Results for ' Provability Theorem for PA'

969 found
Order:
  1.  67
    Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the slowly emerging, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. An Elementary, Pre-formal, Proof of FLT: Why is x^n+y^n=z^n solvable only for n<3?Bhupinder Singh Anand - manuscript
    Andrew Wiles' analytic proof of Fermat's Last Theorem FLT, which appeals to geometrical properties of real and complex numbers, leaves two questions unanswered: (i) What technique might Fermat have used that led him to, even if only briefly, believe he had `a truly marvellous demonstration' of FLT? (ii) Why is x^n+y^n=z^n solvable only for n<3? In this inter-disciplinary perspective, we offer insight into, and answers to, both queries; yielding a pre-formal proof of why FLT can be treated as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Formal Background for the Incompleteness and Undefinability Theorems.Richard Kimberly Heck - manuscript
    A teaching document I've used in my courses on truth and on incompleteness. Aimed at students who have a good grasp of basic logic, and decent math skills, it attempts to give them the background they need to understand a proper statement of the classic results due to Gödel and Tarski, and sketches their proofs. Topics covered include the notions of language and theory, the basics of formal syntax and arithmetization, formal arithmetic (Q and PA), representability, diagonalization, and the incompleteness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. A cut-free sequent calculus for the bi-intuitionistic logic 2Int.Sara Ayhan - manuscript
    The purpose of this paper is to introduce a bi-intuitionistic sequent calculus and to give proofs of admissibility for its structural rules. The calculus I will present, called SC2Int, is a sequent calculus for the bi-intuitionistic logic 2Int, which Wansing presents in [2016a]. There he also gives a natural deduction system for this logic, N2Int, to which SC2Int is equivalent in terms of what is derivable. What is important is that these calculi represent a kind of bilateralist reasoning, since they (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Truth, Conservativeness, and Provability.Cezary Cieśliński - 2010 - Mind 119 (474):409-422.
    Conservativeness has been proposed as an important requirement for deflationary truth theories. This in turn gave rise to the so-called ‘conservativeness argument’ against deflationism: a theory of truth which is conservative over its base theory S cannot be adequate, because it cannot prove that all theorems of S are true. In this paper we show that the problems confronting the deflationist are in fact more basic: even the observation that logic is true is beyond his reach. This seems to conflict (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  7. A small reflection principle for bounded arithmetic.Rineke Verbrugge & Albert Visser - 1994 - Journal of Symbolic Logic 59 (3):785-812.
    We investigate the theory IΔ 0 + Ω 1 and strengthen [Bu86. Theorem 8.6] to the following: if NP ≠ co-NP. then Σ-completeness for witness comparison formulas is not provable in bounded arithmetic. i.e. $I\delta_0 + \Omega_1 + \nvdash \forall b \forall c (\exists a(\operatorname{Prf}(a.c) \wedge \forall = \leq a \neg \operatorname{Prf} (z.b))\\ \rightarrow \operatorname{Prov} (\ulcorner \exists a(\operatorname{Prf}(a. \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z.\bar{b})) \urcorner)).$ Next we study a "small reflection principle" in bounded arithmetic. We prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  8. Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number theory that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. The ILLTP Library for Intuitionistic Linear Logic.Carlos Olarte, Valeria Correa Vaz De Paiva, Elaine Pimentel & Giselle Reis - manuscript
    Benchmarking automated theorem proving (ATP) systems using standardized problem sets is a well-established method for measuring their performance. However, the availability of such libraries for non-classical logics is very limited. In this work we propose a library for benchmarking Girard's (propositional) intuitionistic linear logic. For a quick bootstrapping of the collection of problems, and for discussing the selection of relevant problems and understanding their meaning as linear logic theorems, we use translations of the collection of Kleene's intuitionistic theorems in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Base-extension Semantics for Modal Logic.Eckhardt Timo & Pym David - forthcoming - Logic Journal of the IGPL.
    In proof-theoretic semantics, meaning is based on inference. It may be seen as the mathematical expression of the inferentialist interpretation of logic. Much recent work has focused on base-extension semantics, in which the validity of formulas is given by an inductive definition generated by provability in a ‘base’ of atomic rules. Base-extension semantics for classical and intuitionistic propositional logic have been explored by several authors. In this paper, we develop base-extension semantics for the classical propositional modal systems K, KT (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Expressing Truth directly within a formal system with no need for model theory.P. Olcott - manuscript
    Because formal systems of symbolic logic inherently express and represent the deductive inference model formal proofs to theorem consequences can be understood to represent sound deductive inference to deductive conclusions without any need for other representations.
    Download  
     
    Export citation  
     
    Bookmark  
  13. The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. A Representation Theorem for Frequently Irrational Agents.Edward Elliott - 2017 - Journal of Philosophical Logic 46 (5):467-506.
    The standard representation theorem for expected utility theory tells us that if a subject’s preferences conform to certain axioms, then she can be represented as maximising her expected utility given a particular set of credences and utilities—and, moreover, that having those credences and utilities is the only way that she could be maximising her expected utility. However, the kinds of agents these theorems seem apt to tell us anything about are highly idealised, being always probabilistically coherent with infinitely precise (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  15. Provability logics for relative interpretability.Frank Veltman & Dick De Jongh - 1990 - In Petio Petrov Petkov (ed.), Mathematical Logic. Proceedings of the Heyting '88 Summer School. Springer. pp. 31-42.
    In this paper the system IL for relative interpretability is studied.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  16. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Jury Theorems for Peer Review.Marcus Arvan, Liam Kofi Bright & Remco Heesen - forthcoming - British Journal for the Philosophy of Science.
    Peer review is often taken to be the main form of quality control on academic research. Usually journals carry this out. However, parts of maths and physics appear to have a parallel, crowd-sourced model of peer review, where papers are posted on the arXiv to be publicly discussed. In this paper we argue that crowd-sourced peer review is likely to do better than journal-solicited peer review at sorting papers by quality. Our argument rests on two key claims. First, crowd-sourced peer (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  18. Central limit theorem for the functional of jump Markov process.Nguyen Van Huu, Quan-Hoang Vuong & Tran Minh Ngoc - 2005 - In Nguyen Van Huu, Quan-Hoang Vuong & Tran Minh Ngoc (eds.), Báo cáo: Hội nghị toàn quốc lần thứ III “Xác suất - Thống kê: Nghiên cứu, ứng dụng và giảng dạy”. Ha Noi: Viện Toán học. pp. 34.
    Central limit theorem for the functional of jump Markov process. Nguyễn Văn Hữu, Vương Quân Hoàng và Trần Minh Ngọc. Báo cáo: Hội nghị toàn quốc lần thứ III “Xác suất - Thống kê: Nghiên cứu, ứng dụng và giảng dạy” (tr. 34). Ba Vì, Hà Tây, ngày 12-14 tháng 05 năm 2005. Viện Toán học / Trường Đại học Khoa học tự nhiên / Đại học Quốc gia Hà Nội.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Agreement theorems for self-locating belief.Michael Caie - 2016 - Review of Symbolic Logic 9 (2):380-407.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. An Impossibility Theorem for Base Rate Tracking and Equalized Odds.Rush Stewart, Benjamin Eva, Shanna Slank & Reuben Stern - forthcoming - Analysis.
    There is a theorem that shows that it is impossible for an algorithm to jointly satisfy the statistical fairness criteria of Calibration and Equalised Odds non-trivially. But what about the recently advocated alternative to Calibration, Base Rate Tracking? Here, we show that Base Rate Tracking is strictly weaker than Calibration, and then take up the question of whether it is possible to jointly satisfy Base Rate Tracking and Equalised Odds in non-trivial scenarios. We show that it is not, thereby (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. An impossibility theorem for amalgamating evidence.Jacob Stegenga - 2013 - Synthese 190 (12):2391-2411.
    Amalgamating evidence of different kinds for the same hypothesis into an overall confirmation is analogous, I argue, to amalgamating individuals’ preferences into a group preference. The latter faces well-known impossibility theorems, most famously “Arrow’s Theorem”. Once the analogy between amalgamating evidence and amalgamating preferences is tight, it is obvious that amalgamating evidence might face a theorem similar to Arrow’s. I prove that this is so, and end by discussing the plausibility of the axioms required for the theorem.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  22. The species problem and its logic: Inescapable ambiguity and framework-relativity.Steven James Bartlett - 2015 - Willamette University Faculty Research Website, ArXiv.Org, and Cogprints.Org.
    For more than fifty years, taxonomists have proposed numerous alternative definitions of species while they searched for a unique, comprehensive, and persuasive definition. This monograph shows that these efforts have been unnecessary, and indeed have provably been a pursuit of a will o’ the wisp because they have failed to recognize the theoretical impossibility of what they seek to accomplish. A clear and rigorous understanding of the logic underlying species definition leads both to a recognition of the inescapable ambiguity that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. The Craig interpolation theorem for prepositional logics with strong negation.Valentin Goranko - 1985 - Studia Logica 44 (3):291 - 317.
    This paper deals with, prepositional calculi with strong negation (N-logics) in which the Craig interpolation theorem holds. N-logics are defined to be axiomatic strengthenings of the intuitionistic calculus enriched with a unary connective called strong negation. There exists continuum of N-logics, but the Craig interpolation theorem holds only in 14 of them.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  24. A Dutch Book Theorem for Quantificational Credences.Benjamin Lennertz - 2017 - Ergo: An Open Access Journal of Philosophy 4.
    In this paper, I present an argument for a rational norm involving a kind of credal attitude called a quantificational credence – the kind of attitude we can report by saying that Lucy thinks that each record in Schroeder’s collection is 5% likely to be scratched. I prove a result called a Dutch Book Theorem, which constitutes conditional support for the norm. Though Dutch Book Theorems exist for norms on ordinary and conditional credences, there is controversy about the epistemic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. An Arrovian Impossibility Theorem for the Epistemology of Disagreement.Nicholaos Jones - 2012 - Logos and Episteme 3 (1):97-115.
    According to conciliatory views about the epistemology of disagreement, when epistemic peers have conflicting doxastic attitudes toward a proposition and fully disclose to one another the reasons for their attitudes toward that proposition (and neither has independent reason to believe the other to be mistaken), each peer should always change his attitude toward that proposition to one that is closer to the attitudes of those peers with which there is disagreement. According to pure higher-order evidence views, higher-order evidence for a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. The Normalization Theorem for the First-Order Classical Natural Deduction with Disjunctive Syllogism.Seungrak Choi - 2021 - Korean Journal of Logic 2 (24):143-168.
    In the present paper, we prove the normalization theorem and the consistency of the first-order classical logic with disjunctive syllogism. First, we propose the natural deduction system SCD for classical propositional logic having rules for conjunction, implication, negation, and disjunction. The rules for disjunctive syllogism are regarded as the rules for disjunction. After we prove the normalization theorem and the consistency of SCD, we extend SCD to the system SPCD for the first-order classical logic with disjunctive syllogism. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. A topological completeness theorem for a weak version of Stalnaker's logic of knowledge and belief.Thomas Mormann - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  28. Why did Fermat believe he had `a truly marvellous demonstration' of FLT?Bhupinder Singh Anand - manuscript
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it nevertheless leaves (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Central Limit Theorem for Functional of Jump Markov Processes.Nguyen Van Huu, Quan-Hoang Vuong & Minh-Ngoc Tran - 2005 - Vietnam Journal of Mathematics 33 (4):443-461.
    Some conditions are given to ensure that for a jump homogeneous Markov process $\{X(t),t\ge 0\}$ the law of the integral functional of the process $T^{-1/2} \int^T_0\varphi(X(t))dt$ converges to the normal law $N(0,\sigma^2)$ as $T\to \infty$, where $\varphi$ is a mapping from the state space $E$ into $\bbfR$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. A Completenesss Theorem for a 3-Valued Semantics for a First-order Language.Christopher Gauker - manuscript
    This document presents a Gentzen-style deductive calculus and proves that it is complete with respect to a 3-valued semantics for a language with quantifiers. The semantics resembles the strong Kleene semantics with respect to conjunction, disjunction and negation. The completeness proof for the sentential fragment fills in the details of a proof sketched in Arnon Avron (2003). The extension to quantifiers is original but uses standard techniques.
    Download  
     
    Export citation  
     
    Bookmark  
  31. There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - 2021 - Philosophia Mathematica 29 (2):278–287.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  32. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  33. A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics.Pablo Dopico - 2024 - Synthese 203 (2):1-22.
    Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how it can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Proving Induction.Alexander Paseau - 2011 - Australasian Journal of Logic 10:1-17.
    The hard problem of induction is to argue without begging the question that inductive inference, applied properly in the proper circumstances, is conducive to truth. A recent theorem seems to show that the hard problem has a deductive solution. The theorem, provable in ZFC, states that a predictive function M exists with the following property: whatever world we live in, M ncorrectly predicts the world’s present state given its previous states at all times apart from a well-ordered subset. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Erratum to “The Ricean Objection: An Analogue of Rice's Theorem for First-Order Theories” Logic Journal of the IGPL, 16: 585–590. [REVIEW]Igor Oliveira & Walter Carnielli - 2009 - Logic Journal of the IGPL 17 (6):803-804.
    This note clarifies an error in the proof of the main theorem of “The Ricean Objection: An Analogue of Rice’s Theorem for First-Order Theories”, Logic Journal of the IGPL, 16(6): 585–590(2008).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. On the provability logic of bounded arithmetic.Rineke Verbrugge & Alessandro Berarducci - 1991 - Annals of Pure and Applied Logic 61 (1-2):75-93.
    Let PLω be the provability logic of IΔ0 + ω1. We prove some containments of the form L ⊆ PLω < Th(C) where L is the provability logic of PA and Th(C) is a suitable class of Kripke frames.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  39. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Arrow's theorem, ultrafilters, and reverse mathematics.Benedict Eastaugh - forthcoming - Review of Symbolic Logic.
    This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's (...) in RCA0, and thus in PRA, since Arrow's theorem can be formalised as a Π01 sentence. Finally we show that Fishburn's possibility theorem for countable societies is equivalent to ACA0 over RCA0. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Representation theorems and the foundations of decision theory.Christopher Meacham & Jonathan Weisberg - 2011 - Australasian Journal of Philosophy 89 (4):641 - 663.
    Representation theorems are often taken to provide the foundations for decision theory. First, they are taken to characterize degrees of belief and utilities. Second, they are taken to justify two fundamental rules of rationality: that we should have probabilistic degrees of belief and that we should act as expected utility maximizers. We argue that representation theorems cannot serve either of these foundational purposes, and that recent attempts to defend the foundational importance of representation theorems are unsuccessful. As a result, we (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  42. A Logic for Frege's Theorem.Richard Heck - 1999 - In Richard G. Heck (ed.), Frege’s Theorem: An Introduction. The Harvard Review of Philosophy.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  43. Why Arrow's Theorem Matters for Political Theory Even If Preference Cycles Never Occur.Sean Ingham - forthcoming - Public Choice.
    Riker (1982) famously argued that Arrow’s impossibility theorem undermined the logical foundations of “populism”, the view that in a democracy, laws and policies ought to express “the will of the people”. In response, his critics have questioned the use of Arrow’s theorem on the grounds that not all configurations of preferences are likely to occur in practice; the critics allege, in particular, that majority preference cycles, whose possibility the theorem exploits, rarely happen. In this essay, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. (1 other version)Jury Theorems.Franz Dietrich & Kai Spiekermann - 2019 - In Miranda Fricker, Peter Graham, David Henderson & Nikolaj Jang Pedersen (eds.), The Routledge Handbook of Social Epistemology. New York, USA: Routledge.
    We give a review and critique of jury theorems from a social-epistemology perspective, covering Condorcet’s (1785) classic theorem and several later refinements and departures. We assess the plausibility of the conclusions and premises featuring in jury theorems and evaluate the potential of such theorems to serve as formal arguments for the ‘wisdom of crowds’. In particular, we argue (i) that there is a fundamental tension between voters’ independence and voters’ competence, hence between the two premises of most jury theorems; (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. Representation Theorems and Radical Interpretation.Edward J. R. Elliott - manuscript
    This paper begins with a puzzle regarding Lewis' theory of radical interpretation. On the one hand, Lewis convincingly argued that the facts about an agent's sensory evidence and choices will always underdetermine the facts about her beliefs and desires. On the other hand, we have several representation theorems—such as those of (Ramsey 1931) and (Savage 1954)—that are widely taken to show that if an agent's choices satisfy certain constraints, then those choices can suffice to determine her beliefs and desires. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Numerical infinities applied for studying Riemann series theorem and Ramanujan summation.Yaroslav Sergeyev - 2018 - In AIP Conference Proceedings 1978. AIP. pp. 020004.
    A computational methodology called Grossone Infinity Computing introduced with the intention to allow one to work with infinities and infinitesimals numerically has been applied recently to a number of problems in numerical mathematics (optimization, numerical differentiation, numerical algorithms for solving ODEs, etc.). The possibility to use a specially developed computational device called the Infinity Computer (patented in USA and EU) for working with infinite and infinitesimal numbers numerically gives an additional advantage to this approach in comparison with traditional methodologies studying (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Fermat’s Last Theorem Proved by Induction (and Accompanied by a Philosophical Comment).Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (8):1-8.
    A proof of Fermat’s last theorem is demonstrated. It is very brief, simple, elementary, and absolutely arithmetical. The necessary premises for the proof are only: the three definitive properties of the relation of equality (identity, symmetry, and transitivity), modus tollens, axiom of induction, the proof of Fermat’s last theorem in the case of n = 3 as well as the premises necessary for the formulation of the theorem itself. It involves a modification of Fermat’s approach of infinite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. The Reasons Aggregation Theorem.Ralph Wedgwood - 2022 - Oxford Studies in Normative Ethics 12:127-148.
    Often, when one faces a choice between alternative actions, there are reasons both for and against each alternative. On one way of understanding these words, what one “ought to do all things considered (ATC)” is determined by the totality of these reasons. So, these reasons can somehow be “combined” or “aggregated” to yield an ATC verdict on these alternatives. First, various assumptions about this sort of aggregation of reasons are articulated. Then it is shown that these assumptions allow for the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  50. Arrow's theorem in judgment aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
    In response to recent work on the aggregation of individual judgments on logically connected propositions into collective judgments, it is often asked whether judgment aggregation is a special case of Arrowian preference aggregation. We argue for the converse claim. After proving two impossibility theorems on judgment aggregation (using "systematicity" and "independence" conditions, respectively), we construct an embedding of preference aggregation into judgment aggregation and prove Arrow’s theorem (stated for strict preferences) as a corollary of our second result. Although we (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
1 — 50 / 969