex numbers by Girolamo Cardano. Cardano acquires the concepts of (specific) complex numbers, complex addition, and complex multiplication. His understanding of these concepts is incomplete. I show that his acquisition of these concepts cannot be explained on the basis of Christopher Peacocke’s Conceptual Role Theory of concept possession. I argue that Strong Conceptual Role Theories that are committed to specifying a set of transitions that is both necessary and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Unfolding FOLDS: A Foundational Framework for Abstract Mathematical Concepts.Jean-Pierre Marquis - 2018 - In Landry Elaine (ed.), Category for the Working Philosophers. Oxford University Press. pp. 136-162.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  4. Mathematical Nature of Reality, Plus Gravitation-Electromagnetism Unification, Derived from Revised Gravitational Tidal Forces and Mass-from-Gravity Concept.Rodney Bartlett - manuscript
    This article had its beginning with Einstein's 1919 paper "Do gravitational fields play an essential role in the structure of elementary particles?" Together with General Relativity's statement that gravity is not a pull but is a push caused by the curvature of space-time, a hypothesis for Earth's ocean tides was developed that does not solely depend on the Sun and Moon as Kepler and Newton believed. It also borrows from Galileo. The breakup of planets and asteroids by white dwarfs, neutron (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Denoting Concepts and Ontology in Russell's Principles of Mathematics.Wouter Adriaan Cohen - 2022 - Journal for the History of Analytical Philosophy 10 (7).
    Bertrand Russell’s _Principles of Mathematics_ (1903) gives rise to several interpretational challenges, especially concerning the theory of denoting concepts. Only relatively recently, for instance, has it been properly realised that Russell accepted denoting concepts that do not denote anything. Such empty denoting concepts are sometimes thought to enable Russell, whether he was aware of it or not, to avoid commitment to some of the problematic non-existent entities he seems to accept, such as the Homeric gods and chimeras. In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Preservice Teachers’ Self-concept, Self-efficacy, and Attitude: Its Implications to Mathematics Achievement.Chen Chen R. Dua, Augustine C. Mancera, Yrish Jean R. Solis, Jupeth Pentang & Ronalyn Bautista - 2022 - Studies in Technology and Education 1 (1):1-13.
    This correlational study investigated the relationship between preservice teachers’ math self-concept, self-efficacy, and attitude with their math achievement. Participants were chosen using stratified random sampling from BEEd and BSEd mathematics majors (n = 117). From the findings, preservice teachers had moderate to high math self-concept, self-efficacy, and attitude. These variables were statistically correlated with each other and with math achievement. The inclusion of training programs for developing the preservice teachers’ math self-concept, self-efficacy, and attitude, as well as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Does self-concept affect mathematics learning achievement?Nia Kania & Dadang Juandi - 2023 - Journal of Education and Learning (Edulearn) 17 (3):455-461.
    Students who study at home certainly affect their self-concept. Their study found that knowledge of distance learning affects the perceived usefulness of this process. This study described self-concept has an influence on learning achievement in mathematics. The type of research used in this study was descriptive quantitative research to determine the relationship between students’ self-concept and learning achievement in mathematics. This research was conducted in class 8 of State Junior High School (SMPN) 1 Palasah, Indonesia with 151 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Exploring students' image concept of mathematical functions through error analysis.Melanie Gurat - 2018 - International Journal of Advanced Research and Publications 2 (9):33-46.
    Students do not necessarily use the definitions presented to them when determining examples or non-examples of given mathematical ideas. Instead, they utilize the concept image they carry with them as a result of experiences with such examples and nonexamples. Hence, teachers should try exploring students‟ images of various mathematical concepts in order to improve communication between students and teachers. This suggestion can be addressed through error analysis. This study therefore is a descriptive-qualitative type that looked into the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Philosophical Inquiry of Mathematics: The Concept of “The Blue Print” and the Relationship Between Mathematics and Goodness.Hajime Takata Hajime - manuscript
    I introduce the concept of “The Blue Print” as the ultimate reality and declare its existence. “The Blue Print” means God’s blueprint. Once we accept the existence of “The Blue Print”, the world will be truly recognized as mathematics. From this perspective, this essay also discusses the relationship between life and mathematics, or more broadly, the relationship between ethics or goodness and mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  10. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) (...) truths are not truths about the external world but specifications (formulations) of mathematical conceptions; (iii) mathematics is first and foremost our imagined tool by which, with certain assumptions about its applicability, we explore nature and synthesize our rational cognition of it. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Mathematical Internal Realism.Tim Button - 2022 - In Sanjit Chakraborty & James Ferguson Conant (eds.), Engaging Putnam. Berlin, Germany: De Gruyter. pp. 157-182.
    In “Models and Reality” (1980), Putnam sketched a version of his internal realism as it might arise in the philosophy of mathematics. Here, I will develop that sketch. By combining Putnam’s model-theoretic arguments with Dummett’s reflections on Gödelian incompleteness, we arrive at (what I call) the Skolem-Gödel Antinomy. In brief: our mathematical concepts are perfectly precise; however, these perfectly precise mathematical concepts are manifested and acquired via a formal theory, which is understood in terms of a computable system (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  12. Retrieving the Mathematical Mission of the Continuum Concept from the Transfinitely Reductionist Debris of Cantor’s Paradise. Extended Abstract.Edward G. Belaga - forthcoming - International Journal of Pure and Applied Mathematics.
    What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Mathematical Needs of Laura Vicuña Learners.Jupeth Pentang, Ronalyn M. Bautista, Aylene D. Pizaña & Susana P. Egger - 2020 - WPU Graduate Journal 5 (1):78-81.
    An inquiry on the training needs in Mathematics was conducted to Laura Vicuña Center - Palawan (LVC-P) learners. Specifically, this aimed to determine their level of performance in numbers, measurement, geometry, algebra, and statistics, identify the difficulties they encountered in solving word problems and enumerate topics where they needed coaching. -/- To identify specific training needs, the study employed a descriptive research design where 36 participants were sampled purposively. The data were gathered through a problem set test and focus group (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  14.  43
    The Philosophy of the Concept and the Specificity of Mathematics.Matt Hare - 2022 - In Peter Osborne (ed.), Afterlives: transcendentals, universals, others. London: CRMEP Books. pp. 101-129.
    Download  
     
    Export citation  
     
    Bookmark  
  15. Non-mathematical dimensions of randomness: Implications for problem gambling.Catalin Barboianu - 2024 - Journal of Gambling Issues 36.
    Randomness, a core concept of gambling, is seen in problem gambling as responsible for the formation of the math-related cognitive distortions, especially the Gambler’s Fallacy. In problem-gambling research, the concept of randomness was traditionally referred to as having a mathematical nature and categorized and approached as such. Randomness is not a mathematical concept, and I argue that its weak mathematical dimension is not decisive at all for the randomness-related issues in gambling and problem gambling, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Mathematics as Make-Believe: A Constructive Empiricist Account.Sarah Elizabeth Hoffman - 1999 - Dissertation, University of Alberta (Canada)
    Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and rejected. Constructive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Supreme Mathematics: The Five Percenter Model of Divine Self-Realization and Its Commonalities to Interpretations of the Pythagorean Tetractys in Western Esotericism.Martin A. M. Gansinger - 2023 - Interdisciplinary Journal for Religion and Transformation in Contemporary Society 1 (1):1-22.
    This contribution aims to explore the historical predecessors of the Five Percenter model of self-realization, as popularized by Hip Hop artists such as Supreme Team, Rakim Allah, Brand Nubian, Wu-Tang Clan, or Sunz of Man. As compared to frequent considerations of the phenomenon as a creative mythological background for a socio-political struggle, Five Percenter teachings shall be discussed as contemporary interpretations of historical models of self-realization in various philosophical, religious, and esoteric systems. By putting the coded system of the tenfold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Mathematical Explanations in Evolutionary Biology or Naturalism? A Challenge for the Statisticalist.Fabio Sterpetti - 2021 - Foundations of Science 27 (3):1073-1105.
    This article presents a challenge that those philosophers who deny the causal interpretation of explanations provided by population genetics might have to address. Indeed, some philosophers, known as statisticalists, claim that the concept of natural selection is statistical in character and cannot be construed in causal terms. On the contrary, other philosophers, known as causalists, argue against the statistical view and support the causal interpretation of natural selection. The problem I am concerned with here arises for the statisticalists because (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. What is Mathematics: School Guide to Conceptual Understanding of Mathematics.Catalin Barboianu - 2021 - Targu Jiu: PhilScience Press.
    This is not a mathematics book, but a book about mathematics, which addresses both student and teacher, with a goal as practical as possible, namely to initiate and smooth the way toward the student’s full understanding of the mathematics taught in school. The customary procedural-formal approach to teaching mathematics has resulted in students’ distorted vision of mathematics as a merely formal, instrumental, and computational discipline. Without the conceptual base of mathematics, students develop over time a “mathematical anxiety” and abandon (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Deleuze and the conceptualizable character of mathematical theories.Simon B. Duffy - 2017 - In Nathalie Sinclair & Alf Coles Elizabeth de Freitas (ed.), What is a Mathematical Concept? Cambridge University Press.
    To make sense of what Gilles Deleuze understands by a mathematical concept requires unpacking what he considers to be the conceptualizable character of a mathematical theory. For Deleuze, the mathematical problems to which theories are solutions retain their relevance to the theories not only as the conditions that govern their development, but also insofar as they can contribute to determining the conceptualizable character of those theories. Deleuze presents two examples of mathematical problems that operate in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A Mathematical Definition of the Present and its Duration.Paul Merriam - manuscript
    We give a mathematical definition of the present or 'what is real' and its duration on McTaggart's A-series future/present/past. This is applicable to at least one conception of the block-world, the growing-block, and presentism.
    Download  
     
    Export citation  
     
    Bookmark  
  22. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  22
    Exploring Mathematics and Noumenal Realm through Kant and Hegel.Jae Jeong Lee - manuscript
    This paper discusses the philosophical basis of mathematics by examining the perspectives of Kant and Hegel. It explores how Kant’s concept of the synthetic a priori, grounded in the intuitions of space and time, serves as a foundation for understanding mathematics. The paper then integrates Hegelian dialectics to propose a broader conception of mathematics, suggesting that the relationship between space and time is dialectically embedded in reality. By introducing the idea of a hypothetical transcendental subject, the paper attempts to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. The directionality of distinctively mathematical explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  25. How Mathematics Isn’t Logic.Roger Wertheimer - 1999 - Ratio 12 (3):279-295.
    View more Abstract If logical truth is necessitated by sheer syntax, mathematics is categorially unlike logic even if all mathematics derives from definitions and logical principles. This contrast gets obscured by the plausibility of the Synonym Substitution Principle implicit in conceptions of analyticity: synonym substitution cannot alter sentence sense. The Principle obviously fails with intercepting: nonuniform term substitution in logical sentences. ‘Televisions are televisions’ and ‘TVs are televisions’ neither sound alike nor are used interchangeably. Interception synonymy gets assumed because logical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. A Mathematical Model of Aristotle’s Syllogistic.John Corcoran - 1973 - Archiv für Geschichte der Philosophie 55 (2):191-219.
    In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and skill. (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  27. A case study of misconceptions students in the learning of mathematics; The concept limit function in high school.Widodo Winarso & Toheri Toheri - 2017 - Jurnal Riset Pendidikan Matematika 4 (1): 120-127.
    This study aims to find out how high the level and trends of student misconceptions experienced by high school students in Indonesia. The subject of research that is a class XI student of Natural Science (IPA) SMA Negeri 1 Anjatan with the subject matter limit function. Forms of research used in this study is a qualitative research, with a strategy that is descriptive qualitative research. The data analysis focused on the results of the students' answers on the test essay subject (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Deleuze and the Mathematical Philosophy of Albert Lautman.Simon B. Duffy - 2009 - In Jon Roffe & Graham Jones (eds.), Deleuze’s Philosophical Lineage. Edinburgh University Press.
    In the chapter of Difference and Repetition entitled ‘Ideas and the synthesis of difference,’ Deleuze mobilizes mathematics to develop a ‘calculus of problems’ that is based on the mathematical philosophy of Albert Lautman. Deleuze explicates this process by referring to the operation of certain conceptual couples in the field of contemporary mathematics: most notably the continuous and the discontinuous, the infinite and the finite, and the global and the local. The two mathematical theories that Deleuze draws upon for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. A Mathematical Model of Dignāga’s Hetu-cakra.Aditya Kumar Jha - 2020 - Journal of the Indian Council of Philosophical Research 37 (3):471-479.
    A reasoned argument or tarka is essential for a wholesome vāda that aims at establishing the truth. A strong tarka constitutes of a number of elements including an anumāna based on a valid hetu. Several scholars, such as Dharmakīrti, Vasubandhu and Dignāga, have worked on theories for the establishment of a valid hetu to distinguish it from an invalid one. This paper aims to interpret Dignāga’s hetu-cakra, called the wheel of grounds, from a modern philosophical perspective by deconstructing it into (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. (1 other version)Conceptions of infinity and set in Lorenzen’s operationist system.Carolin Antos - 2004 - In S. Rahman (ed.), Logic, Epistemology, and the Unity of Science. Dordrecht: Kluwer Academic Publishers.
    In the late 1940s and early 1950s Lorenzen developed his operative logic and mathematics, a form of constructive mathematics. Nowadays this is mostly seen as the precursor to the more well-known dialogical logic and one could assumed that the same philosophical motivations were present in both works. However we want to show that this is not always the case. In particular, we claim, that Lorenzen’s well-known rejection of the actual infinite as stated in Lorenzen (1957) was not a major motivation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Reimagining mathematics education: Identifying training needs and challenges among public elementary school teacher’s post-pandemic.Lislee Valle - 2024 - International Journal of Education and Practice 12 (3):527-539.
    The sudden shift in the education system during the pandemic and its subsequent evolution during the post-pandemic era have been pivotal in fostering significant educational development and growth. However, this paradigm shift has not been without challenges. This paper aims to investigate the challenges faced by 68 mathematics teachers in four public elementary schools in the Philippines. The respondents were purposively selected to answer the study’s instrument. Using a descriptive survey research methodology, this study explored the five domains in teaching (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Rethinking inconsistent mathematics.Franci Mangraviti - 2023 - Dissertation, Ruhr University Bochum
    This dissertation has two main goals. The first is to provide a practice-based analysis of the field of inconsistent mathematics: what motivates it? what role does logic have in it? what distinguishes it from classical mathematics? is it alternative or revolutionary? The second goal is to introduce and defend a new conception of inconsistent mathematics - queer incomaths - as a particularly effective answer to feminist critiques of classical logic and mathematics. This sets the stage for a genuine revolution in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. (1 other version)Not so distinctively mathematical explanations: topology and dynamical systems.Aditya Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2022 - Synthese 200 (3):1-40.
    So-called ‘distinctively mathematical explanations’ (DMEs) are said to explain physical phenomena, not in terms of contingent causal laws, but rather in terms of mathematical necessities that constrain the physical system in question. Lange argues that the existence of four or more equilibrium positions of any double pendulum has a DME. Here we refute both Lange’s claim itself and a strengthened and extended version of the claim that would pertain to any n-tuple pendulum system on the ground that such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Formalizing Darwinism, Naturalizing Mathematics.Fabio Sterpetti - 2015 - Paradigmi. Rivista di Critica Filosofica 33 (2):133-160.
    In the last decades two different and apparently unrelated lines of research have increasingly connected mathematics and evolutionism. Indeed, on the one hand different attempts to formalize darwinism have been made, while, on the other hand, different attempts to naturalize logic and mathematics have been put forward. Those researches may appear either to be completely distinct or at least in some way convergent. They may in fact both be seen as supporting a naturalistic stance. Evolutionism is indeed crucial for a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Mathematical Aspects of Similarity and Quasi-analysis - Order, Topology, and Sheaves.Thomas Mormann - manuscript
    The concept of similarity has had a rather mixed reputation in philosophy and the sciences. On the one hand, philosophers such as Goodman and Quine emphasized the „logically repugnant“ and „insidious“ character of the concept of similarity that allegedly renders it inaccessible for a proper logical analysis. On the other hand, a philosopher such as Carnap assigned a central role to similarity in his constitutional theory. Moreover, the importance and perhaps even indispensibility of the concept of similarity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Follow the Math!: The Mathematics of Quantum Mechanics as the Mathematics of Set Partitions Linearized to (Hilbert) Vector Spaces.David Ellerman - 2022 - Foundations of Physics 52 (5):1-40.
    The purpose of this paper is to show that the mathematics of quantum mechanics is the mathematics of set partitions linearized to vector spaces, particularly in Hilbert spaces. That is, the math of QM is the Hilbert space version of the math to describe objective indefiniteness that at the set level is the math of partitions. The key analytical concepts are definiteness versus indefiniteness, distinctions versus indistinctions, and distinguishability versus indistinguishability. The key machinery to go from indefinite to more definite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. What is mathematics for the youngest?Boris Culina - 2022 - Uzdanica 19 (special issue):199-219.
    While there are satisfactory answers to the question “How should we teach children mathematics?”, there are no satisfactory answers to the question “What mathematics should we teach children?”. This paper provides an answer to the last question for preschool children (early childhood), although the answer is also applicable to older children. This answer, together with an appropriate methodology on how to teach mathematics, gives a clear conception of the place of mathematics in the children’s world and our role in helping (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Charles Peirce's Limit Concept of Truth.Catherine Legg - 2014 - Philosophy Compass 9 (3):204-213.
    This entry explores Charles Peirce's account of truth in terms of the end or ‘limit’ of inquiry. This account is distinct from – and arguably more objectivist than – views of truth found in other pragmatists such as James and Rorty. The roots of the account in mathematical concepts is explored, and it is defended from objections that it is (i) incoherent, (ii) in its faith in convergence, too realist and (iii) in its ‘internal realism’, not realist enough.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  40. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  41. Mature Intuition and Mathematical Understanding.William D'Alessandro & Irma Stevens - forthcoming - Journal of Mathematical Behavior.
    Mathematicians often describe the importance of well-developed intuition to productive research and successful learning. But neither education researchers nor philosophers interested in epistemic dimensions of mathematical practice have yet given the topic the sustained attention it deserves. The trouble is partly that intuition in the relevant sense lacks a usefully clear characterization, so we begin by offering one: mature intuition, we say, is the capacity for fast, fluent, reliable and insightful inference with respect to some subject matter. We illustrate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Mathematics as Metaphysical and Constructive.Eric Schmid - 2024 - Rue Americaine 13.
    Andr ́e Weil viewed mathematics as deeply intertwined with metaphysics. In his essay ”From Metaphysics to Mathematics,” he illustrates how mathematical ideas often arise from vague, metaphysical analogies and reflections that guide researchers toward new theories. For instance, Weil discusses how analogies between different areas, such as number theory and algebraic functions, have led to significant breakthroughs. These metaphysical underpinnings provide a fertile ground for mathematical creativity, eventually transforming into rigorous mathematical structures. -/- Alexander Grothendieck’s work, particularly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  44. Platonism and Intra-mathematical Explanation.Sam Baron - forthcoming - Philosophical Quarterly.
    I introduce an argument for Platonism based on intra-mathematical explanation: the explanation of one mathematical fact by another. The argument is important for two reasons. First, if the argument succeeds then it provides a basis for Platonism that does not proceed via standard indispensability considerations. Second, if the argument fails it can only do so for one of three reasons: either because there are no intra-mathematical explanations, or because not all explanations are backed by dependence relations, or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Mathematical Roots of Semantic Analysis.Axel Arturo Barcelo Aspeitia - manuscript
    Semantic analysis in early analytic philosophy belongs to a long tradition of adopting geometrical methodologies to the solution of philosophical problems. In particular, it adapts Descartes’ development of formalization as a mechanism of analytic representation, for its application in natural language semantics. This article aims to trace the mathematical roots of Frege, Russel and Carnap’s analytic method. Special attention is paid to the formal character of modern analysis introduced by Descartes. The goal is to identify the particular conception of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Imagination in mathematics.Andrew Arana - 2016 - In Amy Kind (ed.), The Routledge Handbook of the Philosophy of Imagination. New York: Routledge. pp. 463-477.
    This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Traditional Mathematics Is Not the Language of Nature: Multivalued Interaction Dynamics Makes the World Go Round.Andrei P. Kirilyuk -
    We show that critically accumulating "difficult" problems, contradictions and stagnation in modern science have the unified and well-specified mathematical origin in the explicit, artificial reduction of any interaction problem solution to an "exact", dynamically single-valued (or unitary) function, while in reality any unreduced interaction development leads to a dynamically multivalued solution describing many incompatible system configurations, or "realisations", that permanently replace one another in causally random order. We obtain thus the universal concept of dynamic complexity and chaos impossible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49.  95
    Solving word problems involving triangles and implications on training pre-service mathematics teachers.William Guo - 2024 - Stem Education 4 (3):263-281.
    Triangles and trigonometry are always difficult topics for both mathematics students and teachers. Hence, students' performance in solving mathematical word problems in these topics is not only a reflection of their learning outcomes but also an indication of teaching effectiveness. This case study drew from two examples of solving word problems involving triangles by pre-service mathematics teachers in a foundation mathematics course delivered by the author. The focus of this case study was on reasoning implications of students' performances on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. A Noetic Account of Explanation in Mathematics.William D’Alessandro & Ellen Lehet - forthcoming - Philosophical Quarterly.
    We defend a noetic account of intramathematical explanation. On this view, a piece of mathematics is explanatory just in case it produces understanding of an appropriate type. We motivate the view by presenting some appealing features of noeticism. We then discuss and criticize the most prominent extant version of noeticism, due to Inglis and Mejía Ramos, which identifies explanatory understanding with the possession of well-organized cognitive schemas. Finally, we present a novel noetic account. On our view, explanatory understanding arises from (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 942