Results for ' set theory and logic as Boolean algebra'

950 found
Order:
  1. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Level Theory, Part 3: A Boolean Algebra of Sets Arranged in Well-Ordered Levels.Tim Button - 2022 - Bulletin of Symbolic Logic 28 (1):1-26.
    On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. (1 other version)Twist-Valued Models for Three-valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - 2021 - Logic and Logical Philosophy 30 (2):187-226.
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Hilbert arithmetic as a Pythagorean arithmetic: arithmetic as transcendental.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (54):1-24.
    The paper considers a generalization of Peano arithmetic, Hilbert arithmetic as the basis of the world in a Pythagorean manner. Hilbert arithmetic unifies the foundations of mathematics (Peano arithmetic and set theory), foundations of physics (quantum mechanics and information), and philosophical transcendentalism (Husserl’s phenomenology) into a formal theory and mathematical structure literally following Husserl’s tracе of “philosophy as a rigorous science”. In the pathway to that objective, Hilbert arithmetic identifies by itself information related to finite sets and series (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Deontic Logics based on Boolean Algebra.Pablo F. Castro & Piotr Kulicki - 2013 - In Robert Trypuz (ed.), Krister Segerberg on Logic of Actions. Dordrecht, Netherland: Springer Verlag.
    Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. “Two bits less” after quantum-information conservation and their interpretation as “distinguishability / indistinguishability” and “classical / quantum”.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (46):1-7.
    The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classical” quantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That new understanding of quantum indistinguishability is linked to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  12. Relevance, relatedness and restricted set theory.Barry Smith - 1991 - In Georg Schurz (ed.), Advances in Scientific Philosophy. pp. 45-56.
    Relevance logic has become ontologically fertile. No longer is the idea of relevance restricted in its application to purely logical relations among propositions, for as Dunn has shown in his (1987), it is possible to extend the idea in such a way that we can distinguish also between relevant and irrelevant predications, as for example between “Reagan is tall” and “Reagan is such that Socrates is wise”. Dunn shows that we can exploit certain special properties of identity within the (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  13. Non-deterministic algebraization of logics by swap structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  14. Álgebras booleanas, órdenes parciales y axioma de elección.Franklin Galindo - 2017 - Divulgaciones Matematicas 18 ( 1):34-54.
    El objetivo de este artículo es presentar una demostración de un teorema clásico sobre álgebras booleanas y ordenes parciales de relevancia actual en teoría de conjuntos, como por ejemplo, para aplicaciones del método de construcción de modelos llamado “forcing” (con álgebras booleanas completas o con órdenes parciales). El teorema que se prueba es el siguiente: “Todo orden parcial se puede extender a una única álgebra booleana completa (salvo isomorfismo)”. Donde extender significa “sumergir densamente”. Tal demostración se realiza utilizando cortaduras de (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Logic-Language-Ontology.Urszula B. Wybraniec-Skardowska - 2022 - Cham, Switzerland: Springer Nature, Birkhäuser, Studies in Universal Logic series.
    The book is a collection of papers and aims to unify the questions of syntax and semantics of language, which are included in logic, philosophy and ontology of language. The leading motif of the presented selection of works is the differentiation between linguistic tokens (material, concrete objects) and linguistic types (ideal, abstract objects) following two philosophical trends: nominalism (concretism) and Platonizing version of realism. The opening article under the title “The Dual Ontological Nature of Language Signs and the Problem (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. A Simpler and More Realistic Subjective Decision Theory.Haim Gaifman & Yang Liu - 2018 - Synthese 195 (10):4205--4241.
    In his classic book “the Foundations of Statistics” Savage developed a formal system of rational decision making. The system is based on (i) a set of possible states of the world, (ii) a set of consequences, (iii) a set of acts, which are functions from states to consequences, and (iv) a preference relation over the acts, which represents the preferences of an idealized rational agent. The goal and the culmination of the enterprise is a representation theorem: Any preference relation that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  18. A New Logic, a New Information Measure, and a New Information-Based Approach to Interpreting Quantum Mechanics.David Ellerman - 2024 - Entropy Special Issue: Information-Theoretic Concepts in Physics 26 (2).
    The new logic of partitions is dual to the usual Boolean logic of subsets (usually presented only in the special case of the logic of propositions) in the sense that partitions and subsets are category-theoretic duals. The new information measure of logical entropy is the normalized quantitative version of partitions. The new approach to interpreting quantum mechanics (QM) is showing that the mathematics (not the physics) of QM is the linearized Hilbert space version of the mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Category theory and set theory as theories about complementary types of universals.David P. Ellerman - 2017 - Logic and Logical Philosophy 26 (2):1-18.
    Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u_{F}={x|F(x)} for a property F() could never be self-predicative in the sense of u_{F}∈u_{F}. But the mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - unknown
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  21. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  46
    Counterfactuals 2.0: Logic, Truth Conditions, and Probability.Giuliano Rosella - 2023 - Dissertation, University of Turin
    The present thesis focuses on counterfactuals. Specifically, we will address new questions and open problems that arise for the standard semantic accounts of counterfactual conditionals. The first four chapters deal with the Lewisian semantic account of counterfactuals. On a technical level, we contribute by providing an equivalent algebraic semantics for Lewis' variably strict conditional logics, which is notably absent in the literature. We introduce a new kind of algebra and differentiate between local and global versions of each of Lewis' (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. Collected Papers (on Neutrosophic Theory and Its Applications in Algebra), Volume IX.Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. The logic of partitions: Introduction to the dual of the logic of subsets: The logic of partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  26. The Ontology of Knowledge, logic, arithmetic, sets theory and geometry (issue 20220523).Jean-Louis Boucon - 2021 - Published.
    Despite the efforts undertaken to separate scientific reasoning and metaphysical considerations, despite the rigor of construction of mathematics, these are not, in their very foundations, independent of the modalities, of the laws of representation of the world. The OdC shows that the logical Facts Exist neither more nor less than the Facts of the world which are Facts of Knowledge. Mathematical facts are representation facts. The primary objective of this article is to integrate the subject into mathematics as a mode (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. An introduction to logical entropy and its relation to Shannon entropy.David Ellerman - 2013 - International Journal of Semantic Computing 7 (2):121-145.
    The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a finite set--just as the usual logical notion of probability (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  28. Vagueness and Roughness.Bonikowski Zbigniew & Wybranie-Skardowska Urszula - 2008 - In Bonikowski Zbigniew & Wybranie-Skardowska Urszula (eds.), Transactions on Rough Sets IX. Lectures Notes and Computer Science 5290. Berlin-Heidelberg: pp. 1-13.
    The paper proposes a new formal approach to vagueness and vague sets taking inspirations from Pawlak’s rough set theory. Following a brief introduction to the problem of vagueness, an approach to conceptualization and representation of vague knowledge is presented from a number of different perspectives: those of logic, set theory, algebra, and computer science. The central notion of the vague set, in relation to the rough set, is defined as a family of sets approximated by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Set Theory, Topology, and the Possibility of Junky Worlds.Thomas Mormann - 2014 - Notre Dame Journal of Formal Logic 55 (1): 79 - 90.
    A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of junky (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set- (...) or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - 2022 - Review of Symbolic Logic 15 (3):771-806.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Hyperboolean Algebras and Hyperboolean Modal Logic.Valentin Goranko & Dimiter Vakarelov - 1999 - Journal of Applied Non-Classical Logics 9 (2):345-368.
    Hyperboolean algebras are Boolean algebras with operators, constructed as algebras of complexes (or, power structures) of Boolean algebras. They provide an algebraic semantics for a modal logic (called here a {\em hyperboolean modal logic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Boolean algebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modal logic, give a complete axiomatization of it, and show that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  33. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum (...) to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Prototypes, Poles, and Topological Tessellations of Conceptual Spaces.Thomas Mormann - 2021 - Synthese 199 (1):3675 - 3710.
    Abstract. The aim of this paper is to present a topological method for constructing discretizations (tessellations) of conceptual spaces. The method works for a class of topological spaces that the Russian mathematician Pavel Alexandroff defined more than 80 years ago. Alexandroff spaces, as they are called today, have many interesting properties that distinguish them from other topological spaces. In particular, they exhibit a 1-1 correspondence between their specialization orders and their topological structures. Recently, a special type of Alexandroff spaces was (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Wand/Set Theories: A realization of Conway's mathematicians' liberation movement, with an application to Church's set theory with a universal set.Tim Button - forthcoming - Journal of Symbolic Logic.
    Consider a variant of the usual story about the iterative conception of sets. As usual, at every stage, you find all the (bland) sets of objects which you found earlier. But you also find the result of tapping any earlier-found object with any magic wand (from a given stock of magic wands). -/- By varying the number and behaviour of the wands, we can flesh out this idea in many different ways. This paper's main Theorem is that any loosely constructive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Discrete and continuous: a fundamental dichotomy in mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last hundred (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  38. analítica revista de filosofía.Gabriel Garduño-Soto - 2015 - Analítica. Revista de Filosofía 9:69-112.
    The complete arithmetization of the bivalued propositional logic is here presented and extended with original functions not hitherto included in other interpretations of propositional logic, as the algebraic logic or sets theory. An historical review of the former attempts of arithmetical representation of the propositional logic is presented.
    Download  
     
    Export citation  
     
    Bookmark  
  39. A Naturalized Theory for Thinking.Yihong Wang - 2018 - Journal of Human Cognition 2 (1):30-41.
    This article introduces the mathematical models of the thinking laws in the internal structure of consciousness, the spatial and temporal features of the thinking laws, and the phenomenon of resonance as a general feature of the cognitive process. The article will focus on the logical order and space-time existence of the thinking laws, by interrelating such mathematical concepts as Boolessche Algebra, Set theory, Crowd round of Abel, and ordinal number. Finally, the article discusses how thinking laws can a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40.  47
    A Fundamental Duality in the Exact Sciences: The Application to Quantum Mechanics.David Ellerman - 2024 - Foundations 4 (2):175-204.
    There is a fundamental subsets–partitions duality that runs through the exact sciences. In more concrete terms, it is the duality between elements of a subset and the distinctions of a partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major architectonic of mathematics. The paper first develops the duality between the Boolean logic of subsets and the logic of partitions. Then, probability theory and information theory (as based on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. On Classical and Quantum Logical Entropy.David Ellerman - manuscript
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Boole's criteria for validity and invalidity.John Corcoran & Susan Wood - 1980 - Notre Dame Journal of Formal Logic 21 (4):609-638.
    It is one thing for a given proposition to follow or to not follow from a given set of propositions and it is quite another thing for it to be shown either that the given proposition follows or that it does not follow.* Using a formal deduction to show that a conclusion follows and using a countermodel to show that a conclusion does not follow are both traditional practices recognized by Aristotle and used down through the history of logic. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  43. Category Theory and the Ontology of Śūnyatā.Posina Venkata Rayudu & Sisir Roy - 2024 - In Peter Gobets & Robert Lawrence Kuhn (eds.), The Origin and Significance of Zero: An Interdisciplinary Perspective. Leiden: Brill. pp. 450-478.
    Notions such as śūnyatā, catuṣkoṭi, and Indra's net, which figure prominently in Buddhist philosophy, are difficult to readily accommodate within our ordinary thinking about everyday objects. Famous Buddhist scholar Nāgārjuna considered two levels of reality: one called conventional reality, and the other ultimate reality. Within this framework, śūnyatā refers to the claim that at the ultimate level objects are devoid of essence or "intrinsic properties", but are interdependent by virtue of their relations to other objects. Catuṣkoṭi refers to the claim (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Deontic logic as a study of conditions of rationality in norm-related activities.Berislav Žarnić - 2016 - In Olivier Roy, Allard Tamminga & Malte Willer (eds.), Deontic Logic and Normative Systems. London, UK: College Publications. pp. 272-287.
    The program put forward in von Wright's last works defines deontic logic as ``a study of conditions which must be satisfied in rational norm-giving activity'' and thus introduces the perspective of logical pragmatics. In this paper a formal explication for von Wright's program is proposed within the framework of set-theoretic approach and extended to a two-sets model which allows for the separate treatment of obligation-norms and permission norms. The three translation functions connecting the language of deontic logic with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Discourse and logical form: pronouns, attention and coherence.Una Stojnić, Matthew Stone & Ernie Lepore - 2017 - Linguistics and Philosophy 40 (5):519-547.
    Traditionally, pronouns are treated as ambiguous between bound and demonstrative uses. Bound uses are non-referential and function as bound variables, and demonstrative uses are referential and take as a semantic value their referent, an object picked out jointly by linguistic meaning and a further cue—an accompanying demonstration, an appropriate and adequately transparent speaker’s intention, or both. In this paper, we challenge tradition and argue that both demonstrative and bound pronouns are dependent on, and co-vary with, antecedent expressions. Moreover, the semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  46. Continuous Lattices and Whiteheadian Theory of Space.Thomas Mormann - 1998 - Logic and Logical Philosophy 6:35 - 54.
    In this paper a solution of Whitehead’s problem is presented: Starting with a purely mereological system of regions a topological space is constructed such that the class of regions is isomorphic to the Boolean lattice of regular open sets of that space. This construction may be considered as a generalized completion in analogy to the well-known Dedekind completion of the rational numbers yielding the real numbers . The argument of the paper relies on the theories of continuous lattices and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  47. Reinterpreting the universe-multiverse debate in light of inter-model inconsistency in set theory.Daniel Kuby - manuscript
    In this paper I apply the concept of _inter-Model Inconsistency in Set Theory_ (MIST), introduced by Carolin Antos (this volume), to select positions in the current universe-multiverse debate in philosophy of set theory: I reinterpret H. Woodin’s _Ultimate L_, J. D. Hamkins’ multiverse, S.-D. Friedman’s hyperuniverse and the algebraic multiverse as normative strategies to deal with the situation of de facto inconsistency toleration in set theory as described by MIST. In particular, my aim is to situate these positions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. An Arithmetization of Logical Oppositions.Fabien Schang - 2016 - In Jean-Yves Béziau & Gianfranco Basti (eds.), The Square of Opposition: A Cornerstone of Thought. Basel, Switzerland: Birkhäuser. pp. 215-237.
    An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. An Algebraic View of Super-Belnap Logics.Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio - 2017 - Studia Logica 105 (6):1051-1086.
    The Belnap–Dunn logic is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  50. The Universal Theory Building Toolkit Is Substructural.Shay Allen Logan - 2021 - In Ivo Düntsch & Edwin Mares (eds.), Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs. Springer Verlag. pp. 261-285.
    Consider the set of inferences that are acceptable to use in all our theory building endeavors. Call this set of inferences the universal theory building toolkit, or just ’the toolkit’ for short. It is clear that the toolkit is tightly connected to logic in a variety of ways. Beall, for example, has argued that logic just is the toolkit. This paper avoids making a stand on that issue and instead investigates reasons for thinking that, logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 950