Several different quantum gravity research programmes suggest, for various reasons, that spacetime is not part of the fundamental ontology of physics. This gives rise to the problem of empirical coherence: if fundamental physical entities do not occupy spacetime or instantiate spatiotemporal properties, how can fundamental theories concerning those entities be justified by observation of spatiotemporally located things like meters, pointers and dials? I frame the problem of empirical coherence in terms of entailment: how could a non-spatiotemporal fundamental theory (...) entail spatiotemporal evidence propositions? Solutions to this puzzle can be classified as realist or antirealist, depending on whether or not they posit a non-fundamental spacetime structure grounded in or caused by the fundamental structure. These approaches place different constraints on our everyday concepts of space and time. Applying lessons from the philosophy of mind, I argue that only realism is both conceptually plausible and suitable for addressing the problem at hand. I suggest a role functionalist version of realism, which is consistent with both grounding and causation, and according to which our everyday concepts reveal something of the true nature of emergent spacetime. (shrink)
Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantum gravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the (...) hard problem by showing that it comes in various species, each entailing a different attitude towards, or answer to, the hard problem. Second, I will argue that the existence of an explanatory gap, which grounds the hard problem, has not been correctly taken into account in the literature. (shrink)
Important features of space and time are taken to be missing in quantum gravity, allegedly requiring an explanation of the emergence of spacetime from non-spatio-temporal theories. In this paper, we argue that the explanatory gap between general relativity and non-spatio- temporal quantum gravity theories might significantly be reduced with two moves. First, we point out that spacetime is already partially missing in the context of general relativity when understood from a dynamical perspective. Second, we argue that most approaches (...) to quantum gravity already start with an in-built distinction between structures to which the asymmetry between space and time can be traced back. (shrink)
I will defend two claims. First, Schaffer's priority monism is in tension with many research programs in quantum gravity. Second, priority monism can be modified into a view more amenable to this physics. The first claim is grounded in the fact that promising approaches to quantum gravity such as loop quantum gravity or string theory deny the fundamental reality of spacetime. Since fundamental spacetime plays an important role in Schaffer's priority monism by being identified with the fundamental structure, (...) namely the cosmos, the disappearance of spacetime in these views might undermine classical priority monism. My second claim is that priority monism can avoid this issue with two moves: first, in dropping one of its core assumption, namely that the fundamental structure is spatio-temporal, second, by identifying the connection between the non-spatio-temporal structure and the derivative spatio-temporal structure with mereological composition. (shrink)
The hole argument purports to show that all spacetime theories of a certain form are indeterministic, including the General Theory of Relativity. The argument has given rise to an industry of searching for a metaphysics of spacetime that delivers the right modal implications to rescue determinism. In this paper, I first argue that certain prominent extant replies to the hole argument—namely, those that appeal to an essentialist doctrine about spacetime—fail to deliver the requisite modal implications. As part (...) of my argument, I show that threats to determinism of the sort brought out by the hole argument are more general than has heretofore been recognized. I then use these results to propose a novel essentialist doctrine about spacetime that successfully rescues determinism, what I call sufficiency metric essentialism. However, I go on to argue that once we realize what an essentialist doctrine about spacetime must look like in order to address the hole argument, we should reject all such doctrines, because they can't fulfill their ambition of improving on standard modal replies to the argument. I close by suggesting some lessons for future work on spacetime and the metaphysics of physics more broadly, and also drawing some general morals for contemporary metaphysics, in particular about (i) whether essence can be used to articulate a precise structuralist doctrine, and (ii) the relationship between essence and modality. (shrink)
This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford University Press. (More information at www<dot>beyondspacetime<dot>net.) This chapter introduces causal set theory and identifies and articulates a 'problem of space' in this theory.
This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford University Press. This chapter analyses the nature and derivation of spacetime topology and geometry according to string theory.
I will introduce and motivate eliminativist super-relationism. This is the conjunction of relationism about spacetime and eliminativism about material objects. According to the view, the universe is a big collection of spatio-temporal relations and natural properties, and no substance (material or spatio-temporal) exists in it. The view is original since eliminativism about material objects, when understood as including not only ordinary objects like tables or chairs but also physical particles, is generally taken to imply substantivalism about spacetime: if (...) properties are directly instantiated by spacetime without the mediation of material objects, then, surely, spacetime has to be a substance. After introducing briefly the two debates about spacetime (§1) and material objects (§2), I will present Schaffer's super-substantivalism (§3), the conjunction of substantivalism about spacetime and eliminativism about material objects at the fundamental level. I shall then expose and discuss the assumption from which the implication from eliminativism to substantivalism is drawn, and discuss the compatibility of eliminativism with relationism: if spacetime is not a substance, and if material objects are not real, how are we to understand the instantiation of properties (§4)? And what are the relata of spatio-temporal relations (§5)? I then show that each argument in favor of super-substantivalism offered by Schaffer also holds for super-relationism (§6) and examine several metaphysical consequences of the view (§7). I conclude that both super-substantivalism and super-relationism are compatible with Schaffer's priority monism (§8). (shrink)
Typically, a less fundamental theory, or structure, emerging from a more fundamental one is an example of synchronic emergence. A model (and the physical state it describes) emerging from a prior model (state) upon which it nevertheless depends is an example of diachronic emergence. The case of spacetime emergent from quantum gravity and quantum cosmology challenges these two conceptions of emergence. Here, I propose two more-general conceptions of emergence, analogous to the synchronic and diachronic ones, but which are potentially (...) applicable to the case of emergent spacetime: an inter-level, hierarchical conception, and an intra-level, `flat' conception. I then explore whether, and how, these ideas may be applicable in the case of several putative examples of relativistic spacetime emergent from the non-spatiotemporal structures described by different approaches to quantum gravity, and of spacetime emergent from a non-spatiotemporal `big bang' state according to different examples of quantum cosmology. (shrink)
Eleanor Knox has argued that our concept of spacetime applies to whichever structure plays a certain functional role in the laws (the role of determining local inertial structure). I raise two complications for this approach. First, our spacetime concept seems to have the structure of a cluster concept, which means that Knox's inertial criteria for spacetime cannot succeed with complete generality. Second, the notion of metaphysical fundamentality may feature in the spacetime concept, in which case (...) class='Hi'>spacetime functionalism may be uninformative in the absence of answers to fundamental metaphysical questions like the substantivalist/relationist debate. (shrink)
Endurantism, the view that material objects are wholly present at each moment of their careers, is under threat from supersubstantivalism, the view that material objects are identical to spacetime regions. I discuss three compromise positions. They are alike in that they all take material objects to be composed of spacetime points or regions without being identical to any such point or region. They differ in whether they permit multilocation and in whether they generate cases of mereologically coincident entities.
This essay explores the possibility of constructing a structural realist interpretation of spacetime theories that can resolve the ontological debate between substantivalists and relationists. Drawing on various structuralist approaches in the philosophy of mathematics, as well as on the theoretical complexities of general relativity, our investigation will reveal that a structuralist approach can be beneficial to the spacetime theorist as a means of deflating some of the ontological disputes regarding similarly structured spacetimes.
We analyze the possible implications of spacetime discreteness for the special and general relativity and quantum theory. It is argued that the existence of a minimum size of spacetime may explain the invariance of the speed of light in special relativity and Einstein’s equivalence principle in general relativity. Moreover, the discreteness of spacetime may also result in the collapse of the wave function in quantum mechanics, which may provide a possible solution to the quantum measurement problem. These (...) interesting results might have some important implications for a complete theory of quantum gravity. (shrink)
This essay examines the underdetermination problem that plagues structuralist approaches to spacetime theories, with special emphasis placed on the epistemic brands of structuralism, whether of the scientific realist variety or not. Recent non-realist structuralist accounts, by Friedman and van Fraassen, have touted the fact that different structures can accommodate the same evidence as a virtue vis-à-vis their realist counterparts; but, as will be argued, these claims gain little traction against a properly constructed liberal version of epistemic structural realism. Overall, (...) a broad construal of spacetime theories along epistemic structural realist lines will be defended which draws upon both Friedman’s earlier work and the convergence of approximate structure over theory change, but which also challenges various claims of the ontic structural realists. (shrink)
Do theories of quantum mechanics and quantum gravity require spacetime to be a basic, ground level feature, or can spacetime be seen as an emergent element of these theories? While several commentators have raised serious doubts about the prospects of forgoing the standard spacetime backdrop, it will be argued that a defense of these emergent spacetime interpretations of quantum mechanics and quantum gravity hypotheses can be made, whether as an inference to the best explanation or using (...) another strategy. Furthermore, the idea that space and time can arise from a quite different, non-spatiotemporal level of reality will be shown to have various historical precedents, especially in the seventeenth and eighteenth centuries, a realization that may help dispel some of the mystery associated with these types of hypotheses. (shrink)
We outline a simple development of special and general relativity based on the physical meaning of the spacetime interval. The Lorentz transformation is not used.
In a recent article, Ned Markosian gives an argument against four-dimensionalism understood as the view that time is one of four identical dimensions that constitute a single four-dimensional manifold. In this paper, I show that Markosian attacks a straw man as his argument targets a theory known to be false on empirical grounds. Four-dimensionalism rightly conceived in no way entails that time is identical to space. I then address two objections raised by Markosian against four-dimensionalism rightly conceived.
We present a deductive theory of space-time which is realistic, objective, and relational. It is realistic because it assumes the existence of physical things endowed with concrete properties. It is objective because it can be formulated without any reference to cognoscent subjects or sensorial fields. Finally, it is relational because it assumes that space-time is not a thing but a complex of relations among things. In this way, the original program of Leibniz is consummated, in the sense that space is (...) ultimately an order of coexistents, and time is an order of succesives. In this context, we show that the metric and topological properties of Minkowskian space-time are reduced to relational properties of concrete things. We also sketch how our theory can be extended to encompass a Riemannian space-time. (shrink)
We define and develop a notion of spacetime that incorporates both McTaggart's A-series and his B-series that is consistent with special relativity. This 'McTaggartian spacetime' or 'AB-spacetime' requires *five* not *4* variables. The interface of two AB-spacetimes from different *ontological perspectives* is quantum mechanical. This note concentrates on the physics and not the philosophy. This is an invitation to contribute to a theory that is a work in progress.
Gravity is the curvature of spacetime, the structural property of static gravitational field, a geometric field, in curved coordinates, according the functions guv, that express geometric relations between material events. Course, general relativity is a relational theory, however, gravity, a thinking category, has symetric physical effects with matter. We use, analitic and critic method of reread the general relativity, since the perspective of the history of the science and the philosophy of the science. Our goal is driver the debate (...) on gravity, to the arena of the quantum physics, but without the ballast of the general relativity. We find that through of relativist aether was attempted transform spacetime in a substantia without succes, the consequence was return to problematic geometric field. The philosophy of the science intervenes, and according the best philosophical theory of substantivalism, spacetime is a inmaterial, geometric substantia. Then, the metaphysics arrives to a full solution in the super-substantivalism theory, that affirms: matter arises from geometric spacetime. Thus, it explains consistently the symetric physical effects between spacetime and matter. Surely, this solution is a medieval speculation. Our conclusion is that since general relativity do not defined physically spacetime leads necessarily to philosophical definitions of relationism and substantivalism on spacetime that are unacceptable physically. Therefore, gravity is not the curvature of spacetime. (shrink)
This paper dealing with extension of the Einstein eld equations using apparatus of contemporary generalization of the classical Lorentzian geometry named in literature Colombeau distributional geometry, see for example [1], [2], [3], [4], [5], [6], [7] and [32]. The regularizations of singularities presented in some solutions of the Einstein equations is an important part of this approach. Any singularities present in some solutions of the Einstein equations recognized only in the sense of Colombeau generalized functions [1], [2] and not classically. (...) In this paper essentially new class Colombeau solutions to Einstein eld equations is obtained. The vacuum energy density of free scalar quantum field with a distributional background spacetime also is considered. It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background distributional spacetime such distributional BHs, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on curved spacetimes. In particular we obtain that the vacuum fluctuations have a singular behavior on BHs horizon. (shrink)
Spacetime and motion are interconnected concepts. A better understanding of motion leads to a better understanding of spacetime. We use the historical critical analysis of the various theoretical proposals on motion in search of clues ignored. The prediction of the general relativity that the motion occurs in the static gravitational field is not valid because the motion always occurs in a given medium as vacuum, atmosphere, water, etc. The concept of motion and the equations of the special and (...) general relativity, as the theory of Galilee-Newton reduce motion elements to particle and spacetime. In this paper, we present the medium (in special, the quantum vacuum), as the third essential element of motion, inseparable of spacetime since it is its material support of which the spacetime is its structural form, and we analyse its consequences in the theories of spacetime. Our contribution is declare, that the spacetime itself does not exist, or is a relational property of matter, but a structural property of matter. (shrink)
Einstein structured the theoretical frame of his work on gravity under the Special Relativity and Minkowski´s spacetime using three guide principles: The strong principle of equivalence establishes that acceleration and gravity are equivalents. Mach´s principle explains the inertia of the bodies and particles as completely determined by the total mass existent in the universe. And, general covariance searches to extend the principle of relativity from inertial motion to accelerated motion. Mach´s principle was abandoned quickly, general covariance resulted mathematical property (...) of the tensors and principle of equivalence inconsistent and it can only apply to punctual gravity, no to extended gravity. Also, the basic principle of Special Relativity, i.e., the constancy of the speed of the electromagnetic wave in the vacuum was abandoned, static Minkowski´s spacetime was replaced to dynamic Lorentz´s manifold and the main conceptual fundament of the theory, i.e. spacetime is not known what is. Of other hand, gravity never was conceptually defined; neither answers what is the law of gravity in general. However, the predictions arise of Einstein equations are rigorously exacts. Thus, the conclusion is that on gravity, it has only the equations. In this work it shows that principle of equivalence applies really to punctual and extended gravity, gravity is defined as effect of change of coordinates although in the case of the extended gravity with change of geometry from Minkowski´s spacetime to Lorentz´s manifold; and the gravitational motion is the geodesic motion that well it can declare as the general law of gravity. (shrink)
The theoretical contradiction between General Relativity and Quantum Gravity about gravity was ended, since spacetime is not structural property of the gravitational fi eld like Einstein said. Exactly spacetime is the structural geometric property of the matter and energy that it gives their geometric dimensions. Thus, spacetime is not continent of the matter (Substantialism), since it is contained. Neither is the category of the relations between material bodies or between their events (Relationalism) since is not relational property; (...)spacetime is structural property. The particle-wave, of matter and eld, has intrinsically three spatial dimensions and one temporal dimension. The spacetime is intrinsically the structural quality of particle-wave. The spacetime is the geometric dimensions of the particle-wave itself and for others. Therefore, the matter and its movements are containing itself. Now only Quantum Gravity is possible. (shrink)
In recent years, the branching spacetime (BST) interpretation of quantum mechanics has come under study by a number of philosophers, physicists and mathematicians. This paper points out some implications of the BST interpretation for two areas of quantum physics: (1) quantum gravity, and (2) stochastic interpretations of quantum mechanics.
In ‘Location and Perdurance’ (2010), I argued that there are no compelling mereological or sortal grounds requiring the perdurantist to distinguish the molecule Abel from the atom Abel in Gilmore’s original case (2007). The remaining issue Gilmore originally raised concerned the ‘mass history’ of Adam and Abel, the distribution of ‘their’ mass over spacetime. My response to this issue was to admit that mass histories needed to be relativised to a way of partitioning the location of Adam/Abel, but that (...) did not amount to relativising any fundamental natural intrinsic properties—the latter are all had unrelativised, and (so most perdurantists would say). (shrink)
This paper examines Descartes' problematic relational theory of motion, especially when viewed within the context of his dynamics, the Cartesian natural laws. The work of various commentators on Cartesian motion is also surveyed, with particular emphasis placed upon the recent important texts of Garber and Des Chene. In contrast to the methodology of most previous interpretations, however, this essay employs a modern "spacetime" approach to the problem. By this means, the role of dynamics in Descartes' theory, which has often (...) been neglected in favor of kinematic factors, is shown to be central to finding a solution to the puzzle of Cartesian motion. (shrink)
This essay is a contribution to the historical phenomenology of science, taking as its point of departure Husserl’s later philosophy of science and Jacob Klein’s seminal work on the emergence of the symbolic conception of number in European mathematics during the late sixteenth and seventeenth centuries. Sinceneither Husserl nor Klein applied their ideas to actual theories of modern mathematical physics, this essay attempts to do so through a case study of the conceptof “spacetime.” In §1, I sketch Klein’s account (...) of the emergence of the symbolic conception of number, beginning with Vieta in the late sixteenth century. In §2,through a series of historical illustrations, I show how the principal impediment to assimilating the new symbolic algebra to mathematical physics, namely, thedimensionless character of symbolic number, is overcome via the translation of the traditional language of ratio and proportion into the symbolic language of equations. In §§3–4, I critically examine the concept of “Minkowski spacetime,” specifically, the purported analogy between the Pythagorean distance formula and the Minkowski “spacetime interval.” Finally, in §5, I address the question of whether the concept of Minkowski spacetime is, as generally assumed, indispensable to Einstein’s general theory of relativity. (shrink)
There is, among some scientists and philosophers, the idea that any theory that would allow the time travel would introduce causal issues. These types of temporal paradoxes can be avoided by the Novikov self-consistency principle or by a variation in the interpretation of many worlds with interacting worlds. The world in which we live has, according to David Lewis, a Parmenidean ontology: "a manifold of events in four dimensions," and the occupants of the world are the 4-dimensional aggregates of the (...) stages - "temporal lines". The causal loops in backwards time travel involve events that appear to "come from nowhere," paradoxical "self-existent" objects or information, resulting in a bootstrap paradox. Many believe that causality loops are not impossible or unacceptable, but only inexplicable. DOI: 10.13140/RG.2.2.28792.70407. (shrink)
Based on the Russian school of Logunov and others, with the contribution of Tom van Flandern, and his previous works on space-time, gravitational waves and speed of the gravity, the author discusses the theory of the time-space fluid that results from the supposed gravitational waves that would have detected LIGO, and reaffirms the space-time as a structural geometric property of the dynamic matter (radiation, matter and quantum vacuum), now with the strong argument that without escape, in an unnatural way, the (...) physicists and philosophers of science confer the conception of the author to that ridiculous material-space-time, while depriving Matter, of the intrinsic space-time. In addition, he warns about the conceptual contradiction existing between NASA and Caltech over gravitational waves, being absurd the concept of Caltech, operator of LIGO, since gravitational waves would propagate in five non-detectable dimensions. NASA valiant and validly recognizes that they would be waves of space; therefore, there are no space-time waves that correspond to gravitational waves that, according to the great current of relativistic physicists, would exist. Finally, the author reaffirms that the quadrupole waves detected by LIGO are waves of the quantum vacuum. (shrink)
Albert Einstein’s theory of General Relativity was once the leading theory in theoretical physics. Unfortunately the theory describes macroscopic reality without a clear link with the the microcosm in respect to the properties of spacetime. However the theory of General Relativity has proved to predict macroscopic phenomena in a very accurate way. Nowadays most theoretical physicists use the conceptual framework of quantum theory. So it is not surprisingly that the question about the “true nature” of spacetime becomes very (...) intrigue. (shrink)
This book deals with Colombeau solutions to Einstein field equations in general relativity: Gravitational singularities, distributional SAdS BH spacetime-induced vacuum dominance. This book covers key areas of Colombeau nonlinear generalized functions, distributional Riemannian, geometry, distributional schwarzschild geometry, Schwarzschild singularity, Schwarzschild horizon, smooth regularization, nonsmooth regularization, quantum fields, curved spacetime, vacuum fluctuations, vacuum dominance etc. This book contains various materials suitable for students, researchers and academicians of this area.
During the 20th century there were a couple of scientists who announced the observation of exceptional heat during the electrolysis of water with the help of Palladium electrodes. In spite of the opinion of the community of nuclear physicists that low energy generated nuclear fusion is a hoax there is a lot of research to understand and create the observed emission of exceptional electromagnetic radiation. This paper explains with the help of the concept of quantized space the simple mechanism that (...) is responsible for the decrease of the Coulomb force of Hydrogen nuclei, established by Martin Fleischmann and Stanley Pons. (shrink)
Most of our best scientific descriptions of the world employ rates of change of some continuous quantity with respect to some other continuous quantity. For instance, in classical physics we arrive at a particle’s velocity by taking the time-derivative of its position, and we arrive at a particle’s acceleration by taking the time-derivative of its velocity. Because rates of change are defined in terms of other continuous quantities, most think that facts about some rate of change obtain in virtue of (...) facts about those other continuous quantities. For example, on this view facts about a particle’s velocity at a time obtain in virtue of facts about how that particle’s position is changing at that time. In this paper we raise a puzzle for this orthodox reductionist account of rate of change quantities and evaluate some possible replies. We don’t decisively come down in favour of one reply over the others, though we say some things to support taking our puzzle to cast doubt on the standard view that spacetime is continuous. (shrink)
There is a popular theory in the metaphysics of time according to which time is one of four similar dimensions that make up a single manifold that is appropriately called spacetime. One consequence of this thesis is that changing an object’s orientation in the manifold does not change its intrinsic features. In this paper I offer a new argument against this popular theory. I claim that an especially good performance of a particularly beautiful piece of music, when oriented within (...) the manifold in the normal way, adds to the intrinsic value of the world, but that if the same performance is turned sideways within the manifold, so that it involves a number of different notes spread out in space and all occurring at the same time, then it does not add the same intrinsic value to the world. (shrink)
‘Space does not exist fundamentally: it emerges from a more fundamental non-spatial structure.’ This intriguing claim appears in various research programs in contemporary physics. Philosophers of physics tend to believe that this claim entails either that spacetime does not exist, or that it is derivatively real. In this article, I introduce and defend a third metaphysical interpretation of the claim: reductionism about space. I argue that, as a result, there is no need to subscribe to fundamentality, layers of reality (...) and emergence in order to analyse the constitution of space by non-spatial entities. It follows that space constitution, if borne out, does not provide empirical evidence in favour of a stratified, Aristotelian in spirit, metaphysics. The view will be described in relation to two particular research programs in contemporary physics: wave function realism and loop quantum gravity. (shrink)
Relativity theory is often said to support something called ‘the four-dimensional view of reality’. But there are at least three different views that sometimes go by this name. One is ‘spacetime unitism’, according to which there is a spacetime manifold, and if there are such things as points of space or instants of time, these are just spacetime regions of different sorts: thus space and time are not separate manifolds. A second is the B-theory of time, according (...) to which the past, present, and future are all equally real and there is nothing metaphysically special about the present. A third is perdurantism, according to which persisting material objects are made up of different temporal parts located at different times. We sketch routes from relativity to unitism and to the B-theory. We then discuss some routes to perdurantism, via the B-theory and via unitism. (shrink)
In “Sideways Music”, Ned Markosian uses aesthetic intuitions about temporally-rotated music to argue that the metaphysics of time is different from the metaphysics of space. In response, I use aesthetic intuitions about spatially-rotated paintings to pose a dilemma for Markosian’s argument: either he accepts the intuitions about spatially-rotated paintings, in which case he must give up on some assumptions in his argument, or he rejects intuitions about spatially-rotated paintings, in which case an analogous response can be given regarding intuitions about (...) temporally-rotated music. That is, if Markosian wants to hold on to the assumptions that underwrite his argument, then he thereby offers his opponent the resources with which to resist his conclusion. As such, Markosian’s argument cannot offer a new independent consideration for adjudicating the metaphysical debate between the Dynamic Theorist and the Spacetime Theorist. [Unpublishable 2019]. (shrink)
Background independence begins life as an informal property that a physical theory might have, often glossed as 'doesn't posit a fixed spacetime background'. Interest in trying to offer a precise account of background independence has been sparked by the pronouncements of several theorists working on quantum gravity that background independence embodies in some sense an essential discovery of the General Theory of Relativity, and a feature we should strive to carry forward to future physical theories. This paper has two (...) goals. The first is to investigate what a world must be like in order to be truly described by a background independent theory given extant accounts of background independence. The second is to argue that there are no non-empirical reasons to be more confident in theories that satisfy extant accounts of background independence than in theories that don't. The paper concludes by drawing a general moral about a way in which focussing primarily on mathematical formulations of our physical theories can adversely affect debates in the metaphysics of physics. (shrink)
The construction of spacetime in a physical system without time and dynamics is considered. It is shown that in models without time and dynamics anthropic principle and causality principle inevitably arise. It is shown that for any physical model based on a system without time and dynamics, the anthropic principle is a scientific principle and, in principle, can be falsified. It is shown that, in principle, there is the possibility of experimental verification of what is true - realism or (...) idealism. (shrink)
Let wF, wC+, and wC– be three distinct worlds, each of which contains only a single point-sized material particle, and in each of which spacetime is: uniformly flat, constantly positively curved, and constantly negatively curved, respectively. By the relationist’s lights, these worlds seem to be qualitatively identical. Nevertheless, for each world, there are propositions concerning possible arrangements of material points that are true in that world, but false in the other two. I argue that, surprisingly, the relationist can ground (...) these differences in the distinct non-modal and intrinsic relations that are instantiated in each of wF, wC+, and wC–. (shrink)
The answer to some of the longstanding issues in the 20th century theoretical physics, such as those of the incompatibility between general relativity and quantum mechanics, the broken symmetries of the electroweak force acting at the subatomic scale and the missing mass of Higgs particle, and also those of the cosmic singularity and the black matter and energy, appear to be closely related to the problem of the quantum texture of space-time and the fluctuations of its underlying geometry. Each region (...) of space landscape seem to be filled with spacetime weaved and knotted networks, for example, spacetime has immaterial curvature and structures, such as topological singularities, and obeys the laws of quantum physics. Thus, it is filled with potentialparticles, pairs of virtual matter and anti-matter units, and potential properties at the quantum scale. For example, quantum entities (like fields and particles) have both wave (i.e., continuous) and particle (i.e., discrete) properties and behaviors. At the quantum level (precisely, the Planck scale) of space-time such properties and behaviors could emerge from some underlying (dynamic) phase space related to some field theory. Accordingly, these properties and behaviors leave their signature on objects and phenomena in the real Universe. In this paper we consider some conceptual issues of this question. (shrink)
We address the question of whether it is possible to operate a time machine by manipulating matter and energy so as to manufacture closed timelike curves. This question has received a great deal of attention in the physics literature, with attempts to prove no- go theorems based on classical general relativity and various hybrid theories serving as steps along the way towards quantum gravity. Despite the effort put into these no-go theorems, there is no widely accepted definition of a time (...) machine. We explain the conundrum that must be faced in providing a satisfactory definition and propose a resolution. Roughly, we require that all extensions of the time machine region contain closed timelike curves; the actions of the time machine operator are then sufficiently "potent" to guarantee that closed timelike curves appear. We then review no-go theorems based on classical general relativity, semi-classical quantum gravity, quantum field theory on curved spacetime, and Euclidean quantum gravity. Our verdict on the question of our title is that no result of sufficient generality to underwrite a confident "yes" has been proven. Our review of the no-go results does, however, highlight several foundational problems at the intersection of general relativity and quantum physics that lend substance to the search for an answer. (shrink)
The existence of singularities alerts that one of the highest priorities of a centennial perspective on general relativity should be a careful re-thinking of the validity domain of Einstein’s field equations. We address the problem of constructing distinguishable extensions of the smooth spacetime manifold model, which can incorporate singularities, while retaining the form of the field equations. The sheaf-theoretic formulation of this problem is tantamount to extending the algebra sheaf of smooth functions to a distribution-like algebra sheaf in which (...) the former may be embedded, satisfying the pertinent cohomological conditions required for the coordinatization of all of the tensorial physical quantities, such that the form of the field equations is preserved. We present in detail the construction of these distribution-like algebra sheaves in terms of residue classes of sequences of smooth functions modulo the information of singular loci encoded in suitable ideals. Finally, we consider the application of these distribution-like solution sheaves in geometrodynamics by modeling topologically-circular boundaries of singular loci in three-dimensional space in terms of topological links. It turns out that the Borromean link represents higher order wormhole solutions. (shrink)
A supertask consists in the performance of an infinite number of actions in a finite time. I show that any attempt to carry out a supertask will produce a divergence of the curvature of spacetime, resulting in the formation of a black hole. I maintain that supertaks, contrarily to a popular view among philosophers, are physically impossible. Supertasks, literally, collapse under their own weight.
It is shown that the heuristic "derivation" of the Schrödinger equation in quantum mechanics textbooks can be turned into a real derivation by resorting to spacetime translation invariance and relativistic invariance.
Some materialists believe that physics is rich enough to bridge Levine's Explanatory Gap1, while others believe that it is not. Here I promote an intermediate position holding that physics is rich enough to explain why this gap seems more intractable than similar inter-theoretic explanatory gaps, without providing a full-blown “physical” explanation of consciousness. At a minimum, such an approach needs to explore the prospects of empirical discoveries that can diminish the power of anti-physicalist arguments like Chalmers's “conceivability argument”2 and Jackson's (...) “knowledge argument.” While this is not an easy task, recent advances in the physics of spacetime and information convince us that these prospects are not poor. The empirical bent of this approach suggests framing it as a naturalist theory of mind seeking to situate or make room for consciousness within our great naturalist system, but the reliance of this approach on recent (re)conceptions of time and information pulls the carpet out from under essential concepts like concreteness and causation, thus demanding a radically reconfigured naturalism, or neo-naturalism. The question that will frame this discussion is, “What could possibly count as an empirical fact that can help naturalize consciousness?”. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.