Results for 'set-theoretic multiverse'

959 found
Order:
  1. Set-theoretic pluralism and the Benacerraf problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  2. A naturalistic justification of the generic multiverse with a core.Matteo de Ceglie - 2018 - Contributions of the Austrian Ludwig Wittgenstein Society 26:34-36.
    In this paper, I argue that a naturalist approach in philosophy of mathematics justifies a pluralist conception of set theory. For the pluralist, there is not a Single Universe, but there is rather a Multiverse, composed by a plurality of universes generated by various set theories. In order to justify a pluralistic approach to sets, I apply the two naturalistic principles developed by Penelope Maddy (cfr. Maddy (1997)), UNIFY and MAXIMIZE, and analyze through them the potential of the set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Against the countable transitive model approach to forcing.Matteo de Ceglie - 2021 - In Martin Blicha & Igor Sedlár (eds.), The Logica Yearbook 2020. College Publications.
    In this paper, I argue that one of the arguments usually put forward in defence of universism is in tension with current set theoretic practice. According to universism, there is only one set theoretic universe, V, and when applying the method of forcing we are not producing new universes, but only simulating them inside V. Since the usual interpretation of set generic forcing is used to produce a “simulation” of an extension of V from a countable set inside (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Steel's Programme: Evidential Framework, the Core and Ultimate-L.Joan Bagaria & Claudio Ternullo - 2021 - Review of Symbolic Logic:1-25.
    We address Steel’s Programme to identify a ‘preferred’ universe of set theory and the best axioms extending ZFC by using his multiverse axioms MV and the ‘core hypothesis’. In the first part, we examine the evidential framework for MV, in particular the use of large cardinals and of ‘worlds’ obtained through forcing to ‘represent’ alternative extensions of ZFC. In the second part, we address the existence and the possible features of the core of MV_T (where T is ZFC+Large Cardinals). (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. (2 other versions)The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Decoherence, Branching, and the Born Rule in a Mixed-State Everettian Multiverse.Eugene Y. S. Chua & Eddy Keming Chen - manuscript
    In Everettian quantum mechanics, justifications for the Born rule appeal to self-locating uncertainty or decision theory. Such justifications have focused exclusively on a pure-state Everettian multiverse, represented by a wave function. Recent works in quantum foundations suggest that it is viable to consider a mixed-state Everettian multiverse, represented by a (mixed-state) density matrix. Here, we develop the conceptual foundations for decoherence and branching in a mixed-state multiverse, and extend the standard Everettian justifications for the Born rule to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  9. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. (1 other version)Universism and extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - 2021 - Review of Symbolic Logic 14 (1):112-154.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  11. Set-theoretic justification and the theoretical virtues.John Heron - 2020 - Synthese 199 (1-2):1245-1267.
    Recent discussions of how axioms are extrinsically justified have appealed to abductive considerations: on such accounts, axioms are adopted on the basis that they constitute the best explanation of some mathematical data, or phenomena. In the first part of this paper, I set out a potential problem caused by the appeal made to the notion of mathematical explanation and suggest that it can be remedied once it is noted that all the justificatory work is done by appeal to the theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Set Theoretic Analysis of the Whole of Reality.Moorad Alexanian - 2006 - Perspectives on Science and Christian Faith 58 (3):254-255.
    A theistic science would have to represent the integration of all kinds of knowledge intent on explaining the whole of reality. These would include, at least, history, metaphysics, theology, formal logic, mathematics, and experimental sciences. However, what is the whole of reality that one wants to explain? :.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13.  97
    Analyzing the Zeros of the Riemann Zeta Function Using Set-Theoretic and Sweeping Net Methods.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:15.
    The Riemann zeta function ζ(s) is a central object in number theory and complex analysis, defined for complex variables and intimately connected to the distribution of prime numbers through its zeros. The famous Riemann Hypothesis conjectures that all non-trivial zeros of the zeta function lie on the critical line Re(s) = 1 2 . In this paper, we explore the Riemann zeta function through the lens of set-theoretic and sweeping net methods, leveraging creative comparisons of specific sets to gain (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Interpretation of Classically Quantified Sentences: A set-theoretic approach.Guy Politzer, Jean-Baptiste Van der Henst, Claire Delle Luche & Ira A. Noveck - 2006 - Cognitive Science 30 (4):691-723.
    We present a set-theoretic model of the mental representation of classically quantified sentences (All P are Q, Some P are Q, Some P are not Q, and No P are Q). We take inclusion, exclusion, and their negations to be primitive concepts. It is shown that, although these sentences are known to have a diagrammatic expression (in the form of the Gergonne circles) which constitute a semantic representation, these concepts can also be expressed syntactically in the form of algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Independence and Ignorance: How agnotology informs set-theoretic pluralism.Neil Barton - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):399-413.
    Much of the discussion of set-theoretic independence, and whether or not we could legitimately expand our foundational theory, concerns how we could possibly come to know the truth value of independent sentences. This paper pursues a slightly different tack, examining how we are ignorant of issues surrounding their truth. We argue that a study of how we are ignorant reveals a need for an understanding of set-theoretic explanation and motivates a pluralism concerning the adoption of foundational theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. A general framework for a Second Philosophy analysis of set-theoretic methodology.Carolin Antos & Deborah Kant - manuscript
    Penelope Maddy’s Second Philosophy is one of the most well-known ap- proaches in recent philosophy of mathematics. She applies her second-philosophical method to analyze mathematical methodology by reconstructing historical cases in a setting of means-ends relations. However, outside of Maddy’s own work, this kind of methodological analysis has not yet been extensively used and analyzed. In the present work, we will make a first step in this direction. We develop a general framework that allows us to clarify the procedure and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17.  66
    Relational Semantics for Fuzzy Extensions of R : Set-theoretic Approach.Eunsuk Yang - 2023 - Korean Journal of Logic 26 (1):77-93.
    This paper addresses a set-theoretic completeness based on a relational semantics for fuzzy extensions of two versions Rt and R T of R (Relevance logic). To this end, two fuzzy logics FRt and FRT as extensions of Rt and R T, respectively, and the relational semantics, so called Routley-Meyer semantics, for them are first recalled. Next, on the semantics completeness results are provided for them using a set-theoretic way.
    Download  
     
    Export citation  
     
    Bookmark  
  18. In Defence of No Best World.Daniel Rubio - 2020 - Australasian Journal of Philosophy (4):811-825.
    Recent work in the philosophy of religion has resurrected Leibniz’s idea that there is a best possible world, perhaps ours. In particular, Klaas Kraay’s [2010] construction of a theistic multiverse and Nevin Climenhaga’s [2018] argument from infinite value theory are novel defenses of a best possible world. I do not think that there is a best world, and show how both Kraay and Climenhaga may be resisted. First, I argue that Kraay’s construction of a theistic multiverse can be (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  19. Why pure mathematical truths are metaphysically necessary: a set-theoretic explanation.Hannes Leitgeb - 2020 - Synthese 197 (7):3113-3120.
    Pure mathematical truths are commonly thought to be metaphysically necessary. Assuming the truth of pure mathematics as currently pursued, and presupposing that set theory serves as a foundation of pure mathematics, this article aims to provide a metaphysical explanation of why pure mathematics is metaphysically necessary.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  20. The Universal Theory of Existence - Part 1.Andrew Kamal - manuscript
    This is part 1 on a paper whose final variation of parts shall be titled,”The Universal Theory of Existence: The Sashu, Pharaohs, and the al-Mahdī”. The first part of this series sets the premise for a proposed ”Theory of Everything” that will be the foundation for encompassing many different topics. Since, the beginning of time, a singularity existed. This singularity is what we call an origin point of everything. Beyond, this origin point for time is different depending on position, being (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Reinterpreting the universe-multiverse debate in light of inter-model inconsistency in set theory.Daniel Kuby - manuscript
    In this paper I apply the concept of _inter-Model Inconsistency in Set Theory_ (MIST), introduced by Carolin Antos (this volume), to select positions in the current universe-multiverse debate in philosophy of set theory: I reinterpret H. Woodin’s _Ultimate L_, J. D. Hamkins’ multiverse, S.-D. Friedman’s hyperuniverse and the algebraic multiverse as normative strategies to deal with the situation of de facto inconsistency toleration in set theory as described by MIST. In particular, my aim is to situate these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Indeterminateness and `The' Universe of Sets: Multiversism, Potentialism, and Pluralism.Neil Barton - 2021 - In Melvin Fitting (ed.), Research Trends in Contemporary Logic (Series: Landscapes in Logic). College Publications. pp. 105-182.
    In this article, I survey some philosophical attitudes to talk concerning `the' universe of sets. I separate out four different strands of the debate, namely: (i) Universism, (ii) Multiversism, (iii) Potentialism, and (iv) Pluralism. I discuss standard arguments and counterarguments concerning the positions and some of the natural mathematical programmes that are suggested by the various views.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Internal Set Theory IST# Based on Hyper Infinitary Logic with Restricted Modus Ponens Rule: Nonconservative Extension of the Model Theoretical NSA.Jaykov Foukzon - 2022 - Journal of Advances in Mathematics and Computer Science 37 (7): 16-43.
    The incompleteness of set theory ZF C leads one to look for natural nonconservative extensions of ZF C in which one can prove statements independent of ZF C which appear to be “true”. One approach has been to add large cardinal axioms.Or, one can investigate second-order expansions like Kelley-Morse class theory, KM or Tarski-Grothendieck set theory T G or It is a nonconservative extension of ZF C and is obtained from other axiomatic set theories by the inclusion of Tarski’s axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Set Theory and Structures.Neil Barton & Sy-David Friedman - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In defense (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  26. Category theory and set theory as theories about complementary types of universals.David P. Ellerman - 2017 - Logic and Logical Philosophy 26 (2):1-18.
    Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u_{F}={x|F(x)} for a property F() could never be self-predicative in the sense of u_{F}∈u_{F}. But the mathematical theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Set Theory and Structures.Sy-David Friedman & Neil Barton - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. INFORMATION-THEORETIC LOGIC.John Corcoran - 1998 - In C. Martínez U. Rivas & L. Villegas-Forero (eds.), Truth in Perspective edited by C. Martínez, U. Rivas, L. Villegas-Forero, Ashgate Publishing Limited, Aldershot, England (1998) 113-135. ASHGATE. pp. 113-135.
    Information-theoretic approaches to formal logic analyse the "common intuitive" concept of propositional implication (or argumental validity) in terms of information content of propositions and sets of propositions: one given proposition implies a second if the former contains all of the information contained by the latter; an argument is valid if the conclusion contains no information beyond that of the premise-set. This paper locates information-theoretic approaches historically, philosophically and pragmatically. Advantages and disadvantages are identified by examining such approaches in (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  29. Librationist cum classical theories of sets.Frode Bjørdal - manuscript
    The focus in this essay will be upon the paradoxes, and foremostly in set theory. A central result is that the librationist set theory £ extension \Pfund $\mathscr{HR}(\mathbf{D})$ of \pounds \ accounts for \textbf{Neumann-Bernays-Gödel} set theory with the \textbf{Axiom of Choice} and \textbf{Tarski's Axiom}. Moreover, \Pfund \ succeeds with defining an impredicative manifestation set $\mathbf{W}$, \emph{die Welt}, so that \Pfund$\mathscr{H}(\mathbf{W})$ %is a model accounts for Quine's \textbf{New Foundations}. Nevertheless, the points of view developed support the view that the truth-paradoxes and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Varieties of Class-Theoretic Potentialism.Neil Barton & Kameryn J. Williams - 2024 - Review of Symbolic Logic 17 (1):272-304.
    We explain and explore class-theoretic potentialism—the view that one can always individuate more classes over a set-theoretic universe. We examine some motivations for class-theoretic potentialism, before proving some results concerning the relevant potentialist systems (in particular exhibiting failures of the $\mathsf {.2}$ and $\mathsf {.3}$ axioms). We then discuss the significance of these results for the different kinds of class-theoretic potentialists.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  31. Theoretical Virtues in Scientific Practice: An Empirical Study.Moti Mizrahi - 2022 - British Journal for the Philosophy of Science 73 (4):879-902.
    It is a common view among philosophers of science that theoretical virtues (also known as epistemic or cognitive values), such as simplicity and consistency, play an important role in scientific practice. In this article, I set out to study the role that theoretical virtues play in scientific practice empirically. I apply the methods of data science, such as text mining and corpus analysis, to study large corpora of scientific texts in order to uncover patterns of usage. These patterns of usage, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  32. Information-theoretic logic and transformation-theoretic logic,.John Corcoran - 1999 - In R. A. M. M. (ed.), Fragments in Science,. World Scientific Publishing Company,. pp. 25-35.
    Information-theoretic approaches to formal logic analyze the "common intuitive" concepts of implication, consequence, and validity in terms of information content of propositions and sets of propositions: one given proposition implies a second if the former contains all of the information contained by the latter; one given proposition is a consequence of a second if the latter contains all of the information contained by the former; an argument is valid if the conclusion contains no information beyond that of the premise-set. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. The Use of Sets (and Other Extensional Entities) in the Analysis of Hylomorphically Complex Objects.Simon Evnine - 2018 - Metaphysics 1 (1):97-109.
    Hylomorphically complex objects are things that change their parts or matter or that might have, or have had, different parts or matter. Often ontologists analyze such objects in terms of sets (or functions, understood set-theoretically) or other extensional entities such as mereological fusions or quantities of matter. I urge two reasons for being wary of any such analyses. First, being extensional, such things as sets are ill-suited to capture the characteristic modal and temporal flexibility of hylomorphically complex objects. Secondly, sets (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Set Theory INC# Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part.II) Hyper inductive definitions.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (4):22.
    In this paper intuitionistic set theory INC# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Cut-conditions on sets of multiple-alternative inferences.Harold T. Hodes - 2022 - Mathematical Logic Quarterly 68 (1):95 - 106.
    I prove that the Boolean Prime Ideal Theorem is equivalent, under some weak set-theoretic assumptions, to what I will call the Cut-for-Formulas to Cut-for-Sets Theorem: for a set F and a binary relation |- on Power(F), if |- is finitary, monotonic, and satisfies cut for formulas, then it also satisfies cut for sets. I deduce the CF/CS Theorem from the Ultrafilter Theorem twice; each proof uses a different order-theoretic variant of the Tukey- Teichmüller Lemma. I then discuss relationships (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Individuality, quasi-sets and the double-slit experiment.Adonai S. Sant'Anna - forthcoming - Quantum Studies: Mathematics and Foundations.
    Quasi-set theory $\cal Q$ allows us to cope with certain collections of objects where the usual notion of identity is not applicable, in the sense that $x = x$ is not a formula, if $x$ is an arbitrary term. $\cal Q$ was partially motivated by the problem of non-individuality in quantum mechanics. In this paper I discuss the range of explanatory power of $\cal Q$ for quantum phenomena which demand some notion of indistinguishability among quantum objects. My main focus is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Where do sets come from?Harold T. Hodes - 1991 - Journal of Symbolic Logic 56 (1):150-175.
    A model-theoretic approach to the semantics of set-theoretic discourse.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  39. Balloons on a String: A Critique of Multiverse Cosmology.Bruce Gordon - 2011 - In Bruce Gordon & William A. Dembski (eds.), The nature of nature: examining the role of naturalism in science. Wilmington, DE: ISI Books. pp. 558-601.
    Our examination of universal origins and fine-tuning will begin with a discussion of infl ationary scenarios grafted onto Big Bang cosmology and the proof that all infl ationary spacetimes are past-incomplete. After diverting into a lengthy critical examination of the “different physics” offered by quantum cosmologists at the past-boundary of the universe, we will proceed to dissect the inadequacies of infl ationary explanations and string-theoretic constructs in the context of three cosmological models that have received much attention: the Steinhardt-Turok (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Priority Setting, Cost-Effectiveness, and the Affordable Care Act.Govind Persad - 2015 - American Journal of Law and Medicine 41 (1):119-166.
    The Affordable Care Act (ACA) may be the most important health law statute in American history, yet much of the most prominent legal scholarship examining it has focused on the merits of the court challenges it has faced rather than delving into the details of its priority-setting provisions. In addition to providing an overview of the ACA’s provisions concerning priority setting and their developing interpretations, this Article attempts to defend three substantive propositions. First, I argue that the ACA is neither (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. From Traditional Set Theory – that of Cantor, Hilbert , Gödel, Cohen – to Its Necessary Quantum Extension.Edward G. Belaga - manuscript
    The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Dimensional theoretical properties of some affine dynamical systems.Jörg Neunhäuserer - 1999 - Dissertation,
    In this work we study dimensional theoretical properties of some a±ne dynamical systems. By dimensional theoretical properties we mean Hausdor® dimension and box- counting dimension of invariant sets and ergodic measures on theses sets. Especially we are interested in two problems. First we ask whether the Hausdor® and box- counting dimension of invariant sets coincide. Second we ask whether there exists an ergodic measure of full Hausdor® dimension on these invariant sets. If this is not the case we ask the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  44. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Explanation and Plenitude in Non-Well-Founded Set Theories.Ross P. Cameron - 2024 - Philosophia Mathematica 32 (3):275-306.
    Non-well-founded set theories allow set-theoretic exotica that standard ZFC will not allow, such as a set that has itself as its sole member. We can distinguish plenitudinous non-well-founded set theories, such as Boffa set theory, that allow infinitely many such sets, from restrictive theories, such as Finsler-Aczel or AFA, that allow exactly one. Plenitudinous non-well-founded set theories face a puzzle: nothing seems to explain the identity or distinctness of various of the sets they countenance. In this paper I aim (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Differentiating and defusing theoretical Ecology's criticisms: A rejoinder to Sagoff's reply to Donhauser (2016).Justin Donhauser - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 63:70-79.
    In a (2016) paper in this journal, I defuse allegations that theoretical ecological research is problematic because it relies on teleological metaphysical assumptions. Mark Sagoff offers a formal reply. In it, he concedes that I succeeded in establishing that ecologists abandoned robust teleological views long ago and that they use teleological characterizations as metaphors that aid in developing mechanistic explanations of ecological phenomena. Yet, he contends that I did not give enduring criticisms of theoretical ecology a fair shake in my (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. On classical set-compatibility.Luis Felipe Bartolo Alegre - 2020 - El Jardín de Senderos Que Se Bifurcan y Confluyen: Filosofía, Lógica y Matemáticas.
    In this paper, I generalise the logical concept of compatibility into a broader set-theoretical one. The basic idea is that two sets are incompatible if they produce at least one pair of opposite objects under some operation. I formalise opposition as an operation ′ ∶ E → E, where E is the set of opposable elements of our universe U, and I propose some models. From this, I define a relation ℘U × ℘U × ℘U^℘U, which has (mutual) logical compatibility (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Foundations without Sets.George Bealer - 1981 - American Philosophical Quarterly 18 (4):347 - 353.
    The dominant school of logic, semantics, and the foundation of mathematics construct its theories within the framework of set theory. There are three strategies by means of which a member of this school might attempt to justify his ontology of sets. One strategy is to show that sets are already included in the naturalistic part of our everyday ontology. If they are, then one may assume that whatever justifies the everyday ontology justifies the ontology of sets. Another strategy is to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. On A- and B-theoretic elements of branching spacetimes.Matt Farr - 2012 - Synthese 188 (1):85-116.
    This paper assesses branching spacetime theories in light of metaphysical considerations concerning time. I present the A, B, and C series in terms of the temporal structure they impose on sets of events, and raise problems for two elements of extant branching spacetime theories—McCall’s ‘branch attrition’, and the ‘no backward branching’ feature of Belnap’s ‘branching space-time’—in terms of their respective A- and B-theoretic nature. I argue that McCall’s presentation of branch attrition can only be coherently formulated on a model (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  50. A Paradox about Sets of Properties.Nathan Salmón - 2021 - Synthese 199 (5-6):12777-12793.
    A paradox about sets of properties is presented. The paradox, which invokes an impredicatively defined property, is formalized in a free third-order logic with lambda-abstraction, through a classically proof-theoretically valid deduction of a contradiction from a single premise to the effect that every property has a unit set. Something like a model is offered to establish that the premise is, although classically inconsistent, nevertheless consistent, so that the paradox discredits the logic employed. A resolution through the ramified theory of types (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 959