Results for 'turing theory, computability, incompleteness, impossibility, limits of computation, '

938 found
Order:
  1. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the limits of computation, theism and the universe as computer-the ultimate Turing Theorem.Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization Michael Starks 3rd Ed. (2017).
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. David Wolpert on impossibility, incompleteness, the liar paradox, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. (1 other version)Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. 沃尔珀特、柴廷和维特根斯坦关于不可能、不完整、说谎的悖论、有论、计算极限、非量子力学不确定性原理和宇宙作为计算机——图灵机器理论的终极定理 (Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in T Machine Theory) (修订 2019).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 173-177.
    我最近读过许多关于计算极限和宇宙作为计算机的讨论,希望找到一些关于多面体物理学家和决策理论家大卫·沃尔珀特的惊人工作的评论,但没有发现一个引文,所以我提出这个非常简短的总结。Wolpert 证明了一些惊人的不可能或不完整的定理(1992-2008-见arxiv dot org)对推理(计算)的限制,这些极限非常一般,它们独立于执行计算的设备,甚至独立于物理定律,因此,它们适用于计算机、物理和人类行为。他们利用Cantor的对角线、骗子悖论和世界线来提供图灵机器理论的 终极定理,并似乎提供了对不可能、不完整、计算极限和宇宙的见解。计算机,在所有可能的宇宙和所有生物或机制,产生,除其他外,非量子力学不确定性原理和一神论的证明。与柴廷、所罗门诺夫、科莫尔加罗夫和维特根斯 坦的经典作品以及任何程序(因此没有设备)能够生成比它拥有的更大复杂性的序列(或设备)的概念有着明显的联系。有人可能会说,这一工作意味着无政府主义,因为没有比物质宇宙更复杂的实体,从维特根斯坦的观点来看 ,"更复杂的"是毫无意义的(没有满足的条件,即真理制造者或测试)。即使是"上帝"(即具有无限时间/空间和能量的"设备")也无法确定给定的&q uot;数字"是否为"随机",也无法找到某种方式来显示给定的"公式"、"定理"或"句子"或"设备&q uot;(所有这些语言都是复杂的语言)游戏)是特定"系统"的一部分。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、Mind 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第二次(2019年)》和《自杀乌托邦幻想》第21篇世纪4日 (2019).
    Download  
     
    Export citation  
     
    Bookmark  
  5. Observability of Turing Machines: a refinement of the theory of computation.Yaroslav Sergeyev & Alfredo Garro - 2010 - Informatica 21 (3):425–454.
    The Turing machine is one of the simple abstract computational devices that can be used to investigate the limits of computability. In this paper, they are considered from several points of view that emphasize the importance and the relativity of mathematical languages used to describe the Turing machines. A deep investigation is performed on the interrelations between mechanical computations and their mathematical descriptions emerging when a human (the researcher) starts to describe a Turing machine (the object (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. (1 other version)Wolpert, Chaitin y Wittgenstein sobre la imposibilidad, la incompletitud, la paradoja mentirosa, el teísmo, los límites de la computación, un principio de incertidumbre mecánica no cuántica y el universo como computadora, el teorema definitivo en la teoría de la máquina de Turing (revisado en 2019).Michael Richard Starks - 2019 - In OBSERVACIONES SOBRE IMPOSIBILIDAD, INCOMPLETA, PARACOHERENCIA,INDECISIÓN,ALEATORIEDAD, COMPUTABILIDAD, PARADOJA E INCERTIDUMBRE EN CHAITIN, WITTGENSTEIN, HOFSTADTER, WOLPERT, DORIA, DACOSTA, GODEL, SEARLE, RODYCH, BERTO,FLOYD, MOYAL-SHARROCK Y YANOFSKY. Reality Press. pp. 64-70.
    It is commonly thought that Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were mostly resolved by Wittgenstein over 80years ago. -/- “What we are ‘tempted to say’ in such a case is, of course, not philosophy, but it is its raw material. Thus, for example, what a mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Turing Machines and Semantic Symbol Processing: Why Real Computers Don’t Mind Chinese Emperors.Richard Yee - 1993 - Lyceum 5 (1):37-59.
    Philosophical questions about minds and computation need to focus squarely on the mathematical theory of Turing machines (TM's). Surrogate TM's such as computers or formal systems lack abilities that make Turing machines promising candidates for possessors of minds. Computers are only universal Turing machines (UTM's)—a conspicuous but unrepresentative subclass of TM. Formal systems are only static TM's, which do not receive inputs from external sources. The theory of TM computation clearly exposes the failings of two prominent critiques, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. (1 other version)Review of 'The Outer Limits of Reason' by Noson Yanofsky 403p(2013).Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization -- Articles and Reviews 2006-2017 3rd Ed 686p(2017).
    I give a detailed review of 'The Outer Limits of Reason' by Noson Yanofsky 403(2013) from a unified perspective of Wittgenstein and evolutionary psychology. I indicate that the difficulty with such issues as paradox in language and math, incompleteness, undecidability, computability, the brain and the universe as computers etc., all arise from the failure to look carefully at our use of language in the appropriate context and hence the failure to separate issues of scientific fact from issues of how (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  13. Computers, Dynamical Systems, Phenomena, and the Mind.Marco Giunti - 1992 - Dissertation, Indiana University
    This work addresses a broad range of questions which belong to four fields: computation theory, general philosophy of science, philosophy of cognitive science, and philosophy of mind. Dynamical system theory provides the framework for a unified treatment of these questions. ;The main goal of this dissertation is to propose a new view of the aims and methods of cognitive science--the dynamical approach . According to this view, the object of cognitive science is a particular set of dynamical systems, which I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Computability and human symbolic output.Jason Megill & Tim Melvin - 2014 - Logic and Logical Philosophy 23 (4):391-401.
    This paper concerns “human symbolic output,” or strings of characters produced by humans in our various symbolic systems; e.g., sentences in a natural language, mathematical propositions, and so on. One can form a set that consists of all of the strings of characters that have been produced by at least one human up to any given moment in human history. We argue that at any particular moment in human history, even at moments in the distant future, this set is finite. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Rezension von "Die äußeren Grenzen der Vernunft " (The Outer Limits of Reason) von Noson Yanofsky 403p (2013) ( Überprüfung überarbeitet 2019).Michael Richard Starks - 2020 - In Willkommen in der Hölle auf Erden: Babys, Klimawandel, Bitcoin, Kartelle, China, Demokratie, Vielfalt, Dysgenie, Gleichheit, Hacker, Menschenrechte, Islam, Liberalismus, Wohlstand, Internet, Chaos, Hunger, Krankheit, Gewalt, Künstliche Intelligenz, Krieg. Reality Press. pp. 191-206.
    Ich gebe einen ausführlichen Überblick über 'The Outer Limits of Reason' von Noson Yanofsky aus einer einheitlichen Perspektive von Wittgenstein und Evolutionspsychologie. Ich weise darauf hin, dass die Schwierigkeit bei Themen wie Paradoxon in Sprache und Mathematik, Unvollständigkeit, Unbedenklichkeit, Berechenbarkeit, Gehirn und Universum als Computer usw. allesamt auf das Versäumnis zurückzuführen ist, unseren Sprachgebrauch im geeigneten Kontext sorgfältig zu prüfen, und daher das Versäumnis, Fragen der wissenschaftlichen Tatsache von Fragen der Funktionsweise von Sprache zu trennen. Ich bespreche Wittgensteins Ansichten (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Thought, Sign and Machine - the Idea of the Computer Reconsidered.Niels Ole Finnemann - 1999 - Copenhagen: Danish Original: Akademisk Forlag 1994. Tanke, Sprog og Maskine..
    Throughout what is now the more than 50-year history of the computer many theories have been advanced regarding the contribution this machine would make to changes both in the structure of society and in ways of thinking. Like other theories regarding the future, these should also be taken with a pinch of salt. The history of the development of computer technology contains many predictions which have failed to come true and many applications that have not been foreseen. While we must (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Wolpert, Chaitin et Wittgenstein sur l’impossibilité, l’incomplétude, le paradoxe menteur, le théisme, les limites du calcul, un principe d’incertitude mécanique non quantique et l’univers comme ordinateur, le théorème ultime dans Turing Machine Theory (révisé 2019).Michael Richard Starks - 2020 - In Bienvenue en Enfer sur Terre : Bébés, Changement climatique, Bitcoin, Cartels, Chine, Démocratie, Diversité, Dysgénique, Égalité, Pirates informatiques, Droits de l'homme, Islam, Libéralisme, Prospérité, Le Web, Chaos, Famine, Maladie, Violence, Intellige. Las Vegas, NV USA: Reality Press. pp. 185-189.
    J’ai lu de nombreuses discussions récentes sur les limites du calcul et de l’univers en tant qu’ordinateur, dans l’espoir de trouver quelques commentaires sur le travail étonnant du physicien polymathe et théoricien de la décision David Wolpert, mais n’ont pas trouvé une seule citation et je présente donc ce résumé très bref. Wolpert s’est avéré quelques théoricaux d’impossibilité ou d’incomplétude renversants (1992 à 2008-voir arxiv dot org) sur les limites de l’inférence (computation) qui sont si généraux qu’ils sont indépendants de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Review of Hyperspace by Michio Kaku (1994).Starks Michael - 2016 - In Michael Starks (ed.), Suicidal Utopian Delusions in the 21st Century: Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2017 2nd Edition Feb 2018. Las Vegas, USA: Reality Press. pp. 620-626.
    "There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact" Mark Twain-Life on the Mississippi -/- This is a lovely book full of fascinating info on the evolution of physics and cosmology. Its main theme is how the idea of higher dimensional geometry created by Riemann, recently extended to 24 dimensions by string theory, has revolutionized our understanding of the universe. Everyone knows that Riemann created multidimensional geometry in 1854 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. A Review of:“Information Theory, Evolution and the Origin of Life as a Digital Message How Life Resembles a Computer” Second Edition. Hubert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 pages, index; hardcover, US $60.00; ISBN: 0-521-80293-8. [REVIEW]Attila Grandpierre - 2006 - World Futures 62 (5):401-403.
    Information Theory, Evolution and The Origin ofLife: The Origin and Evolution of Life as a Digital Message: How Life Resembles a Computer, Second Edition. Hu- bert P. Yockey, 2005, Cambridge University Press, Cambridge: 400 pages, index; hardcover, US $60.00; ISBN: 0-521-80293-8. The reason that there are principles of biology that cannot be derived from the laws of physics and chemistry lies simply in the fact that the genetic information content of the genome for constructing even the simplest organisms is much (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. (1 other version)Implications of computer science theory for the simulation hypothesis.David Wolpert - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  22. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Towards a Theory of Computation similar to some other scientific theories.Antonino Drago - manuscript
    At first sight the Theory of Computation i) relies on a kind of mathematics based on the notion of potential infinity; ii) its theoretical organization is irreducible to an axiomatic one; rather it is organized in order to solve a problem: “What is a computation?”; iii) it makes essential use of doubly negated propositions of non-classical logic, in particular in the word expressions of the Church-Turing’s thesis; iv) its arguments include ad absurdum proofs. Under such aspects, it is like (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. From Analog to Digital Computing: Is Homo sapiens’ Brain on Its Way to Become a Turing Machine?Antoine Danchin & André A. Fenton - 2022 - Frontiers in Ecology and Evolution 10:796413.
    The abstract basis of modern computation is the formal description of a finite state machine, the Universal Turing Machine, based on manipulation of integers and logic symbols. In this contribution to the discourse on the computer-brain analogy, we discuss the extent to which analog computing, as performed by the mammalian brain, is like and unlike the digital computing of Universal Turing Machines. We begin with ordinary reality being a permanent dialog between continuous and discontinuous worlds. So it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. The Theory of Computability Developed in Terms of Satisfaction.James Cain - 1999 - Notre Dame Journal of Formal Logic 40 (4):515-532.
    The notion of computability is developed through the study of the behavior of a set of languages interpreted over the natural numbers which contain their own fully defined satisfaction predicate and whose only other vocabulary is limited to "0", individual variables, the successor function, the identity relation and operators for disjunction, conjunction, and existential quantification.
    Download  
     
    Export citation  
     
    Bookmark  
  26. (2 other versions)Theory of Fuzzy Time Computation (2, P vs NP problem).Didehvar Farzad - manuscript
    Throughout this paper, we prove TC + CON(TC*)ͰP ≠ NP. To do that, firstly we introduce the definition of scope∗ . This definition is based on the practical situation of computation in the real world. In the real world and real computational activities, we face finite number of efficient computable functions which work in a limited time. Inspired by this fact and considering time as a fuzzy concept, we have the definition. By employing this definition, we reach to a world (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. (2 other versions)Theory of Fuzzy Time Computation (2) (TC+CON(〖TC〗^*)ͰP≠NP).Didehvar Farzad - manuscript
    Throughout this paper, we prove TC+CON(〖TC〗^* )ͰP≠NP. To do that, firstly, we introduce the definition of scope_^*. This definition is based on the practical situation of computation in the real world. In the real world and real computational activities, we face a finite number of efficiently computable functions which work in a limited time. Inspired by this fact and considering time as a fuzzy concept, we have the definition. By employing this definition, we reach to a world of computation, in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. On the impossibility of using analogue machines to calculate non-computable functions.Robin O. Gandy - manuscript - Translated by Aran Nayebi.
    A number of examples have been given of physical systems (both classical and quantum mechanical) which when provided with a (continuously variable) computable input will give a non-computable output. It has been suggested that these systems might allow one to design analogue machines which would calculate the values of some number-theoretic non-computable function. Analysis of the examples show that the suggestion is wrong. In Section 4 I claim that given a reasonable definition of analogue machine it will always be wrong. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2021 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  30. My mind is not the universe: the map is not the territory.Xiaoyang Yu - manuscript
    In order to describe my findings/conclusions systematically, a new semantic system (i.e., a new language) has to be intentionally defined by the present article. Humans are limited in what they know by the technical limitation of their cortical language network. A reality is a situation model (SM). For example, the conventionally-called “physical reality” around my conventionally-called “physical body” is actually a “geometric” SM of my brain. The universe is an autonomous objective parallel computing automaton which evolves by itself automatically/unintentionally – (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Numerical computations and mathematical modelling with infinite and infinitesimal numbers.Yaroslav Sergeyev - 2009 - Journal of Applied Mathematics and Computing 29:177-195.
    Traditional computers work with finite numbers. Situations where the usage of infinite or infinitesimal quantities is required are studied mainly theoretically. In this paper, a recently introduced computational methodology (that is not related to the non-standard analysis) is used to work with finite, infinite, and infinitesimal numbers numerically. This can be done on a new kind of a computer – the Infinity Computer – able to work with all these types of numbers. The new computational tools both give possibilities to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  32.  97
    The Specter of Representation: Computational Images and Algorithmic Capitalism.Samine Joudat - 2024 - Dissertation, Claremont Graduate University
    The processes of computation and automation that produce digitized objects have displaced the concept of an image once conceived through optical devices such as a photographic plate or a camera mirror that were invented to accommodate the human eye. Computational images exist as information within networks mediated by machines. They are increasingly less about what art history understands as representation or photography considers indexing and more an operational product of data processing. Through genealogical, theoretical, and practice-based investigation, this dissertation project (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Two concepts of "form" and the so-called computational theory of mind.John-Michael Kuczynski - 2006 - Philosophical Psychology 19 (6):795-821.
    According to the computational theory of mind , to think is to compute. But what is meant by the word 'compute'? The generally given answer is this: Every case of computing is a case of manipulating symbols, but not vice versa - a manipulation of symbols must be driven exclusively by the formal properties of those symbols if it is qualify as a computation. In this paper, I will present the following argument. Words like 'form' and 'formal' are ambiguous, as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. Does the solar system compute the laws of motion?Douglas Ian Campbell & Yi Yang - 2019 - Synthese 198 (4):3203-3220.
    The counterfactual account of physical computation is simple and, for the most part, very attractive. However, it is usually thought to trivialize the notion of physical computation insofar as it implies ‘limited pancomputationalism’, this being the doctrine that every deterministic physical system computes some function. Should we bite the bullet and accept limited pancomputationalism, or reject the counterfactual account as untenable? Jack Copeland would have us do neither of the above. He attempts to thread a path between the two horns (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Information, learning and falsification.David Balduzzi - 2011
    There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out [2]. The third, statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Beckmann Arnold, Berger Ulrich, Löwe Benedikt & Tucker John V. (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Springer. pp. 575--583.
    Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Computability, Notation, and de re Knowledge of Numbers.Stewart Shapiro, Eric Snyder & Richard Samuels - 2022 - Philosophies 1 (7):20.
    Saul Kripke once noted that there is a tight connection between computation and de re knowledge of whatever the computation acts upon. For example, the Euclidean algorithm can produce knowledge of which number is the greatest common divisor of two numbers. Arguably, algorithms operate directly on syntactic items, such as strings, and on numbers and the like only via how the numbers are represented. So we broach matters of notation. The purpose of this article is to explore the relationship between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  99
    Mind and Machine: A Philosophical Examination of Matt Carter’s “Minds & Computers: An Introduction to the Philosophy of Artificial Intelligence”.R. L. Tripathi - 2024 - Open Access Journal of Data Science and Artificial Intelligence 2 (1):3.
    In his book “Minds and Computers: An Introduction to the Philosophy of Artificial Intelligence”, Matt Carter presents a comprehensive exploration of the philosophical questions surrounding artificial intelligence (AI). Carter argues that the development of AI is not merely a technological challenge but fundamentally a philosophical one. He delves into key issues like the nature of mental states, the limits of introspection, the implications of memory decay, and the functionalist framework that allows for the possibility of AI. Carter contrasts functionalism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Emergence and Computation at the Edge of Classical and Quantum Systems.Ignazio Licata - 2008 - In World Scientific (ed.), Physics of Emergence and Organization.
    The problem of emergence in physical theories makes necessary to build a general theory of the relationships between the observed system and the observing system. It can be shown that there exists a correspondence between classical systems and computational dynamics according to the Shannon-Turing model. A classical system is an informational closed system with respect to the observer; this characterizes the emergent processes in classical physics as phenomenological emergence. In quantum systems, the analysis based on the computation theory fails. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  40. Cognition, Computing and Dynamic Systems.Mario Villalobos & Joe Dewhurst - 2016 - Límite. Revista Interdisciplinaria de Filosofía y Psicología 1.
    Traditionally, computational theory (CT) and dynamical systems theory (DST) have presented themselves as opposed and incompatible paradigms in cognitive science. There have been some efforts to reconcile these paradigms, mainly, by assimilating DST to CT at the expenses of its anti-representationalist commitments. In this paper, building on Piccinini’s mechanistic account of computation and the notion of functional closure, we explore an alternative conciliatory strategy. We try to assimilate CT to DST by dropping its representationalist commitments, and by inviting CT to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Wolpert, Chaitin und Wittgenstein über Unmöglichkeit, Unvollständigkeit, das Lügner-Paradoxon, Theismus, die Grenzen der Berechnung, ein nicht-quantenmechanisches Unsicherheitsprinzip und das Universum als Computer – der ultimative Satz in Turing Machine Theory (überarbeitet 2019).Michael Richard Starks - 2020 - In Willkommen in der Hölle auf Erden: Babys, Klimawandel, Bitcoin, Kartelle, China, Demokratie, Vielfalt, Dysgenie, Gleichheit, Hacker, Menschenrechte, Islam, Liberalismus, Wohlstand, Internet, Chaos, Hunger, Krankheit, Gewalt, Künstliche Intelligenz, Krieg. Reality Press. pp. 186-190.
    Ich habe viele kürzliche Diskussionen über die Grenzen der Berechnung und das Universum als Computer gelesen, in der Hoffnung, einige Kommentare über die erstaunliche Arbeit des Polymath Physikers und Entscheidungstheoretikers David Wolpert zu finden, aber habe kein einziges Zitat gefunden und so präsentiere ich diese sehr kurze Zusammenfassung. Wolpert bewies einige verblüffende Unmöglichkeit oder Unvollständigkeit Theoreme (1992 bis 2008-siehe arxiv dot org) über die Grenzen der Schlussfolgerung (Berechnung), die so allgemein sind, dass sie unabhängig von dem Gerät, das die Berechnung, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. If Simulation Hypothesis is Possible, Illusionism is False.Wang Zihao - manuscript
    The simulation hypothesis is a view of the nature of reality, suggesting that our world is likely a computer simulation created by an advanced civilization. In contrast, illusionism is a theory about the nature of phenomenal consciousness, arguing that phenomenal consciousness is an illusion and can be fully explained in physical terms. I argue that if our world is a simulated construct, illusionism could be incorrect. Specifically, even if our phenomenal experiences can be explained as illusionism suggests, advanced civilizations could (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Computers Aren’t Syntax All the Way Down or Content All the Way Up.Cem Bozşahin - 2018 - Minds and Machines 28 (3):543-567.
    This paper argues that the idea of a computer is unique. Calculators and analog computers are not different ideas about computers, and nature does not compute by itself. Computers, once clearly defined in all their terms and mechanisms, rather than enumerated by behavioral examples, can be more than instrumental tools in science, and more than source of analogies and taxonomies in philosophy. They can help us understand semantic content and its relation to form. This can be achieved because they have (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  44. The Narrow Conception of Computational Psychology.Luke Kersten - 2017 - In Glenn Gunzelmann, Andrew Howes, Thora Tenbrink & Eddy Davelaar (eds.), Proceedings of the 39th Annual Conference of Cognitive Science Society. pp. 2389-2394.
    One particularly successful approach to modeling within cognitive science is computational psychology. Computational psychology explores psychological processes by building and testing computational models with human data. In this paper, it is argued that a specific approach to understanding computation, what is called the ‘narrow conception’, has problematically limited the kinds of models, theories, and explanations that are offered within computational psychology. After raising two problems for the narrow conception, an alternative, ‘wide approach’ to computational psychology is proposed.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Recensione di 'The Outer Limits of Reason' (I limiti esterni della ragione) di Noson Yanofsky 403p (2013)(revisto 2019).Michael Richard Starks - 2020 - In Benvenuti all'inferno sulla Terra: Bambini, Cambiamenti climatici, Bitcoin, Cartelli, Cina, Democrazia, Diversità, Disgenetica, Uguaglianza, Pirati Informatici, Diritti umani, Islam, Liberalismo, Prosperità, Web, Caos, Fame, Malattia, Violenza, Intellige. Las Vegas, NV USA: Reality Press. pp. 182-196.
    Io do una recensione dettagliata di 'The Outer Limits of Reason' di Noson Yanofsky da una prospettiva unificata di Wittgenstein e psicologia evolutiva. Inditesto che la difficoltà con questioni come il paradosso nel linguaggio e nella matematica, l'incompletezza, l'indecidibilità, la computabilità, il cervello e l'universo come computer ecc., derivano tutto dall'incapacità di guardare attentamente al nostro uso del linguaggio nel contesto appropriato e quindi alla mancata separazione delle questioni di fatto scientifico dalle questioni di come funziona il linguaggio. Discuto (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Computing and philosophy: Selected papers from IACAP 2014.Vincent C. Müller (ed.) - 2016 - Cham: Springer.
    This volume offers very selected papers from the 2014 conference of the “International Association for Computing and Philosophy” (IACAP) - a conference tradition of 28 years. - - - Table of Contents - 0 Vincent C. Müller: - Editorial - 1) Philosophy of computing - 1 Çem Bozsahin: - What is a computational constraint? - 2 Joe Dewhurst: - Computing Mechanisms and Autopoietic Systems - 3 Vincenzo Fano, Pierluigi Graziani, Roberto Macrelli and Gino Tarozzi: - Are Gandy Machines really local? (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Mechanizmy predykcyjne i ich normatywność [Predictive mechanisms and their normativity].Michał Piekarski - 2020 - Warszawa, Polska: Liberi Libri.
    The aim of this study is to justify the belief that there are biological normative mechanisms that fulfill non-trivial causal roles in the explanations (as formulated by researchers) of actions and behaviors present in specific systems. One example of such mechanisms is the predictive mechanisms described and explained by predictive processing (hereinafter PP), which (1) guide actions and (2) shape causal transitions between states that have specific content and fulfillment conditions (e.g. mental states). Therefore, I am guided by a specific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Adaptive Intelligent Tutoring System for learning Computer Theory.Mohammed A. Al-Nakhal & Samy S. Abu Naser - 2017 - European Academic Research 4 (10).
    In this paper, we present an intelligent tutoring system developed to help students in learning Computer Theory. The Intelligent tutoring system was built using ITSB authoring tool. The system helps students to learn finite automata, pushdown automata, Turing machines and examines the relationship between these automata and formal languages, deterministic and nondeterministic machines, regular expressions, context free grammars, undecidability, and complexity. During the process the intelligent tutoring system gives assistance and feedback of many types in an intelligent manner according (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  49. Information Theory’s failure in neuroscience: on the limitations of cybernetics.Lance Nizami - 2014 - In Martin Gibbs (ed.), Proceedings of the IEEE 2014 Conference on Norbert Wiener in the 21st Century. IEEE.
    In Cybernetics (1961 Edition), Professor Norbert Wiener noted that “The role of information and the technique of measuring and transmitting information constitute a whole discipline for the engineer, for the neuroscientist, for the psychologist, and for the sociologist”. Sociology aside, the neuroscientists and the psychologists inferred “information transmitted” using the discrete summations from Shannon Information Theory. The present author has since scrutinized the psychologists’ approach in depth, and found it wrong. The neuroscientists’ approach is highly related, but remains unexamined. Neuroscientists (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 938