Results for 'set theory and logic as Boolean algebra'

996 found
Order:
  1. Twist-Valued Models for Three-Valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - 2021 - Logic and Logical Philosophy 30 (2):187-226.
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Deontic Logics Based on Boolean Algebra.Pablo F. Castro & Piotr Kulicki - forthcoming - In Robert Trypuz (ed.), Krister Segerberg on Logic of Actions. Springer.
    Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3.  63
    Hilbert Arithmetic as a Pythagorean Arithmetic: Arithmetic as Transcendental.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (54):1-24.
    The paper considers a generalization of Peano arithmetic, Hilbert arithmetic as the basis of the world in a Pythagorean manner. Hilbert arithmetic unifies the foundations of mathematics (Peano arithmetic and set theory), foundations of physics (quantum mechanics and information), and philosophical transcendentalism (Husserl’s phenomenology) into a formal theory and mathematical structure literally following Husserl’s tracе of “philosophy as a rigorous science”. In the pathway to that objective, Hilbert arithmetic identifies by itself information related to finite sets and series (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Modal Ω-Logic.Hasen Khudairi - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer. pp. 65-82.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic, and $\Omega$-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of $\Omega$-logical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Relevance, Relatedness and Restricted Set Theory.Barry Smith - 1991 - In Georg Schurz & Georg Jakob Wilhelm Dorn (eds.), Advances in Scientific Philosophy. Amsterdam: Rodopi. pp. 45-56.
    Relevance logic has become ontologically fertile. No longer is the idea of relevance restricted in its application to purely logical relations among propositions, for as Dunn has shown in his (1987), it is possible to extend the idea in such a way that we can distinguish also between relevant and irrelevant predications, as for example between “Reagan is tall” and “Reagan is such that Socrates is wise”. Dunn shows that we can exploit certain special properties of identity within the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  6. An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  7. Category Theory and Set Theory as Theories About Complementary Types of Universals.David P. Ellerman - 2017 - Logic and Logical Philosophy 26 (2):1-18.
    Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u_{F}={x|F(x)} for a property F() could never be self-predicative in the sense of u_{F}∈u_{F}. But the mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Non-Deterministic Algebraization of Logics by Swap Structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  9.  54
    “Two Bits Less” After Quantum-Information Conservation and Their Interpretation as “Distinguishability / Indistinguishability” and “Classical / Quantum”.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (46):1-7.
    The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classical” quantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That new understanding of quantum indistinguishability is linked to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Ontology of Knowledge, Logic, Arithmetic, Sets Theory and Geometry (Issue 20220523).Jean-Louis Boucon - 2021 - Published.
    Despite the efforts undertaken to separate scientific reasoning and metaphysical considerations, despite the rigor of construction of mathematics, these are not, in their very foundations, independent of the modalities, of the laws of representation of the world. The OdC shows that the logical Facts Exist neither more nor less than the Facts of the world which are Facts of Knowledge. Mathematical facts are representation facts. The primary objective of this article is to integrate the subject into mathematics as a mode (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Set Theory, Topology, and the Possibility of Junky Worlds.Thomas Mormann - 2014 - Notre Dame Journal of Formal Logic 55 (1): 79 - 90.
    A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of junky (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  75
    The Entanglement of Logic and Set Theory, Constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. A Simpler and More Realistic Subjective Decision Theory.Haim Gaifman & Yang Liu - 2018 - Synthese 195 (10):4205--4241.
    In his classic book “the Foundations of Statistics” Savage developed a formal system of rational decision making. The system is based on (i) a set of possible states of the world, (ii) a set of consequences, (iii) a set of acts, which are functions from states to consequences, and (iv) a preference relation over the acts, which represents the preferences of an idealized rational agent. The goal and the culmination of the enterprise is a representation theorem: Any preference relation that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  14.  38
    Álgebras booleanas, órdenes parciales y axioma de elección.Franklin Galindo - 2017 - Divulgaciones Matematicas 18 ( 1):34-54.
    El objetivo de este artículo es presentar una demostración de un teorema clásico sobre álgebras booleanas y ordenes parciales de relevancia actual en teoría de conjuntos, como por ejemplo, para aplicaciones del método de construcción de modelos llamado “forcing” (con álgebras booleanas completas o con órdenes parciales). El teorema que se prueba es el siguiente: “Todo orden parcial se puede extender a una única álgebra booleana completa (salvo isomorfismo)”. Donde extender significa “sumergir densamente”. Tal demostración se realiza utilizando cortaduras de (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  15. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set- (...) or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  16. The Logic of Partitions: Introduction to the Dual of the Logic of Subsets: The Logic of Partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  17. An Introduction to Logical Entropy and its Relation to Shannon Entropy.David Ellerman - 2013 - International Journal of Semantic Computing 7 (2):121-145.
    The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a finite set--just as the usual logical notion of probability (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  18. Logic of Paradoxes in Classical Set Theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Discourse and Logical Form: Pronouns, Attention and Coherence.Una Stojnić, Matthew Stone & Ernie Lepore - 2017 - Linguistics and Philosophy 40 (5):519-547.
    Traditionally, pronouns are treated as ambiguous between bound and demonstrative uses. Bound uses are non-referential and function as bound variables, and demonstrative uses are referential and take as a semantic value their referent, an object picked out jointly by linguistic meaning and a further cue—an accompanying demonstration, an appropriate and adequately transparent speaker’s intention, or both. In this paper, we challenge tradition and argue that both demonstrative and bound pronouns are dependent on, and co-vary with, antecedent expressions. Moreover, the semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  20. Universal Logic in Terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum (...) to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Hyperboolean Algebras and Hyperboolean Modal Logic.Valentin Goranko & Dimiter Vakarelov - 1999 - Journal of Applied Non-Classical Logics 9 (2):345-368.
    Hyperboolean algebras are Boolean algebras with operators, constructed as algebras of complexes (or, power structures) of Boolean algebras. They provide an algebraic semantics for a modal logic (called here a {\em hyperboolean modal logic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Boolean algebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modal logic, give a complete axiomatization of it, and show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. Deontic Logic as a Study of Conditions of Rationality in Norm-Related Activities.Berislav Žarnić - 2016 - In Olivier Roy, Allard Tamminga & Malte Willer (eds.), Deontic Logic and Normative Systems. College Publications. pp. 272-287.
    The program put forward in von Wright's last works defines deontic logic as ``a study of conditions which must be satisfied in rational norm-giving activity'' and thus introduces the perspective of logical pragmatics. In this paper a formal explication for von Wright's program is proposed within the framework of set-theoretic approach and extended to a two-sets model which allows for the separate treatment of obligation-norms and permission norms. The three translation functions connecting the language of deontic logic with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - forthcoming - Review of Symbolic Logic.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  95
    Reinterpreting the Universe-Multiverse Debate in Light of Inter-Model Inconsistency in Set Theory.Daniel Kuby - manuscript
    In this paper I apply the concept of _inter-Model Inconsistency in Set Theory_ (MIST), introduced by Carolin Antos (this volume), to select positions in the current universe-multiverse debate in philosophy of set theory: I reinterpret H. Woodin’s _Ultimate L_, J. D. Hamkins’ multiverse, S.-D. Friedman’s hyperuniverse and the algebraic multiverse as normative strategies to deal with the situation of de facto inconsistency toleration in set theory as described by MIST. In particular, my aim is to situate these positions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. On Forms of Justification in Set Theory.Neil Barton, Claudio Ternullo & Giorgio Venturi - 2020 - Australasian Journal of Logic 17 (4):158-200.
    In the contemporary philosophy of set theory, discussion of new axioms that purport to resolve independence necessitates an explanation of how they come to be justified. Ordinarily, justification is divided into two broad kinds: intrinsic justification relates to how `intuitively plausible' an axiom is, whereas extrinsic justification supports an axiom by identifying certain `desirable' consequences. This paper puts pressure on how this distinction is formulated and construed. In particular, we argue that the distinction as often presented is neither well-demarcated (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Review Of: Garciadiego, A., "Emergence Of...Paradoxes...Set Theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Continuous Lattices and Whiteheadian Theory of Space.Thomas Mormann - 1998 - Logic and Logical Philosophy 6:35 - 54.
    In this paper a solution of Whitehead’s problem is presented: Starting with a purely mereological system of regions a topological space is constructed such that the class of regions is isomorphic to the Boolean lattice of regular open sets of that space. This construction may be considered as a generalized completion in analogy to the well-known Dedekind completion of the rational numbers yielding the real numbers . The argument of the paper relies on the theories of continuous lattices and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  29. Logical Entropy: Introduction to Classical and Quantum Logical Information Theory.David Ellerman - 2018 - Entropy 20 (9):679.
    Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  30. On Classical and Quantum Logical Entropy.David Ellerman - manuscript
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  31. The Myth of Logical Behaviourism and the Origins of the Identity Theory.Sean Crawford - 2013 - In Michael Beaney (ed.), The Oxford Handbook of the History of Analytic Philosophy. Oxford University Press.
    The identity theory’s rise to prominence in analytic philosophy of mind during the late 1950s and early 1960s is widely seen as a watershed in the development of physicalism, in the sense that whereas logical behaviourism proposed analytic and a priori ascertainable identities between the meanings of mental and physical-behavioural concepts, the identity theory proposed synthetic and a posteriori knowable identities between mental and physical properties. While this watershed does exist, the standard account of it is misleading, as (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   9 citations  
  32. Set Theory and Structures.Neil Barton & Sy-David Friedman - 2019 - In Deniz Sarikaya, Deborah Kant & Stefania Centrone (eds.), Reflections on the Foundations of Mathematics. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Prototypes, Poles, and Topological Tessellations of Conceptual Spaces.Thomas Mormann - 2021 - Synthese 199:3675 - 3710.
    Abstract. The aim of this paper is to present a topological method for constructing discretizations (tessellations) of conceptual spaces. The method works for a class of topological spaces that the Russian mathematician Pavel Alexandroff defined more than 80 years ago. Alexandroff spaces, as they are called today, have many interesting properties that distinguish them from other topological spaces. In particular, they exhibit a 1-1 correspondence between their specialization orders and their topological structures. Recently, a special type of Alexandroff spaces was (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Theory of Pricing as Relativistic Kinematics.Sergiy Melnyk - manuscript
    The algebra of transactions as fundamental measurements is constructed on the basis of the analysis of their properties and represents an expansion of the Boolean algebra. The notion of the generalized economic measurements of the economic “quantity” and “quality” of objects of transactions is introduced. It has been shown that the vector space of economic states constructed on the basis of these measurements is relativistic. The laws of kinematics of economic objects in this space have been analyzed (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  36. Discrete and Continuous: A Fundamental Dichotomy in Mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last hundred (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic.Matthias Baaz & Richard Zach - 2000 - In Peter G. Clote & Helmut Schwichtenberg (eds.), Computer Science Logic. 14th International Workshop, CSL 2000. Berlin: Springer. pp. 187– 201.
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  38. An Arithmetization of Logical Oppositions.Fabien Schang - 2016 - In Jean-Yves Beziau & Gianfranco Basti (eds.), The Square of Opposition: A Cornerstone of Thought. Bâle, Suisse: pp. 215-237.
    An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  39.  86
    Multiversism and Concepts of Set: How Much Relativism Is Acceptable?Neil Barton - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. Filmat Studies in the Philosophy of Mathematics. Springer Verlag. pp. 189-209.
    Multiverse Views in set theory advocate the claim that there are many universes of sets, no-one of which is canonical, and have risen to prominence over the last few years. One motivating factor is that such positions are often argued to account very elegantly for technical practice. While there is much discussion of the technical aspects of these views, in this paper I analyse a radical form of Multiversism on largely philosophical grounds. Of particular importance will be an account (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  40. Aristotle's Prior Analytics and Boole's Laws of Thought.John Corcoran - 2003 - History and Philosophy of Logic. 24 (4):261-288.
    Prior Analytics by the Greek philosopher Aristotle (384 – 322 BCE) and Laws of Thought by the English mathematician George Boole (1815 – 1864) are the two most important surviving original logical works from before the advent of modern logic. This article has a single goal: to compare Aristotle’s system with the system that Boole constructed over twenty-two centuries later intending to extend and perfect what Aristotle had started. This comparison merits an article itself. Accordingly, this article does not (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  41. What the Heck is Logic? Logics-as-Formalizations, a Nihilistic Approach.Aadil Kurji - 2020 - Dissertation,
    Logic is about reasoning, or so the story goes. This thesis looks at the concept of logic, what it is, and what claims of correctness of logics amount to. The concept of logic is not a settled matter, and has not been throughout the history of it as a notion. Tools from conceptual analysis aid in this historical venture. Once the unsettledness of logic is established we see the repercussions in current debates in the philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42.  59
    Vagueness and Roughness.Bonikowski Zbigniew & Wybranie-Skardowska Urszula - 2008 - In Transactions on Rough Sets IX. Lectures Notes and Computer Science 5290. Berlin-Heidelberg: pp. 1-13.
    The paper proposes a new formal approach to vagueness and vague sets taking inspirations from Pawlak’s rough set theory. Following a brief introduction to the problem of vagueness, an approach to conceptualization and representation of vague knowledge is presented from a number of different perspectives: those of logic, set theory, algebra, and computer science. The central notion of the vague set, in relation to the rough set, is defined as a family of sets approximated by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  44.  59
    Astronomy, Geometry, and Logic, Rev. 1c: An Ontological Proof of the Natural Principles That Enable and Sustain Reality and Mathematics.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The latest draft (posted 05/14/22) of this short, concise work of proof, theory, and metatheory provides summary meta-proofs and verification of the work and results presented in the Theory and Metatheory of Atemporal Primacy and Riemann, Metatheory, and Proof. In this version, several new and revised definitions of terms were added to subsection SS.1; and many corrected equations, theorems, metatheorems, proofs, and explanations are included in the main text. The body of the text is approximately 18 pages, with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  77
    Structure and Logic of Conceptual Mind.Venkata Rayudu Posina -
    Mind, according to cognitive neuroscience, is a set of brain functions. But, unlike sets, our minds are cohesive. Moreover, unlike the structureless elements of sets, the contents of our minds are structured. Mutual relations between the mental contents endow the mind its structure. Here we characterize the structural essence and the logical form of the mind by focusing on thinking. Examination of the relations between concepts, propositions, and syllogisms involved in thinking revealed the reflexive graph structure of the conceptual mind. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Heisenberg Quantum Mechanics, Numeral Set-Theory And.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in the classical (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  47. Epistemic Modality and Hyperintensionality in Mathematics.Hasen Khudairi - 2017 - Dissertation, University of St Andrews
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of large cardinal axioms, undecidable propositions, and abstraction principles in the philosophy of mathematics; to the modal profile of rational intuition; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48.  26
    Internal Set Theory IST# Based on Hyper Infinitary Logic with Restricted Modus Ponens Rule: Nonconservative Extension of the Model Theoretical NSA.Jaykov Foukzon - 2022 - Journal of Advances in Mathematics and Computer Science 37 (7): 16-43.
    The incompleteness of set theory ZF C leads one to look for natural nonconservative extensions of ZF C in which one can prove statements independent of ZF C which appear to be “true”. One approach has been to add large cardinal axioms.Or, one can investigate second-order expansions like Kelley-Morse class theory, KM or Tarski-Grothendieck set theory T G or It is a nonconservative extension of ZF C and is obtained from other axiomatic set theories by the inclusion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Many-Valued Logics. A Mathematical and Computational Introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. Cognition, Algebra, and Culture in the Tongan Kinship Terminology.Giovanni Bennardo & Dwight Read - 2007 - Journal of Cognition and Culture 7 (1-2):49-88.
    We present an algebraic account of the Tongan kinship terminology (TKT) that provides an insightful journey into the fabric of Tongan culture. We begin with the ethnographic account of a social event. The account provides us with the activities of that day and the centrality of kin relations in the event, but it does not inform us of the conceptual system that the participants bring with them. Rather, it is a slice in time of an ongoing dynamic process that links (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 996