We argue that if Stephen Yablo (2005) is right that philosophers of mathematics ought to endorse a fictionalist view of number-talk, then there is a compelling reason for deflationists about truth to endorse a fictionalist view of truth-talk. More specifically, our claim will be that, for deflationists about truth, Yablo’s argument for mathematical fictionalism can be employed and mounted as an argument for truth-theoretic fictionalism.
In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight (...) norms formulated for theories of truth in the paper 'What Theories of Truth Should be Like (but Cannot be)', by Hannes Leitgeb. MTT is also free from infinite regress, providing a proper framework to study the regress problem. Main tools used in proofs are Zermelo-Fraenkel (ZF) set theory and classical logic. (shrink)
In this paprer a class of so called mathematically acceptable (shortly MA) languages is introduced First-order formal languages containing natural numbers and numerals belong to that class. MA languages which are contained in a given fully interpreted MA language augmented by a monadic predicate are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of these languages. MTT makes them fully interpreted MA languages which posses their own truth predicates, yielding consequences to philosophy of (...) mathematics. MTT is shown to conform well with the eight norms presented for theories of truth in the paper 'What Theories of Truth Should be Like (but Cannot be)' by Hannes Leitgeb. MTT is also free from infinite regress, providing a proper framework to study the regress problem. (shrink)
The present volume is an introduction to the use of tools from computability theory and reverse mathematics to study combinatorial principles, in particular Ramsey's theorem and special cases such as Ramsey's theorem for pairs. It would serve as an excellent textbook for graduate students who have completed a course on computability theory.
Hannes Leitgeb formulated eight norms for theories of truth in his paper [5]: `What Theories of Truth Should be Like (but Cannot be)'. We shall present in this paper a theory of truth for suitably constructed languages which contain the first-order language of set theory, and prove that it satisfies all those norms.
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be (...) established to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. -/- Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. -/- However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. -/- The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion. (shrink)
The paper delineates a new approach to truth that falls under the category of “Pluralism within the bounds of correspondence”, and illustrates it with respect to mathematicaltruth. Mathematicaltruth, like all other truths, is based on correspondence, but the route of mathematical correspondence differs from other routes of correspondence in (i) connecting mathematical truths to a special aspect of reality, namely, its formal aspect, and (ii) doing so in a complex, indirect way, (...) rather than in a simple and direct way. The underlying idea is that an intricate mind is capable of creating intricate routes from language to reality, and this enables it to apply correspondence principles in areas for which correspondence is traditionally thought to be problematic. (shrink)
Whether mathematical truths are syntactical (as Rudolf Carnap claimed) or empirical (as Mill actually never claimed, though Carnap claimed that he did) might seem merely an academic topic. However, it becomes a practical concern as soon as we consider the role of questions. For if we inquire as to the truth of a mathematical statement, this question must be (in a certain respect) meaningless for Carnap, as its truth or falsity is certain in advance due to (...) its purely syntactical (or formal-semantical) nature. In contrast, for Mill such a question is as valid as any other. These differing views have their consequences for contemporary erotetic logic. (shrink)
A truth-preservation fallacy is using the concept of truth-preservation where some other concept is needed. For example, in certain contexts saying that consequences can be deduced from premises using truth-preserving deduction rules is a fallacy if it suggests that all truth-preserving rules are consequence-preserving. The arithmetic additive-associativity rule that yields 6 = (3 + (2 + 1)) from 6 = ((3 + 2) + 1) is truth-preserving but not consequence-preserving. As noted in James Gasser’s dissertation, (...) Leibniz has been criticized for using that rule in attempting to show that arithmetic equations are consequences of definitions. -/- A system of deductions is truth-preserving if each of its deductions having true premises has a true conclusion—and consequence-preserving if, for any given set of sentences, each deduction having premises that are consequences of that set has a conclusion that is a consequence of that set. Consequence-preserving amounts to: in each of its deductions the conclusion is a consequence of the premises. The same definitions apply to deduction rules considered as systems of deductions. Every consequence-preserving system is truth-preserving. It is not as well-known that the converse fails: not every truth-preserving system is consequence-preserving. Likewise for rules: not every truth-preserving rule is consequence-preserving. There are many famous examples. In ordinary first-order Peano-Arithmetic, the induction rule yields the conclusion ‘every number x is such that: x is zero or x is a successor’—which is not a consequence of the null set—from two tautological premises, which are consequences of the null set, of course. The arithmetic induction rule is truth-preserving but not consequence-preserving. Truth-preserving rules that are not consequence-preserving are non-logical or extra-logical rules. Such rules are unacceptable to persons espousing traditional truth-and-consequence conceptions of demonstration: a demonstration shows its conclusion is true by showing that its conclusion is a consequence of premises already known to be true. The 1965 Preface in Benson Mates (1972, vii) contains the first occurrence of truth-preservation fallacies in the book. (shrink)
A Mathematical Review by John Corcoran, SUNY/Buffalo -/- Macbeth, Danielle Diagrammatic reasoning in Frege's Begriffsschrift. Synthese 186 (2012), no. 1, 289–314. ABSTRACT This review begins with two quotations from the paper: its abstract and the first paragraph of the conclusion. The point of the quotations is to make clear by the “give-them-enough-rope” strategy how murky, incompetent, and badly written the paper is. I know I am asking a lot, but I have to ask you to read the quoted passages—aloud (...) if possible. Don’t miss the silly attempt to recycle Kant’s quip “Concepts without intuitions are empty; intuitions without concepts are blind”. What the paper was aiming at includes the absurdity: “Proofs without definitions are empty; definitions without proofs are, if not blind, then dumb.” But the author even bollixed this. The editor didn’t even notice. The copy-editor missed it. And the author’s proof-reading did not catch it. In order not to torment you I will quote the sentence as it appears: “In a slogan: proofs without definitions are empty, merely the aimless manipulation of signs according to rules; and definitions without proofs are, if no blind, then dumb.”[sic] The rest of my review discusses the paper’s astounding misattribution to contemporary logicians of the information-theoretic approach. This approach was cruelly trashed by Quine in his 1970 Philosophy of Logic, and thereafter ignored by every text I know of. The paper under review attributes generally to modern philosophers and logicians views that were never espoused by any of the prominent logicians—such as Hilbert, Gödel, Tarski, Church, and Quine—apparently in an attempt to distance them from Frege: the focus of the article. On page 310 we find the following paragraph. “In our logics it is assumed that inference potential is given by truth-conditions. Hence, we think, deduction can be nothing more than a matter of making explicit information that is already contained in one’s premises. If the deduction is valid then the information contained in the conclusion must be contained already in the premises; if that information is not contained already in the premises […], then the argument cannot be valid.” Although the paper is meticulous in citing supporting literature for less questionable points, no references are given for this. In fact, the view that deduction is the making explicit of information that is only implicit in premises has not been espoused by any standard symbolic logic books. It has only recently been articulated by a small number of philosophical logicians from a younger generation, for example, in the prize-winning essay by J. Sagüillo, Methodological practice and complementary concepts of logical consequence: Tarski’s model-theoretic consequence and Corcoran’s information-theoretic consequence, History and Philosophy of Logic, 30 (2009), pp. 21–48. The paper omits definitions of key terms including ‘ampliative’, ‘explicatory’, ‘inference potential’, ‘truth-condition’, and ‘information’. The definition of prime number on page 292 is as follows: “To say that a number is prime is to say that it is not divisible without remainder by another number”. This would make one be the only prime number. The paper being reviewed had the benefit of two anonymous referees who contributed “very helpful comments on an earlier draft”. Could these anonymous referees have read the paper? -/- J. Corcoran, U of Buffalo, SUNY -/- PS By the way, if anyone has a paper that has been turned down by other journals, any journal that would publish something like this might be worth trying. (shrink)
This article, written in Bengali ('Gonit Dorshon' means `philosophy of mathematics' ), briefly reviews a few of the major points of view toward mathematics and the world of mathematical entities, and interprets the philosophy of mathematics as an interaction between these. The existence of these different points of view is indicative that mathematics, in spite of being of universal validity, can nevertheless accommodate alternatives. In particular, I review the alternative viewpoints of Platonism and Intuitionism and present the case that (...) in spite of their great differences, they are not mutually exclusive - that both can be accommodated within the infinite edifice of mathematics. This, in turn, is argued to be consistent with the viewpoint of Category Theory that holds the promise of an entirely new interpretation of the world of mathematics and the relation of that world to the world of our concepts and ideas: mathematics is a human enterprise and mathematical logic is a reflection of how our ideas and concepts are formed and combined with one another. I venture that this, perhaps, is the view of mathematics that Ludwig Wittgenstein would espouse. (shrink)
If logical truth is necessitated by sheer syntax, mathematics is categorially unlike logic even if all mathematics derives from definitions and logical principles. This contrast gets obscured by the plausibility of the Synonym Substitution Principle implicit in conceptions of analyticity: synonym substitution cannot alter sentence sense. The Principle obviously fails with intercepting: nonuniform term substitution in logical sentences. 'Televisions are televisions' and 'TVs are televisions' neither sound alike nor are used interchangeably. Interception synonymy gets assumed because logical sentences and (...) their synomic interceptions have identical factual content, which seems to exhaust semantic content. However, intercepting alters syntax by eliminating term recurrence, the sole strictly syntactic means of ensuring necessary term coextension, and thereby syntactically securing necessary truth. Interceptional necessity is lexical, a notational artifact. The denial of interception nonsynonymy and the disregard of term recurrence in logic link with many misconceptions about propositions, logical form, conventions, and metalanguages. Mathematics is distinct from logic: its truth is not syntactic; it is transmitted by synonym substitution; term recurrence has no essential role. The '=' of mathematics is an objectual relation between numbers; the '=' of logic marks a syntactic relation of coreferring terms. (shrink)
Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, (...) therefore, define mathematicaltruth verifiably. We consider a constructive interpretation of classical, Tarskian, truth, and of Goedel's reasoning, under which any formal system of Peano Arithmetic---classically accepted as the foundation of all our mathematical Languages---is verifiably complete in the above sense. We show how some paradoxical concepts of Quantum mechanics can, then, be expressed, and interpreted, naturally under a constructive definition of mathematicaltruth. (shrink)
What is so special and mysterious about the Continuum, this ancient, always topical, and alongside the concept of integers, most intuitively transparent and omnipresent conceptual and formal medium for mathematical constructions and the battle field of mathematical inquiries ? And why it resists the century long siege by best mathematical minds of all times committed to penetrate once and for all its set-theoretical enigma ? -/- The double-edged purpose of the present study is to save from the (...) transfinite deadlock of higher set theory the jewel of mathematical Continuum -- this genuine, even if mostly forgotten today raison d'etre of all set-theoretical enterprises to Infinity and beyond, from Georg Cantor to W. Hugh Woodin to Buzz Lightyear, by simultaneously exhibiting the limits and pitfalls of all old and new reductionist foundational approaches to mathematicaltruth: be it Cantor's or post-Cantorian Idealism, Brouwer's or post-Brouwerian Constructivism, Hilbert's or post-Hilbertian Formalism, Goedel's or post-Goedelian Platonism. -/- In the spirit of Zeno's paradoxes, but with the enormous historical advantage of hindsight, we claim that Cantor's set-theoretical methodology, powerful and reach in proof-theoretic and similar applications as it might be, is inherently limited by its epistemological framework of transfinite local causality, and neither can be held accountable for the properties of the Continuum already acquired through geometrical, analytical, and arithmetical studies, nor can it be used for an adequate, conceptually sensible, operationally workable, and axiomatically sustainable re-creation of the Continuum. -/- From a strictly mathematical point of view, this intrinsic limitation of the constative and explicative power of higher set theory finds its explanation in the identified in this study ultimate phenomenological obstacle to Cantor's transfinite construction, similar to topological obstacles in homotopy theory and theoretical physics: the entanglement capacity of the mathematical Continuum. (shrink)
Evolutionary anthropologists and archaeologists have been considerably successful in modelling the cumulative evolution of culture, of technological skills and knowledge in particular. Recently, one of these models has been introduced in the philosophy of science by De Cruz and De Smedt (Philos Stud 157:411–429, 2012), in an attempt to demonstrate that scientists may collectively come to hold more truth-approximating beliefs, despite the cognitive biases which they individually are known to be subject to. Here we identify a major shortcoming in (...) that attempt: De Cruz & De Smedt’s mathematical model makes one particularly strong tractability assumption that causes the model to largely miss its target (namely, truth accumulation in science), and that moreover conflicts with empirical observations. The second, more constructive part of the paper presents an alternative, agent-based model, which allows one to much better examine the conditions for scientific progress and decline. (shrink)
This paper aims to provide modal foundations for mathematical platonism. I examine Hale and Wright’s (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright’s objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception (...) of properties endorsed by Hale and Wright and examined in Hale (2013a); examine cardinality issues which arise depending on whether Necessitism is accepted at first- and higher-order; and demonstrate how a multi-dimensional intensional approach to the epistemology of mathematics, augmented with Necessitism, is consistent with Hale and Wright’s notion of there being epistemic entitlement rationally to trust that abstraction principles are true. Epistemic and metaphysical modality may thus be shown to play a constitutive role in vindicating the reality of mathematical objects and truth, and in explaining our possible knowledge thereof. (shrink)
The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...) proposition is about the past, present or future. In particular, the argument goes, whatever one does or does not do in the future is determined in the present by the truth or falsity of the corresponding proposition. The second argument coming from logic is much more modern and appeals to Gödel's incompleteness theorems to make the case against determinism and in favour of free will, insofar as that applies to the mathematical potentialities of human beings. The claim more precisely is that as a consequence of the incompleteness theorems, those potentialities cannot be exactly circumscribed by the output of any computing machine even allowing unlimited time and space for its work. The chapter concludes with some new considerations that may be in favour of a partial mechanist account of the mathematical mind. (shrink)
2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to (...) cognitive modeling, and they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valued logics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valued logics. (shrink)
I give a detailed review of 'The Outer Limits of Reason' by Noson Yanofsky 403(2013) from a unified perspective of Wittgenstein and evolutionary psychology. I indicate that the difficulty with such issues as paradox in language and math, incompleteness, undecidability, computability, the brain and the universe as computers etc., all arise from the failure to look carefully at our use of language in the appropriate context and hence the failure to separate issues of scientific fact from issues of how language (...) works. I discuss Wittgenstein's views on incompleteness, paraconsistency and undecidability and the work of Wolpert on the limits to computation. -/- Those wishing a comprehensive up to date account of Wittgenstein, Searle and their analysis of behavior from the modern two systems view may consult my article The Logical Structure of Philosophy, Psychology, Mind and Language as Revealed in Wittgenstein and Searle (2016). Those interested in all my writings in their most recent versions may download from this site my e-book ‘Philosophy, Human Nature and the Collapse of Civilization Michael Starks (2016)- Articles and Reviews 2006-2016’ by Michael Starks First Ed. 662p (2016). -/- All of my papers and books have now been published in revised versions both in ebooks and in printed books. -/- Talking Monkeys: Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B071HVC7YP. -/- The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle--Articles and Reviews 2006-2016 (2017) https://www.amazon.com/dp/B071P1RP1B. -/- Suicidal Utopian Delusions in the 21st century: Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B0711R5LGX . (shrink)
In "MathematicalTruth", Paul Benacerraf articulated an epistemological problem for mathematical realism. His formulation of the problem relied on a causal theory of knowledge which is now widely rejected. But it is generally agreed that Benacerraf was onto a genuine problem for mathematical realism nevertheless. Hartry Field describes it as the problem of explaining the reliability of our mathematical beliefs, realistically construed. In this paper, I argue that the Benacerraf Problem cannot be made out. There (...) simply is no intelligible problem that satisfies all of the constraints which have been placed on the Benacerraf Problem. The point generalizes to all arguments with the structure of the Benacerraf Problem aimed at realism about a domain meeting certain conditions. Such arguments include so-called "Evolutionary Debunking Arguments" aimed at moral realism. I conclude with some suggestions about the relationship between the Benacerraf Problem and the Gettier Problem. (shrink)
In this essay, the tension that Benacerraf identifies for theories of mathematicaltruth is used as the vehicle for arguing against a particular desideratum for semantic theories. More specifically, I place in question the desideratum that a semantic theory, provided for some area of discourse, should run in parallel with the semantic theory holding for the rest of the language. The importance of this desideratum is also made clear by means of tracing out the subtle implications of its (...) rejection. (shrink)
For any natural (human) or formal (mathematical) language L we know that an expression X of language L is true if and only if there are expressions Γ of language L that connect X to known facts. -/- By extending the notion of a Well Formed Formula to include syntactically formalized rules for rejecting semantically incorrect expressions we recognize and reject expressions that evaluate to neither True nor False.
Since the time of Aristotle's students, interpreters have considered Prior Analytics to be a treatise about deductive reasoning, more generally, about methods of determining the validity and invalidity of premise-conclusion arguments. People studied Prior Analytics in order to learn more about deductive reasoning and to improve their own reasoning skills. These interpreters understood Aristotle to be focusing on two epistemic processes: first, the process of establishing knowledge that a conclusion follows necessarily from a set of premises (that is, on the (...) epistemic process of extracting information implicit in explicitly given information) and, second, the process of establishing knowledge that a conclusion does not follow. Despite the overwhelming tendency to interpret the syllogistic as formal epistemology, it was not until the early 1970s that it occurred to anyone to think that Aristotle may have developed a theory of deductive reasoning with a well worked-out system of deductions comparable in rigor and precision with systems such as propositional logic or equational logic familiar from mathematical logic. When modern logicians in the 1920s and 1930s first turned their attention to the problem of understanding Aristotle's contribution to logic in modern terms, they were guided both by the Frege-Russell conception of logic as formal ontology and at the same time by a desire to protect Aristotle from possible charges of psychologism. They thought they saw Aristotle applying the informal axiomatic method to formal ontology, not as making the first steps into formal epistemology. They did not notice Aristotle's description of deductive reasoning. Ironically, the formal axiomatic method (in which one explicitly presents not merely the substantive axioms but also the deductive processes used to derive theorems from the axioms) is incipient in Aristotle's presentation. Partly in opposition to the axiomatic, ontically-oriented approach to Aristotle's logic and partly as a result of attempting to increase the degree of fit between interpretation and text, logicians in the 1970s working independently came to remarkably similar conclusions to the effect that Aristotle indeed had produced the first system of formal deductions. They concluded that Aristotle had analyzed the process of deduction and that his achievement included a semantically complete system of natural deductions including both direct and indirect deductions. Where the interpretations of the 1920s and 1930s attribute to Aristotle a system of propositions organized deductively, the interpretations of the 1970s attribute to Aristotle a system of deductions, or extended deductive discourses, organized epistemically. The logicians of the 1920s and 1930s take Aristotle to be deducing laws of logic from axiomatic origins; the logicians of the 1970s take Aristotle to be describing the process of deduction and in particular to be describing deductions themselves, both those deductions that are proofs based on axiomatic premises and those deductions that, though deductively cogent, do not establish the truth of the conclusion but only that the conclusion is implied by the premise-set. Thus, two very different and opposed interpretations had emerged, interestingly both products of modern logicians equipped with the theoretical apparatus of mathematical logic. The issue at stake between these two interpretations is the historical question of Aristotle's place in the history of logic and of his orientation in philosophy of logic. This paper affirms Aristotle's place as the founder of logic taken as formal epistemology, including the study of deductive reasoning. A by-product of this study of Aristotle's accomplishments in logic is a clarification of a distinction implicit in discourses among logicians--that between logic as formal ontology and logic as formal epistemology. (shrink)
World news can be discouraging these days. In order to counteract the effects of fake news and corruption, scientists have a duty to present the truth and propose ethical solutions acceptable to the world at large. -/- By starting from scratch, we can lay down the scientific principles underlying our very existence, and reach reasonable conclusions on all major topics including quantum physics, infinity, timelessness, free will, mathematical Platonism, happiness, ethics and religion, all the way to creation and (...) a special type of multiverse. -/- This article amounts to a summary of my personal Theory of Everything. -/- DOI: 10.13140/RG.2.2.36046.31049. (shrink)
The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...) and Skolem. Itinerary V surveys the work in logic connected to the Hilbert school, and itinerary V deals specifically with consistency proofs and metamathematics, including the incompleteness theorems. Itinerary VII traces the development of intuitionistic and many-valued logics. Itinerary VIII surveys the development of semantical notions from the early work on axiomatics up to Tarski's work on truth. (shrink)
Alfred Tarski was one of the greatest logicians of the twentieth century. His influence comes not merely through his own work but from the legion of students who pursued his projects, both in Poland and Berkeley. This chapter focuses on three key areas of Tarski's research, beginning with his groundbreaking studies of the concept of truth. Tarski's work led to the creation of the area of mathematical logic known as model theory and prefigured semantic approaches in the philosophy (...) of language and philosophical logic, such as Kripke's possible worlds semantics for modal logic. We also examine the paradoxical decomposition of the sphere known as the Banach–Tarski paradox. Finally we examine Tarski's work on decidable and undecidable theories, which he carried out in collaboration with students such as Mostowski, Presburger, Robinson and others. (shrink)
►JOHN CORCORAN AND IDRIS SAMAWI HAMID, Two-method errors: having it both ways. Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA E-mail: corcoran@buffalo.edu Philosophy, Colorado State University, Fort Collins, CO 80523-1781 USA E-mail: ishamid@colostate.edu Where two methods produce similar results, mixing the two sometimes creates errors we call two-method errors, TMEs: in style, syntax, semantics, pragmatics, implicature, logic, or action. This lecture analyzes examples found in technical and in non-technical contexts. One can say “Abe knows whether Ben draws” in two other (...) ways: ‘Abe knows whether or not Ben draws’ or ‘Abe knows whether Ben draws or not’. But a stylistic TME occurs in ‘Abe knows whether or not Ben draws or not’. One can say “Abe knows how Ben looks” using ‘Abe knows what Ben looks like’. But syntactical TMEs are in ‘Abe knows what Ben looks’ and in ‘Abe knows how Ben looks like’. One can deny that Abe knows Ben by prefixing ‘It isn’t that’ or by interpolating ‘doesn’t’. But a pragmatic TME occurs in trying to deny that Abe knows Ben by using ‘It isn’t that Abe doesn’t know Ben’. There are several standard ways of defining truth using sequences. Quine’s discussions in the 1970 first printing of Philosophy of logic [3] and in previous lectures were vitiated by mixing two [1, p. 98]. The logical TME in [3], which eluded Quine’s colleagues, was corrected in the 1978 sixth printing [2]. But Quine never explicitly acknowledged, described, or even mentioned the error. This lecture presents and analyses two-method errors in the logic literature. [1] JOHN CORCORAN, Review of Quine’s 1970 Philosophy of Logic. In Philosophy of Science, vol. 39 (1972), pp. 97–99. [2] JOHN CORCORAN, Review of sixth printing of Quine’s 1970 Philosophy of Logic. In Mathematical Reviews MR0469684 (1979): 57 #9465. [3] WILLARD VAN ORMAN QUINE, Philosophy of logic, Harvard, 1970/1986. (shrink)
Lucas and Redhead ([2007]) announce that they will defend the views of Redhead ([2004]) against the argument by Panu Raatikainen ([2005]). They certainly re-state the main claims of Redhead ([2004]), but they do not give any real arguments in their favour, and do not provide anything that would save Redhead’s argument from the serious problems pointed out in (Raatikainen [2005]). Instead, Lucas and Redhead make a number of seemingly irrelevant points, perhaps indicating a failure to understand the logico-mathematical points (...) at issue. (shrink)
In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism of the neo-Kantian Hermann Cohen's Principle of the Infinitesimal Method and its History (PIM). Russell's criticism is motivated by his concern that Cohen's account of the foundations of calculus saddles mathematics with the paradoxes of the infinitesimal and continuum, and thus threatens the very idea of mathematicaltruth. This paper defends Cohen against that objection of Russell's, and argues that properly understood, Cohen's views of limits (...) and infinitesimals do not entail the paradoxes of the infinitesimal and continuum. Essential to that defense is an interpretation, developed in the paper, of Cohen's positions in the PIM as deeply rationalist. The interest in developing this interpretation is not just that it reveals how Cohen's views in the PIM avoid the paradoxes of the infinitesimal and continuum. It also reveals some of what is at stake, both historically and philosophically, in Russell's criticism of Cohen. (shrink)
This essay examines the philosophical significance of Ω-logic in Zermelo-Fraenkel set theory with choice (ZFC). The dual isomorphism between algebra and coalgebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω-logical validity can then be countenanced within a coalgebraic logic, and Ω-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω-logical validity correspond to those of (...) second-order logical consequence, Ω-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematicaltruth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets. (shrink)
This is a transcript of a conversation between P F Strawson and Gareth Evans in 1973, filmed for The Open University. Under the title 'Truth', Strawson and Evans discuss the question as to whether the distinction between genuinely fact-stating uses of language and other uses can be grounded on a theory of truth, especially a 'thin' notion of truth in the tradition of F P Ramsey.
We are much better equipped to let the facts reveal themselves to us instead of blinding ourselves to them or stubbornly trying to force them into preconceived molds. We no longer embarrass ourselves in front of our students, for example, by insisting that “Some Xs are Y” means the same as “Some X is Y”, and lamely adding “for purposes of logic” whenever there is pushback. Logic teaching in this century can exploit the new spirit of objectivity, humility, clarity, observationalism, (...) contextualism, and pluralism. Besides the new spirit there have been quiet developments in logic and its history and philosophy that could radically improve logic teaching. One rather conspicuous example is that the process of refining logical terminology has been productive. Future logic students will no longer be burdened by obscure terminology and they will be able to read, think, talk, and write about logic in a more careful and more rewarding manner. Closely related is increased use and study of variable-enhanced natural language as in “Every proposition x that implies some proposition y that is false also implies some proposition z that is true”. Another welcome development is the culmination of the slow demise of logicism. No longer is the teacher blocked from using examples from arithmetic and algebra fearing that the students had been indoctrinated into thinking that every mathematicaltruth was a tautology and that every mathematical falsehood was a contradiction. A fifth welcome development is the separation of laws of logic from so-called logical truths, i.e., tautologies. Now we can teach the logical independence of the laws of excluded middle and non-contradiction without fear that students had been indoctrinated into thinking that every logical law was a tautology and that every falsehood of logic was a contradiction. This separation permits the logic teacher to apply logic in the clarification of laws of logic. This lecture expands the above points, which apply equally well in first, second, and third courses, i.e. in “critical thinking”, “deductive logic”, and “symbolic logic”. (shrink)
This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility in the category-theoretic setting is identifiable with the Kripke functors of modal coalgebraic automata, where the automata model Grothendieck Universes and the functors are further inter-definable with the elementary embeddings of large cardinal axioms. The Kripke functors definable in Grothendieck universes are argued to account for the ontological expansion effected by the elementary embeddings in the (...) category of sets. By characterizing the modal profile of Ω-logical validity, and thus the generic invariance of mathematicaltruth, modal coalgebraic automata are further capable of capturing the notion of definiteness, in order to yield a non-circular definition of indefinite extensibility. (shrink)
The imperviousness of mathematicaltruth to anti-objectivist attacks has always heartened those who defend objectivism in other areas, such as ethics. It is argued that the parallel between mathematics and ethics is close and does support objectivist theories of ethics. The parallel depends on the foundational role of equality in both disciplines. Despite obvious differences in their subject matter, mathematics and ethics share a status as pure forms of knowledge, distinct from empirical sciences. A pure understanding of principles (...) is possible because of the simplicity of the notion of equality, despite the different origins of our understanding of equality of objects in general and of the equality of the ethical worth of persons. (shrink)
John Corcoran. 1979 Review of Hintikka and Remes. The Method of Analysis (Reidel, 1974). Mathematical Reviews 58 3202 #21388. -/- The “method of analysis” is a technique used by ancient Greek mathematicians (and perhaps by Descartes, Newton, and others) in connection with discovery of proofs of difficult theorems and in connection with discovery of constructions of elusive geometric figures. Although this method was originally applied in geometry, its later application to number played an important role in the early development (...) of algebra [Jacob Klein, English translation, Greek mathematical thought and the origin of algebra, especially pp. 154–157, M.I.T. Press, Cambridge, Mass., 1968]. -/- It is universally agreed that the method of analysis begins by “assuming the thing sought after” (e.g., in geometry, the truth of the proposition to be proved or the existence of the geometric figure to be constructed). Aside from this, little else can be taken for granted. There is disagreement concerning the “direction of analysis”, i.e. whether one is to seek implications of the assumption or whether one is to seek implicants of it. There is also disagreement concerning what is to be “anatomized” (analyzed), i.e., whether one analyzes mathematical objects (figures), mathematical propositions (the axioms, known theorems, and analytic assumption) or an imagined proof (of the analytic assumption from axioms and known theorems). (shrink)
We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what (...) may be labelled a finitary, evidence-based, `agnostic' perspective and argue that Brouwerian atheism is merely a restricted perspective within the finitary agnostic perspective, whilst Hilbertian theism contradicts the finitary agnostic perspective. -/- We then consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary, evidence-based, definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways. -/- We show that the two definitions correspond to two distinctly different---not necessarily evidence-based but complementary---assignments of satisfaction and truth to the compound formulas of PA over N. -/- We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both the complementary interpretations; and conclude some unsuspected constructive consequences of such complementarity for the foundations of mathematics, logic, philosophy, and the physical sciences. -/- . (shrink)
This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to (...) naturalize mathematics by relying on evolutionism. But several difficulties arise when we try to do this. This chapter suggests that, in order to naturalize mathematics, it is better to take the method of mathematics to be the analytic method, rather than the axiomatic method, and thus conceive of mathematical knowledge as plausible knowledge. (shrink)
Functionalism about truth, or alethic functionalism, is one of our most promising approaches to the study of truth. In this chapter, I chart a course for functionalist inquiry that centrally involves the empirical study of ordinary thought about truth. In doing so, I review some existing empirical data on the ways in which we think about truth and offer suggestions for future work on this issue. I also argue that some of our data lend support to (...) two kinds of pluralism regarding ordinary thought about truth. These pluralist views, as I show, can be straightforwardly integrated into the broader functionalist framework. The main result of this integration is that some unexplored metaphysical views about truth become visible. To close the chapter, I briefly respond to one of the most serious objections to functionalism, due to Cory Wright. (shrink)
This takes a closer look at the actual semantic behavior of apparent truth predicates in English and re-evaluates the way they could motivate particular philosophical views regarding the formal status of 'truth predicates' and their semantics. The paper distinguishes two types of 'truth predicates' and proposes semantic analyses that better reflect the linguistic facts. These analyses match particular independently motivated philosophical views.
A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown that (...) Natorp's metaphors are not unrelated to those used in some currents of contemporary epistemology and philosophy of science. (shrink)
Attention to the conversational role of alethic terms seems to dominate, and even sometimes exhaust, many contemporary analyses of the nature of truth. Yet, because truth plays a role in judgment and assertion regardless of whether alethic terms are expressly used, such analyses cannot be comprehensive or fully adequate. A more general analysis of the nature of truth is therefore required – one which continues to explain the significance of truth independently of the role alethic terms (...) play in discourse. We undertake such an analysis in this paper; in particular, we start with certain elements from Kant and Frege, and develop a construct of truth as a normative modality of cognitive acts (e.g., thought, judgment, assertion). Using the various biconditional T-schemas to sanction the general passage from assertions to (equivalent) assertions of truth, we then suggest that an illocutionary analysis of truth can contribute to its locutionary analysis as well, including the analysis of diverse constructions involving alethic terms that have been largely overlooked in the philosophical literature. Finally, we briefly indicate the importance of distinguishing between alethic and epistemic modalities. (shrink)
D O N A L D D AV I D S O N’S “ Meaning and Truth,” re vo l u t i o n i zed our conception of how truth and meaning are related (Davidson ). In that famous art i c l e , Davidson put forw a rd the bold conjecture that meanings are satisfaction conditions, and that a Tarskian theory of truth for a language is a theory of meaning (...) for that language. In “Meaning and Truth,” Davidson proposed only that a Tarskian truth theory is a theory of meaning. But in “Theories of Me a n i n g and Learnable Languages,” he argued that the ﬁnite base of a Tarskian theory, together with the now familiar combinatorics, would explain how a language with unbounded expre s s i ve capacity could be learned with finite means ( Davidson ). This certainly seems to imply that learning a language is, in p a rt at least, learning a Tarskian truth theory for it, or, at least, learning what is speciﬁed by such a theory. Davisdon was cagey about committing to the view that meanings actually a re satisfaction conditions, but subsequent followers had no such scru p l e s . We can sum this up in a trio of claims: Davidson’s Conjecture () A theory of meaning for L is a truth-conditional semantics for L. () To know the meaning of an expression in L is to know a satisfaction condition for that expression. () Meanings are satisfaction conditions. For the most part, it will not matter in what follows which of these claims is at stake. I will simply take the three to be different ways of formulating what I will call Davidson’s Conjecture (or sometimes just The Conjecture). Davidson’s Conjecture was a very bold conjecture. I think we are now in a.. (shrink)
In the early 20th century, scepticism was common among philosophers about the very meaningfulness of the notion of truth – and of the related notions of denotation, definition etc. (i.e., what Tarski called semantical concepts). Awareness was growing of the various logical paradoxes and anomalies arising from these concepts. In addition, more philosophical reasons were being given for this aversion.1 The atmosphere changed dramatically with Alfred Tarski’s path-breaking contribution. What Tarski did was to show that, assuming that the syntax (...) of the object language is specified exactly enough, and that the metatheory has a certain amount of set theoretic power,2 one can explicitly define truth in the object language. And what can be explicitly defined can be eliminated. It follows that the defined concept cannot give rise to any inconsistencies (that is, paradoxes). This gave new respectability to the concept of truth and related notions. Nevertheless, philosophers’ judgements on the nature and philosophical relevance of Tarski’s work have varied. It is my aim here to review and evaluate some threads in this debate. (shrink)
When talking about truth, we ordinarily take ourselves to be talking about one-and-the-same thing. Alethic monists suggest that theorizing about truth ought to begin with this default or pre-reflective stance, and, subsequently, parlay it into a set of theoretical principles that are aptly summarized by the thesis that truth is one. Foremost among them is the invariance principle.
Like William James before him, Huw Price has influentially argued that truth has a normative role to play in our thought and talk. I agree. But Price also thinks that we should regard truth-conceived of as property of our beliefs-as something like a metaphysical myth. Here I disagree. In this paper, I argue that reflection on truth's values pushes us in a slightly different direction, one that opens the door to certain metaphysical possibilities that even a Pricean (...) pragmatist can love. (shrink)
Common-sense allows that talk about moral truths makes perfect sense. If you object to the United States’ Declaration of Independence’s assertion that it is a truth that ‘all men’ are ‘endowed by their Creator with certain unalienable Rights’, you are more likely to object that these rights are not unalienable or that they are not endowed by the Creator, or even that its wording ignores the fact that women have rights too, than that this is not the sort of (...) thing which could be a truth. Whether it is a truth or not seems beside the point, anyway; the writers of the Declaration could just have well written, ‘We hold it to be self-evident that all men are created equal, and also that it is self-evident that all men are endowed by their Creator with certain unalienable Rights,’ save only that its cadence would lack some of the poetic resonance of the version which garnered Hancock’s signature. Yet famously, ethical noncognitivists have proclaimed that moral sentences can’t be true or false – that, like ‘Hooray!’ or ‘dammit!’, they are not even the kinds of things to be true or false. Noncognitivism is sometimes even defined as the view that this is so, but even philosophers who define ‘noncognitivism’ more broadly, as consistent with the idea that moral sentences may be true or false, have believed that they needed to do important philosophical spadework in order to make sense of how moral sentences could be true or false. In this article we’ll look at the puzzle about moral truth as it is faced by early noncognitivists and by metaethical expressivists, the early noncognitivists’ contemporary cousins. We’ll look at what it would take for expressivists to ‘earn the right’ to talk about moral truths at all, and in particular at what it would take for them to earn the right to claim that moral truths behave in the ways that we should expect – including that meaningful moral sentences which lack presuppositions are true or false, and that classically valid arguments are truth-preserving.. (shrink)
The paper studies a cluster of systems for fully disquotational truth based on the restriction of initial sequents. Unlike well-known alternative approaches, such systems display both a simple and intuitive model theory and remarkable proof-theoretic properties. We start by showing that, due to a strong form of invertibility of the truth rules, cut is eliminable in the systems via a standard strategy supplemented by a suitable measure of the number of applications of truth rules to formulas in (...) derivations. Next, we notice that cut remains eliminable when suitable arithmetical axioms are added to the system. Finally, we establish a direct link between cut-free derivability in infinitary formulations of the systems considered and fixed-point semantics. Noticeably, unlike what happens with other background logics, such links are established without imposing any restriction to the premisses of the truth rules. (shrink)
Assertion is fundamental to our lives as social and cognitive beings. Philosophers have recently built an impressive case that the norm of assertion is factive. That is, you should make an assertion only if it is true. Thus far the case for a factive norm of assertion been based on observational data. This paper adds experimental evidence in favor of a factive norm from six studies. In these studies, an assertion’s truth value dramatically affects whether people think it should (...) be made. Whereas nearly everyone agreed that a true assertion supported by good evidence should be made, most people judged that a false assertion supported by good evidence should not be made. The studies also suggest that people are consciously aware of criteria that guide their evaluation of assertions. Evidence is also presented that some intuitive support for a non-factive norm of assertion comes from a surprising tendency people have to misdescribe cases of blameless rule-breaking as cases where no rule is broken. (shrink)
During the realist revival in the early years of this century, philosophers of various persuasions were concerned to investigate the ontology of truth. That is, whether or not they viewed truth as a correspondence, they were interested in the extent to which one needed to assume the existence of entities serving some role in accounting for the truth of sentences. Certain of these entities, such as the Sätze an sich of Bolzano, the Gedanken of Frege, or the (...) propositions of Russell and Moore, were conceived as the bearers of the properties of truth and falsehood. Some thinkers however, such as Russell, Wittgenstein in the Tractatus, and Husserl in the Logische Untersuchungen, argued that instead of, or in addition to, truth-bearers, one must assume the existence of certain entities in virtue of which sentences and/or propositions are true. Various names were used for these entities, notably 'fact', 'Sachverhalt', and 'state of affairs'. (1) In order not to prejudge the suitability of these words we shall initially employ a more neutral terminology, calling any entities which are candidates for this role truth-makers. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.