The Cell Ontology (CL) is designed to provide a standardized representation of cell types for data annotation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL’s utility for cross-species data integration. To address this problem, we developed a method for the ontological representation of cells and applied this method to develop a (...) dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. 104. Barry Smith, “Toward a Realistic Science of Environments”, Ecological Psychology, 2009, 21 (2), April-June, 121-130. Abstract: The perceptual psychologist J. J. Gibson embraces a radically externalistic view of mind and action. We have, for Gibson, not a Cartesian mind or soul, with its interior theater of contents and the consequent problem of explaining how this mind or soul and its psychological environment can succeed in grasping physical objects external to itself. Rather, we have a perceiving, acting organism, whose perceptions and actions are always already tuned to the parts and moments, the things and surfaces, of its external environment. We describe how on this basis Gibson sought to develop a realist science of environments which will be ‘consistent with physics, mechanics, optics, acoustics, and chemistry’. (shrink)
This essay proposes that Socrates practiced various spiritual exercises, including meditation, and that this Socratic practice of meditation was habitual, aimed at cultivating emotional self-control and existential preparedness. Contemporary research in neurobiology supports the view that intentional mental actions, including meditation, have a profound impact on brain activity, neuroplasticity, and help engender emotional self-control. This impact on brain activity is confirmed via technological developments, a prime example of how technology benefits humanity. Socrates attains the balanced emotional self-control that Alcibiades describes (...) in the Symposium because of the sustained mental effort he exerts that directly impacts his brain and his emotional and philosophical life. The essay concludes that Socratic meditative practices aimed at manifesting true dignity as human beings within the complexities of a technological world offer a promising model of self-care worthy of embracing today. (shrink)
Nothing was more important for W. E. B. Du Bois than to promote the upward mobility of African Americans. This essay revisits his “The Conversation of Races” to demonstrate its general philosophical importance. Ultimately, Du Bois’s three motivations for giving the address reveal his view of the nature of philosophical inquiry: to critique earlier phenotypic conceptions of race, to show the essentiality of history, and to promote a reflexive practice. Commentators have been unduly invested in the hermeneutic readings and as (...) a result have misunderstood it as a philosophical text. Du Bois did more than introduce the concept of race into the purview of philosophy, he provided a method for philosophical inquiry into a concept that is notoriously difficult to approach with precision. My goal here is to show why no introduction to philosophy and no discussion about the nature of philosophical inquiry is complete without consideration of “Conservation.” Certainly, it is a text about race, but it is also an important philosophical text in general. (shrink)
A qualitative phenomenological approach was used in this study to describe the lived experiences of Tagumpay National High School (TNHS) teachers on Online Learning Action Cell (LAC) session. LAC is a school-based professional development for teachers implemented by the Philippine Department of Education (DepEd). Due to teacher’s lack of participation on classroom LAC, a fully-online mode option is explored by offering TNHS teachers Online LAC session using Facebook as a Learning Management System (LMS). To capture the lived experience of teachers, (...) an in-depth interview with a purposive sample of one TNHS teacher is done in the process. The data gathered went through “Hycner’s Explicitation Process” (1999, in Groenewald, 2004) which includes bracketing, delineating, clustering, summarizing and extracting unique themes. Validity and Credibility were accomplished through an intercoder agreement between researchers, Facebook chat records, bracketing, and member checking. Results identified three themes in relation to teacher’s experience of Online LAC session including usefulness, barriers, and preference. Findings revealed the major role of TNHS teacher’s context on how Online LAC is utilized. Recommendations include administrator and expert teacher working with classroom teachers and the inclusion of teachers’ voices as input in the program design, implementation and evaluation stages of Online LAC to better address curriculum needs and facilitate the delivery of high-quality professional development for teachers’ professional growth. (shrink)
The current global COVID-19 pandemic has led to a deep and multidimensional crisis across all sectors of society. As countries contemplate their mobility and social-distancing policy restrictions, we have a unique opportunity to re-imagine the deliberative frameworks and value priorities in our food systems. Pre-pandemic food systems at global, national, regional and local scales already needed revision to chart a common vision for sustainable and ethical food futures. Re-orientation is also needed by the relevant sciences, traditionally siloed in their disciplines (...) and without adequate attention paid to how the food system problem is variously framed by diverse stakeholders according to their values. From the transdisciplinary perspective of food ethics, we argue that a post-pandemic scheme focused on bottom-up, regional, cross-sectoral and non-partisan deliberation may provide the re-orientation and benchmarks needed for not only more sustainable, but also more ethical food futures. (shrink)
Throughout the biological and biomedical sciences there is a growing need for, prescriptive ‘minimum information’ (MI) checklists specifying the key information to include when reporting experimental results are beginning to find favor with experimentalists, analysts, publishers and funders alike. Such checklists aim to ensure that methods, data, analyses and results are described to a level sufficient to support the unambiguous interpretation, sophisticated search, reanalysis and experimental corroboration and reuse of data sets, facilitating the extraction of maximum value from data sets (...) them. However, such ‘minimum information’ MI checklists are usually developed independently by groups working within representatives of particular biologically- or technologically-delineated domains. Consequently, an overview of the full range of checklists can be difficult to establish without intensive searching, and even tracking thetheir individual evolution of single checklists may be a non-trivial exercise. Checklists are also inevitably partially redundant when measured one against another, and where they overlap is far from straightforward. Furthermore, conflicts in scope and arbitrary decisions on wording and sub-structuring make integration difficult. This presents inhibit their use in combination. Overall, these issues present significant difficulties for the users of checklists, especially those in areas such as systems biology, who routinely combine information from multiple biological domains and technology platforms. To address all of the above, we present MIBBI (Minimum Information for Biological and Biomedical Investigations); a web-based communal resource for such checklists, designed to act as a ‘one-stop shop’ for those exploring the range of extant checklist projects, and to foster collaborative, integrative development and ultimately promote gradual integration of checklists. (shrink)
Together we can achieve things that we could never do on our own. In fact, there are sheer endless opportunities for producing morally desirable outcomes together with others. Unsurprisingly, scholars have been finding the idea of collective moral obligations intriguing. Yet, there is little agreement among scholars on the nature of such obligations and on the extent to which their existence might force us to adjust existing theories of moral obligation. What interests me in this paper is the perspective of (...) the moral deliberating agent who faces a collective action problem, i.e. the type of reasoning she employs when deciding how to act. I hope to show that agents have collective obligations precisely when they are required to employ ‘we-reasoning’, a type of reasoning that differs from I-mode, best response reasoning, as I shall explain below. More precisely, two (or more) individual agents have a collective moral obligation to do x if x is an option for action that is only collectively available (more on that later) and each has sufficient reason to rank x highest out of the options available to them. (shrink)
This collection brings together fourteen contributions by authors from around the globe. Each of the contributions engages with questions about how local and global bioethical issues are made to be comparable, in the hope of redressing basic needs and demands for justice. These works demonstrate the significant conceptual contributions that can be made through feminists' attention to debates in a range of interrelated fields, especially as they formulate appropriate responses to developments in medical technology, global economics, population shifts, and poverty.
The 2013 Rostock Symposium on Systems Biology and Bioinformatics in Aging Research was again dedicated to dissecting the aging process using in silico means. A particular focus was on ontologies, as these are a key technology to systematically integrate heterogeneous information about the aging process. Related topics were databases and data integration. Other talks tackled modeling issues and applications, the latter including talks focussed on marker development and cellular stress as well as on diseases, in particular on diseases of kidney (...) and skin. (shrink)
G. E. M. Anscombe’s view that agents know what they are doing “without observation” has been met with skepticism and the charge of confusion and falsehood. Simultaneously, some commentators think that Anscombe has captured an important truth about the first-personal character of an agent’s awareness of her actions. This paper attempts an explanation and vindication of Anscombe’s view. The key to the vindication lies in focusing on the role of practical knowledge in an agent’s knowledge of her actions. Few commentators, (...) with the exception of Moran (2004) and Hursthouse (2000), have gotten the emphasis right. The key to a proper interpretation of Anscombe’s views is to explain her claims within the context of her teleological theory of action. The result is a theory ofintentional action that makes self-knowledge of one’s own actions the norm. (shrink)
In the contemporary debate on moral status, it is not uncommon to find philosophers who embrace the the Principle of Full Moral Status, according to which the degree to which an entity E possesses moral status is proportional to the degree to which E possesses morally relevant properties until a threshold degree of morally relevant properties possession is reached, whereupon the degree to which E possesses morally relevant properties may continue to increase, but the degree to which E possesses moral (...) status remains the same. One philosopher who has contributed significantly to the contemporary debate on moral status and embraces the Principle of Full Moral Status is Mary Anne Warren. Warren holds not only that it is possible for some entities to possess full moral status, but that some entities actually do, e.g., normal adult human beings. I argue that two of Warren’s primary arguments for the Principle of Full Moral Status—the Argument from Pragmatism and the Argument from Explanatory Power—are significantly flawed. (shrink)
We cannot disregard that the neuroscientific research on religious phenomena such as religious experiences and rituals for example, has increased significantly the last years. Neuroscientists claim that neuroscience contributes considerably in the process of understanding religious experiences, because neuroscience is able to measure brain activity during religious experiences by way of brain‐imaging technologies. No doubt, those results of neuroscientific research on religious experiences are an important supplement to the understanding of some types of religious experiences. However, some conclusions drawn from (...) neuroscientific research on religious experiences are arguable. For example, one such conclusion is that religious experiences are actually nothing but neural activity, i.e. there is nothing ‘religious’ to the experiences at all. Another such conclusion is that a person’s religious experiences actually derive from some ultimate reality, meaning that religious experiences are real. It is the latter assertion that will be analyzed in the present paper. The question is asked whether neuroscience alone is able to affirm that religious experiences are real or whether there are, besides neuroscientific issues, also cultural‐religious assumptions that underlie this conclusion. (shrink)
With the existing commitments to climate change mitigation, global warming is likely to exceed 2°C and to trigger irreversible and harmful threshold effects. The difference between the reductions necessary to keep the 2°C limit and those reductions countries have currently committed to is called the ‘emissions gap’. I argue that capable states not only have a moral duty to make voluntary contributions to bridge that gap, but that complying states ought to make up for the failures of some other states (...) to comply with this duty. While defecting or doing less than one’s fair share can be a good move in certain circumstances, it would be morally wrong in this situation. In order to bridge the emissions gap, willing states ought to take up the slack left by others. The paper will reject the unfairness-objection, namely that it is wrong to require agents to take on additional costs to discharge duties that are not primarily theirs. Sometimes what is morally right is simply unfair. (shrink)
The Morris water maze has been put forward in the philosophy of neuroscience as an example of an experimental arrangement that may be used to delineate the cognitive faculty of spatial memory (e.g., Craver and Darden, Theory and method in the neurosciences, University of Pittsburgh Press, Pittsburgh, 2001; Craver, Explaining the brain: Mechanisms and the mosaic unity of neuroscience, Oxford University Press, Oxford, 2007). However, in the experimental and review literature on the water maze throughout the history of its use, (...) we encounter numerous responses to the question of “what” phenomenon it circumscribes ranging from cognitive functions (e.g., “spatial learning”, “spatial navigation”), to representational changes (e.g., “cognitive map formation”) to terms that appear to refer exclusively to observable changes in behavior (e.g., “water maze performance”). To date philosophical analyses of the water maze have not been directed at sorting out what phenomenon the device delineates nor the sources of the different answers to the question of what. I undertake both of these tasks in this paper. I begin with an analysis of Morris’s first published research study using the water maze and demonstrate that he emerged from it with an experimental learning paradigm that at best circumscribed a discrete set of observable changes in behavior. However, it delineated neither a discrete set of representational changes nor a discrete cognitive function. I cite this in combination with a reductionist-oriented research agenda in cellular and molecular neurobiology dating back to the 1980s as two sources of the lack of consistency across the history of the experimental and review literature as to what is under study in the water maze. (shrink)
Several quantitative studies (e.g. Kidd & Castano, 2013a; Djikic et al., 2013) have shown a positive correlation between literary reading and empathy. However, the literary nature of the stimuli used in these studies has not been defined at a more detailed, stylistic level. In order to explore the stylistic underpinnings of the hypothesized link between literariness and empathy, we conducted a qualitative experiment in which the degree of stylistic foregrounding was manipulated. Subjects (N = 37) read versions of Katherine Mansfield's (...) 'The Fly', a short story rich in foregrounding, while marking striking and evocative passages of their choosing. Afterwards, they were asked to select three markings and elaborate on their experiences in writing. One group read the original story, while the other read a 'non-literary' version, produced by an established author of suspense fiction for young adults, where stylistic foregrounding was reduced. We found that the non-literary version elicited significantly more (p < 0.05) explicitly empathic responses than the original story. This finding stands in contradiction to widely accepted assumptions in recent research, but can be assimilated in alternative models of literariness and affect in literary reading (e.g. Cupchik et al., 1998). We present an analysis of the data with a view to offering more than one interpretation of the observed effects of stylistic foregrounding. (shrink)
The idea the New Zealand Māori once counted by elevens has been viewed as a cultural misunderstanding originating with a mid-nineteenth-century dictionary of their language. Yet this “remarkable singularity” had an earlier, Continental origin, the details of which have been lost over a century of transmission in the literature. The affair is traced to a pair of scientific explorers, René-Primevère Lesson and Jules Poret de Blosseville, as reconstructed through their publications on the 1822–1825 circumnavigational voyage of the Coquille, a French (...) corvette. Possible explanations for the affair are briefly examined, including whether it might have been a prank by the Polynesians or a misunderstanding or hoax on the part of the Europeans. Reasons why the idea of counting by elevens remains topical are discussed. First, its very oddity has obscured the counting method actually used—setting aside every tenth item as a tally. This “ephemeral abacus” is examined for its physical and mental efficiencies and its potential to explain aspects of numerical structure and vocabulary (e.g., Mangarevan binary counting; the Hawaiian number word for twenty, iwakalua), matters suggesting material forms have a critical if underappreciated role in realising concepts like exponential value. Second, it provides insight into why it can be difficult to appreciate highly elaborated but unwritten numbers like those found throughout Polynesia. Finally, the affair illuminates the difficulty of categorising number systems that use multiple units as the basis of enumeration, like Polynesian pair-counting; potential solutions are offered. (shrink)
In this paper, we give a flavour of how, against the odds, Reggio-Emilia-inspired pedagogical documentation can work in reconceptualizing environmental education, reconfiguring child subjectivity and provoking an ontological shift from autopoiesis to sympoiesis in teacher education. Working posthuman(e)ly and transdisciplinarily across three foundation phase teacher education courses at a university in South Africa, we situate our teaching within current environmental precarities. We show how we stirred up trouble in and outside our university classroom and provoked our students to “make kin” (...) with children, each other, other animals, and the more-than-human, but also to stay with the trouble, that is, to learn to be truly present in colonized spaces. (shrink)
Reading, even when silent and individual, is a social phenomenon and has often been studied as such. Complementary to this view, research has begun to explore how reading is embodied beyond simply being ‘wired’ in the brain. This article brings the social and embodied perspectives together in a very literal sense. Reporting a qualitative study of reading practices across student focus groups from six European countries, it identifies an underexplored factor in reading behaviour and experience. This factor is the sheer (...) physical presence, and concurrent activity, of other people in the environment where one engages in individual silent reading. The primary goal of the study was to explore the role and possible associations of a number of variables (text type, purpose, device) in selecting generic (e.g. indoors vs outdoors) as well as specific (e.g. home vs library) reading environments. Across all six samples included in the study, participants spontaneously attested to varied, and partly surprising, forms of sensitivity to company and social space in their daily efforts to align body with mind for reading. The article reports these emergent trends and discusses their potential implications for research and practice. (shrink)
This study examined the relationship between psychopathy and two components of empathy including a cognitive component (e.g., perspective-taking ability) and an affective component (e.g., compassion) in a community sample. The Psychopathic Personality Inventory Short Form was used to assess psychopathy and several psychological measures were used to test empathy including the Interpersonal Reactivity Index, the Diagnostic Analysis of Nonverbal Accuracy-2, and the Test of Self Conscious Affect -3. Across instruments, psychopathy (as a unitary construct) appeared to be negligibly correlated with (...) perspective-taking scales and negatively correlated with the affective components of empathy. Findings indicated that the emotional deficits were noted most prominently for the behavioral component of psychopathy. Results also showed that higher psychopathy scores in community participants were linked to higher levels of antisocial conduct. (shrink)
DESENVOLVIMENTO EMBRIONÁRIO E DIFERENCIAÇÃO SEXUAL -/- E. I. C. da Silva Departamento de Agropecuária – IFPE Campus Belo Jardim Departamento de Zootecnia – UFRPE sede -/- 1.1 INTRODUÇÃO O sexo foi definido como a soma das diferenças morfológicas, fisiológicas e psicológicas que distinguem o macho da fêmea permitindo a reprodução sexual e assegurando a continuidade das espécies. Os processos de diferenciação sexual são realizados durante o desenvolvimento embrionário, onde ocorre a proliferação, diferenciação e maturação das células germinativas e primordiais, precursoras (...) de ovócitos e espermatozoides em fêmeas e machos, respectivamente. Assim, os embriões machos e fêmeas iniciam o seu desenvolvimento de forma semelhante, de modo que em ambos os sexos se estabelecem em estruturas idênticas a partir das quais se formarão os órgãos reprodutores correspondentes a cada sexo. O conhecimento da origem e do desenvolvimento do aparelho genital é indispensável para entender sua função e as alterações que produzem infertilidade ou esterilidade. 1.2 DETERMINAÇÃO DO SEXO CROMOSSÔMICO Nos mamíferos, o sexo cromossômico é determinado no momento da fertilização, quando um óvulo, que contém um cromossomo X, é fecundado por um espermatozoide portador de um cromossomo X ou um cromossomo Y. No primeiro caso, o complemento cromossômico seria XX, o que originaria uma fêmea (sexo homogamético), e no segundo daria como resultado um macho com a fórmula cromossômica XY (sexo heterogâmico). 1.3 A GÔNADA INDIFERENCIADA A primeira manifestação das gônadas se aprecia no embrião em forma de um par de eminências longitudinais chamadas cristas ou dobras gonodais, situadas em ambos os lados da linha média entre os mesonefros (rins em desenvolvimento) e do mesentério dorsal. Nos embriões dos mamíferos, as células germinativas primordiais (CGP) manifestam-se em estágios precoces do desenvolvimento, podendo ser detectadas pela primeira vez na metade da gastrulação. As CGP são células grandes, de citoplasma claro e núcleo grande e redondo, localizadas na parede do saco vitelino, perto do alantoide. Essas células possuem grande capacidade de proliferação e vão migrar desde o endoderma do intestino e o epitélio do saco vitelino, através do mesentério, até as cristas gonodais. Isso ocorre por volta do 26° dia da gestação no bovino. Sua migração realiza-se graças aos movimentos de translocação passiva e deslocamento ameboide ativo. Desconhece-se o mecanismo pelo qual estas células são dirigidas para as cristas gonodais, porém foram estudadas algumas moléculas que se expressam durante sua migração e que poderiam desempenhar um papel importante na diferenciação deste tipo celular. A fosfatase alcalina é uma enzima que tem sido usada como marcador de CGP para determinar a sua origem e migração. Num estudo recente, foi inserido um marcador fluorescente que se exprime unicamente nas células germinativas primordiais de embriões transgênicos, e utilizando este marcador e a fosfatase alcalina determinou-se a origem e o padrão de migração destas células. O primeiro sinal de diferenciação das células germinativas primordiais é a expressão de fosfatase alcalina, e esta apareceu pela primeira vez na parte mais posterior da linha primitiva. No sétimo dia de desenvolvimento no embrião do camundongo, o endoderma visceral (AF+) é substituído pelo endoderma definitivo (AF-) originado na parte anterior da linha primitiva. O fator de transcrição Oct-4 é expresso nas CGP de ambos os sexos, pelo que acredita-se estar envolvido na mantença a totipotêncialidade das células. O receptor tirosina quinase, cujo ligante é o fator de Steel, é outra das moléculas que expressam as CGP. Tem sido demonstrado que este receptor possui um papel muito importante na sobrevivência deste tipo celular. Existem outros fatores que promovem a sobrevivência e/ou proliferação de CGP in vitro. Em experiências realizadas com o fator de transformação beta I (TGFβ-I), observou-se que este tem um efeito negativo sobre a proliferação das CGP. Outra atividade que tem sido postulada a este fator é o de um agente quimioatraente que possivelmente possa direcionar a migração destas células para a gônada. a) Um formado pelas células germinativas primordiais (precursoras dos gametas masculinos ou femininos), rodeadas de células somáticas das quais posteriormente se derivarão as células de Sertoli no macho e as células da granulosa na fêmea. b) O tecido que formará o estroma da gônada: tecido conjuntivo, vasos sanguíneos e as células intersticiais com atividade esteroidogênica (células de Leydig no testículo e a teca interna do ovário). As células somáticas do primórdio gonodal originam-se do mesoderma. Inicialmente são de três tipos: mesenquimáticas, mesoteliais e endoteliais. As células mesenquimáticas e mesoteliais iniciam grande atividade proliferativa ao chegar as CGP. Observa-se então uma condensação de células de origem mesotelial e mesenquimatoso que forma um agregado compacto denominado "blastema gonodal". A partir deste primórdio embrionário, diferenciam-se dois tecidos gonodais: os cordões sexuais e o estroma. Os cordões sexuais são arranjos epiteliais que se encontram delimitados por uma folha basal, e dentro deles encontramos as CGP. Por sua vez, no estroma encontram-se células do tipo mesenquimático e vasos sanguíneos. Neste momento, as gônadas são indiferenciadas e bipotencialmente sexuais, sendo impossível diferenciar, morfologicamente, uma gônada masculina de uma feminina, mas no caso dos machos genéticos já existe uma diferenciação da gônada a nível molecular. Nesta fase já se encontram presentes as estruturas das quais se desenvolvem os dutos mesonéfricos ou de Wolff precursores do aparelho genital masculino e os dutos paramesonéfricos ou de Müller que darão origem ao aparelho reprodutor feminino. Há uma série de fatores envolvidos no desenvolvimento precoce da gônada, entre os quais o fator esteroidogênico I (SFI: Steroidogenic fator l), que é um membro da subfamília de receptores nucleares, receptores órfãos. Este fator de transcrição tem um local de ligação ao DNA composto por dois dedos-de-Zinc. O SFI foi identificado como um ativador de genes envolvidos na biossíntese de esteroides em diferentes células. O SFI está presente durante o desenvolvimento embrionário em regiões associadas com funções endócrinas como gônadas, adrenais, pituitárias e hipotálamos. Os animais homozigotos para o gene SFI defeituoso, necessitam de gônadas e adrenais e têm a função gonadotrófica alterada. Os ratos sem SFI carecem de gonadotrofos e têm um desenvolvimento anormal do núcleo ventro-medial do hipotálamo; em particular as gônadas deixam de se desenvolver entre os dias 11 a 15 e degeneram-se por apoptose. No entanto, a crista genital forma-se e é colonizada pelas células germinativas, o que indica que estas continuam a receber o sinal adequado para a sua migração. Portanto, o SFI não está envolvido no desenvolvimento precoce da gônada e do sistema urogenital, mas parece estar envolvido na manutenção do crescimento das células somáticas presentes na gônada indiferenciada. O gene associado ao tumor de Wilms (WTI: Wilm's tumor Associated) está envolvido no desenvolvimento da gônada e do rim. Durante o desenvolvimento embrionário, WTI se expressa em todo o mesoderma intermediário e posteriormente na gônada indiferenciada, bem como no rim em formação. WTI regula o sinal indutivo do mesênquima para o epitélio celômico dos mesonefros. Se este for o caso, então WTI é responsável pelo crescimento da crista genital ao dirigir a entrada do epitélio celômico. Dado que estas células darão origem às células de Sertoli, a carência de WTI pode causar o desenvolvimento de embriões XY como fêmeas simplesmente porque não se formam as células de Sertoli. Em geral, todos os genes importantes na diferenciação do mesoderma intermediário e do sistema urogenital intervêm no desenvolvimento da gônada precoce. 1.4 DIFERENCIAÇÃO GONODAL O desenvolvimento das gônadas e ductos genitais descritos até o momento, é o mesmo para ambos os sexos. Igualmente, os genes descritos, que estão envolvidos no desenvolvimento das gônadas, ductos genitais e migração das células germinativas, afetam igualmente os embriões com genótipo XX ou XY. A gônada primitiva consiste anatomicamente de uma medula (interna) e uma crosta (externa), e de acordo com o local onde ocorre a colonização das células germinativas, diferenciara em testículo ou um ovário, respectivamente. Nos mamíferos, a primeira manifestação estrutural de diferenciação sexual é detectada na gônada dos machos, onde as células germinativas estão localizadas na medula. A diferenciação do testículo inicia-se quando os cordões sexuais se separam do epitélio celômico como consequência dos arranjos produzidos por uma invasão do mesênquima e vasos sanguíneos que provoca a compactação dos cordões, agora denominados cordões testiculares. As células que rodeiam os cordões se achatam e formam as células mioides, que são responsáveis pela formação das membranas basais. As células do epitélio interno, ou seja, as células de Sertoli, têm duas funções principais: o suporte das CGP e a síntese da hormona antimulleriana, responsável pela regressão dos ductos de Müller e secretada durante o período de diferenciação sexual. As células do estroma que rodeiam os cordões testiculares diferenciam-se para formar vários tipos de células: células mioides, fibroblastos, endotélio e células de Leydig, que são as mais importantes pela sua atividade endócrina. Posteriormente, os cordões testiculares dão origem aos túbulos seminíferos, que contêm o epitélio que produzirá os espermatozoides ao chegar à puberdade. Na fêmea, durante os estágios iniciais de diferenciação gonodal, não se observam mudanças em relação à gônada indiferenciada, só pode-se observar um certo crescimento devido à proliferação de células somáticas e germinativas. As células germinativas iniciam um período de proliferação, que termina com o início da meiose. Iniciada a meiose, dá-se o processo de foliculogênese; neste momento os cordões epiteliais se fragmentam, de tal maneira que cada ovócito fica rodeado de células epiteliais cobertas por uma folha basal fina (figura 1). Para que a gônada primitiva se desenvolva em testículo é indispensável a presença do cromossoma Y, independentemente do número de cromossomas X que contenha o genoma de um indivíduo. O gene determinante do testículo encontra-se localizado no cromossoma Y, denominado sry em ratos e SRY em humanos. O gene sry se expressa durante o desenvolvimento embrionário na crista genital de embriões de camundongos. A expressão é detectável no dia 10,5, pouco depois do aparecimento das cristas genitais, atinge o seu máximo durante o dia 11,5 e mantém-se até pouco depois de ocorrerem os primeiros sinais morfológicos de diferenciação testicular no dia 12,5. Este padrão de expressão é compatível com a teoria de que sry atua induzindo a ativação dos genes (figura 2) que conduzem ao desenvolvimento testicular, sem que exista a necessidade da expressão contínua de sry para manter a diferenciação do testículo após o dia 12,5. Como mencionado anteriormente, a gônada primitiva é composta por vários tipos de células. No entanto, as células germinativas primordiais não são o local de expressão do sry, já que os embriões que necessitam de células germinativas mantêm a expressão de sry e desenvolvem o sexo gonodal normalmente. As células somáticas na gônada em desenvolvimento incluem também as células de suporte. Sabe-se que é nestas células que o sry é expresso para que se diferenciem em células de Sertoli, e a expressão transitória de sry indica que deve ativar a outros genes para a manutenção das células de Sertoli. Uma vez diferenciadas as células de Sertoli, elas se encarregarão da diferenciação do resto das células na gônada. -/- Figura 1: Representação da diferenciação dos órgãos genitais internos. Adaptado de BRONSON, 1989. Figura 2: Cascada de genes envolvidos na diferenciação sexual, adaptado de KOOPMAN, 1999. O fator sry é necessário para a diferenciação do testículo. Embora não se conheçam os genes que provavelmente regulam esse gene, estudos realizados em camundongos demonstram que este gene parece coordenar-se com certos genes autossômicos. Entre estes genes autossômicos, o sox9, que é produzido pelas células de Sertoli uma vez que são estimuladas por sry, de modo que sox9 é um dos genes relacionados estruturalmente com sry. O Sox9 funciona como um fator de transcrição, mas não se sabe se a proteína tem qualquer outra função estrutural; este gene exprime-se abundantemente nos condrócitos e está relacionado com defeitos do aparelho ósseo chamados displasia campomélica. Curiosamente, os pacientes XY com esta condição sofrem frequentemente de reversão do sexo. O Sox9 é um dos poucos genes, além do SRY, do qual as mutações demonstraram interferir com a determinação sexual masculina. No entanto, apenas 75% dos pacientes com anomalias esqueléticas de tipo displasia campomélica têm reversão sexual e não foram encontrados casos de reversão sexual devido a um defeito de Sox9 que não seja acompanhado de defeitos esqueléticos. Isso indica que o Sox9 é apenas um membro da rede de genes que são ativados para determinar a diferenciação sexual, enquanto a rota que rege a condrogênese é mais sensível a perturbações deste. O momento em que se detecta a expressão do gene Sox9 (11dpc em ratos) coincide com a máxima expressão de sry, o que poderia indicar a possibilidade de que sry regule positivamente a Sox9. De fato, na região do promotor de Sox9 há um local de união ao que potencialmente se pode unir o sry. A expressão de Sox9 durante a diferenciação sexual sugere um papel abaixo de sry na diferenciação das células de Sertoli. O cromossoma X também é importante na diferenciação gonodal. O gene DAX-I foi isolado do lócus DSS (Dosage sensitive sex reversal) do cromossoma X. DAX-I é parte da cascata de determinação sexual, mas não é necessário para a formação do testículo. DAX-I é um membro dos receptores nucleares conhecidos como receptores órfãos. Este gene demonstrou ser um poderoso repressor da transcrição de SFI e de vários genes. Os padrões de expressão de DAX-I são complementares daqueles de SFI, ambos expressos nas cristas genitais. Em resumo, dada a evidência exposta, desenvolveu-se a hipótese de que DAX-I é um antagonista de sry; esse antagonismo é dependente dos níveis relativos de DAX-I e sry e de um limiar que varia de espécie para espécie. A DAX-I foi classificada como o gene antitestículo. Na fêmea (cariótipo XX) é importante que ocorra a inativação de um dos cromossomas sexuais X para que se mantenha o equilíbrio genético ao igualar o conteúdo de DNA dos cromossomas. Esse cromossoma inativado constitui o chamado corpúsculo de Barr. No entanto, para que a meiose se realize, é necessário dos dois cromossomas X ativos nos ovócitos para assegurar a diferenciação ovárica e a fertilidade. 1.5 DIFERENCIAÇÃO DOS DUCTOS SEXUAIS O embrião possui, além das gônadas indiferenciadas, dois sistemas de ductos: os de potencialidade masculina denominam-se ductos de Wolff ou mesonéfricos, e os de potencialidade feminina se chamam ductos de Müller ou paramesonéfricos (figura 1). Se a diferenciação gonodal levou à formação de um testículo, a partir do ducto mesonéfrico ou de Wolff se desenvolverão os ductos eferentes, o epidídimo, os ductos deferentes e as vesículas seminais. As hormonas importantes no desenvolvimento do aparelho genital masculino são a testosterona, produzida pelas células de Leydig, e sua forma 5α reduzida, a 5α di-hidrotestosterona. Acredita-se que a testosterona é responsável pela virilização dos ductos de Wolff, e a di-hidrotestosterona dos órgãos genitais externos. No macho, os canais de Müller atrofiam-se devido à ação de uma hormona fetal de origem testicular denominada hormona inibidora das estruturas de Müller (HIM) ou hormona antimulleriana. Este processo começa assim que os cordões espermáticos se formam e se diferenciam as células de Sertoli. A existência de HIM foi proposta baseada em estudos realizados em bezerras freemartin, devido à existência de uma hormona responsável pela atresia dos ductos de Müller que na fêmea dá origem ao útero e aos ovidutos. Essa hormona provoca a involução do aparelho genital do bovino nas gestações gemelares nas quais os produtos de diferente sexo têm comunicação sanguínea por ter ocorrido a anastomose dos vasos de ambas as placentas (figura 3). A HIM é uma glicoproteína pertencente à subfamília de TGFβ, é expressa pelas células que darão origem às células de Sertoli e é um dos primeiros marcadores de diferenciação nestas células. A HIM é secretada na vida adulta pelas células de Sertoli no testículo e por células da granulosa no ovário. No rato a HIM é expressa-se no 12° dia em um teste padrão que segue muito de perto o aumento na expressão de sry. No macho, esta secreção de HIM continua durante a vida fetal e adulta, contudo os níveis de HIM declinam na puberdade devido a um aumento na secreção de testosterona. Vários fatores intervêm na regulação do gene de HIM, incluindo os acima descritos SFI e Sox9. O gene HIM contém segmentos de DNA que são conservados em várias espécies de vertebrados. Existe um nexo de ligação para SFI, que ativa a transcrição de HIM. A mutação no local de ligação de SFI resulta em reversão do sexo em indivíduos XY incluindo genitais femininos normais, presença de um útero formado enfatizando a importância de SFI na determinação sexual e na expressão de HIM. Embora SFI seja um bom candidato como regulador de HIM, é expresso em outras células, como as de Leydig e adrenais, que não expressam HIM. Em contrapartida, Sox9 é expresso unicamente nas células de Sertoli que são as produtoras de HIM. O gene HIM também tem um nexo de ligação para Sox9. Além disso, Sox9 pode atuar sinergicamente com SFI para promover a secreção de HIM. Ao contrário destes dois fatores de transcrição, DAX-I antagoniza a ação de Sox9 e provavelmente SFI sobre o promotor de HIM. Assim, para que as células de Sertoli secretem HIM, a transcrição de DAX-I deve diminuir. Figura 3: Representação da diferenciação dos órgãos genitais externos. Adaptado de BRONSON, 1989. Os ductos de Wolff tornam-se o sistema de ejaculação do macho. A porção mais próxima dos testículos dá origem ao epidídimo, a parte central ao ducto deferente e a porção mais distal às vesículas seminais. A próstata e a parte membranosa da uretra do macho desenvolvem-se a partir da porção pélvica do seio urogenital. A virilização e diferenciação dos ductos de Wolff dependem da produção de testosterona pelo testículo. Quanto aos órgãos genitais externos do macho, o tubérculo genital é ampliado e as dobras uretrais se fundem para formar a uretra peniana. A fusão das dobras uretrais aproxima os tubérculos genitais para formar o escroto (figura 4). Figura 4: Diferenciação do aparelho genital da fêmea e do macho. Adaptado de KOOPMAN, 1989. A diferenciação dos órgãos genitais da fêmea ocorre de forma passiva, já que a ausência de testículos e por isso da hormona inibidora dos ductos de Müller (HIM), assim como dos andrógenos virilizantes, favorece o desenvolvimento dos ductos de Müller, enquanto os de Wolff sofrem atrofia. A porção cefálica dos ductos de Müller dá origem aos ovidutos, que na sua terminação caudal se fundem com o útero. O contato dos ductos de Müller com o seio urogenital induz uma intensa proliferação celular que resulta na formação da área uterovaginal localizado entre o seio urogenital e os ductos de Müller. As células do prato uterovaginal proliferam e aumentam a distância entre as duas estruturas criando o espaço que formará a vagina quando o prato é canalizado e forma um lúmen. Em contraste com o que ocorre no macho, na fêmea a maior parte do seio urogenital se mantém exposta na superfície da abertura onde desembocam a vagina e a uretra. O tubérculo urogenital da fêmea tem um crescimento limitado e forma o clitóris. A sequência de passos da diferenciação sexual do aparelho genital é resumida na tabela 1. Tabela 1: Destino em desenvolvimento dos rudimentos sexuais dos fetos macho e fêmea dos mamíferos -/- Rudimento sexual Macho Fêmea Gônada Testículo Ovário Ductos de Müller (Paramesonéfricos) Vestígios Útero, parte da vagina, ovidutos Ductos de Wolff (Mesonéfricos) Ductos eferentes deferentes, epidídimo, vesículas seminais Vestígios Seio urogenital Uretra, próstata, glândulas bulbouretrais Parte da vagina, uretra, vestíbulo, glândulas vestibulares Tubérculo genital Pênis Clitóris Pregas vestibulares Escroto Lábios vulvares Fonte: HAFEZ, 2004. 1.6 DIFERENCIAÇÃO SEXUAL DO HIPOTÁLAMO Os processos de diferenciação sexual não se limitam apenas às células somáticas do organismo do feto, mas incluem também os centros nervosos superiores do cérebro. Assim, da mesma maneira que a gônada e os ductos sexuais se desenvolvem para o tipo feminino ou masculino, propôs-se que o cérebro pode ser "masculinizado" ou permanecer "Feminizado". A diferenciação do hipotálamo vai depender do ambiente esteroidal do neonato e ocorre na fase perinatal. Estes eventos serão de grande transcendência na vida reprodutiva do indivíduo. Tanto a fêmea como o macho nascem com a capacidade de secreção de gonadotropinas de acordo com um padrão cíclico; contudo, no macho, a exposição do hipotálamo à ação dos andrógenos testiculares durante os primeiros dias da vida extrauterina provoca a masculinização, com o qual o hipotálamo do macho é programado para que a secreção de gonadotropinas se realize a um ritmo relativamente constante por parte da hipófise (secreção tônica). Na fêmea, tanto a secreção tônica como a cíclica se conservam. No entanto, observou-se que a injeção de testosterona ou o transplante de testículo na rata fêmea durante os primeiros dias de vida, suprime a sua futura atividade estral (secreção cíclica). Por outro lado, se os ovários forem transplantados para o rato macho normal castrado na idade adulta, o animal não desenvolve qualquer atividade cíclica, mas se os machos transplantados forem castrados ao nascer, o ovário é capaz de efetuar mudanças cíclicas e ovulações. Isto foi demonstrado em roedores, mas não em animais domésticos ou na espécie humana. Portanto, o padrão de secreção de gonadotropinas, seja cíclico ou tônico, não depende da hipófise, mas do hipotálamo e sua correta diferenciação. 1.7 CONCLUSÕES A maioria dos conhecimentos no campo da biologia do desenvolvimento e, muito especificamente, dos processos de diferenciação sexual têm sido originados de estudos relacionados com desordens congênitas, que na sua maioria devem-se a defeitos de genes específicos. A análise detalhada destas desordens permitiu entender alguns mecanismos endócrinos, moleculares e genéticos envolvidos na diferenciação sexual. A identificação do gene sry como determinante do testículo foi uma contribuição crucial e abriu as portas à compreensão dos mecanismos moleculares e celulares relacionados com o desenvolvimento do testículo. Se este gene não estiver presente, é criado um programa genético alternativo para levar a cabo a diferenciação gonodal para o ovário. Finalmente, devemos ter presente que é necessária uma correlação entre mudanças morfológicas e expressão de genes durante o desenvolvimento para entender os mecanismos relacionados com a diferenciação. -/- Apoio -/- Realização -/- REFERÊNCIAS BIBLIOGRÁFICAS ANDERSON, Robert et al. The onset of germ cell migration in the mouse embryo. Mechanisms of development, v. 91, n. 1-2, p. 61-68, 2000. AUSTIN, Colin Russell; SHORT, R. V. Reproduction in Mammals: Volume 1, Germ Cells and Fertilization. Londres: Cambridge University Press, 1972. BRONSON, Franklin H. Mammalian reproductive biology. Chicago: University of Chicago Press, 1989. BUEHR, Mia. The primordial germ cells of mammals: some current perspectives. Experimental cell research, v. 232, n. 2, p. 194-207, 1997. BYSKOV, Anne G. Differentiation of mammalian embryonic gonad. Physiological reviews, v. 66, n. 1, p. 71-117, 1986. CAPEL, Blanche et al. Migration of mesonephric cells into the mammalian gonad depends on Sry. Mechanisms of development, v. 84, n. 1-2, p. 127-131, 1999. CAPEL, Blanche. The battle of the sexes. Mechanisms of development, v. 92, n. 1, p. 89-103, 2000. DERIVAUX, Jules; BARNABÉ, Renato Campanarut. Reprodução dos animais domésticos. Zaragoza: Acribia, 1980. DOMENICE, Sorahia et al. Aspectos moleculares da determinação e diferenciação sexual. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 46, n. 4, p. 433-443, 2002. DONAHOE, Patricia K. et al. Mullerian inhibiting substance activity in bovine fetal, newborn and prepubertal testes. Biology of reproduction, v. 16, n. 2, p. 238-243, 1977. HAFEZ, Elsayed Saad Eldin; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. HANLEY, Neil A. et al. Steroidogenic factor 1 (SF-1) is essential for ovarian development and function. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 27-32, 2000. HIORT, Olaf; PAUL-MARTIN, H. The molecular basis of male sexual differentiation. European journal of endocrinology, v. 142, n. 2, p. 101-110, 2000. HOLY, Lubos; MARTÍNEZ JÚSTIZ, G. Colab. Biología de la reproducción bovina. Havana: Revolucionária, 1975. JOSSO, Nathalie et al. The role of anti-Müllerian hormone in gonadal development. Molecular and cellular endocrinology, v. 145, n. 1-2, p. 3-7, 1998. JOST, Alfred et al. Studies on sex differentiation in mammals. In: Proceedings of the 1972 Laurentian Hormone Conference. Londres: Academic Press, 1973. p. 1-41. KNOBIL, Ernst. Knobil and Neill's physiology of reproduction. EUA: Gulf Professional Publishing, 2006. KOFMAN ALFARO, S.; MERCHANT LARIOS, H.; PEREZ PALACIOS, G. Diferenciacion sexual. I. Bases biologicas del dimorfismo sexual. Rev. invest. clín, p. 349-59, 1982. KOOPMAN, Peter. Sry and Sox9: mammalian testis-determining genes. Cellular and Molecular Life Sciences CMLS, v. 55, n. 6-7, p. 839-856, 1999. MCDONALD, L. E. Veterinary endocrinology. Lea & Febiger, Philadelphia, Pa, 1969. MEIZEL, S.; JOHNSON, M. H. Development in mammals. MH Johnson, Ed, v. 3, p. 1-64, 1978. MELLO, Maricilda Palandi de; ASSUMPÇÃO, Juliana de G.; HACKEL, Christine. Genes envolvidos na determinação e diferenciação do sexo. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 49, n. 1, p. 14-25, 2005. -/- REFERÊNCIAS BIBLIOGRÁFICAS MERCHANT-LARIOS, H. Ovarian differentiation. The Vertebrate Ovary, p. 47-81, 1978. MIES FILHO, Antonio. Reprodução dos animais. Porto Alegre: Sulina, 1987. NEF, Serge; PARADA, Luis F. Hormones in male sexual development. Genes & Development, v. 14, n. 24, p. 3075-3086, 2000. PARKER, Keith L.; SCHEDL, Andreas; SCHIMMER, Bernard P. Gene interactions in gonadal development. Annual review of physiology, v. 61, n. 1, p. 417-433, 1999. SWAIN, Amanda; LOVELL-BADGE, Robin. Mammalian sex determination: a molecular drama. Genes & development, v. 13, n. 7, p. 755-767, 1999. WILHELM, Dagmar; PALMER, Stephen; KOOPMAN, Peter. Sex determination and gonadal development in mammals. Physiological reviews, v. 87, n. 1, p. 1-28, 2007. WILSON, Jean D.; GRIFFIN, James E.; GEORGE, Fredrick W. Sexual differentiation: early hormone synthesis and action. Biology of reproduction, v. 22, n. 1, p. 9-17, 1980. -/- Emanuel Isaque Cordeiro da Silva Belo Jardim, 07 de Maio de 2020. (shrink)
GAMETOGÊNESE -/- Emanuel Isaque Cordeiro da Silva Instituto Agronômico de Pernambuco Departamento de Zootecnia – UFRPE Embrapa Semiárido -/- • _____OBJETIVO -/- Os estudantes bem informados, estão a buscando conhecimento a todo momento. O estudante de Veterinária e Zootecnia, sabe que a Reprodução é uma área de primordial importância para sua carreira. Logo, o conhecimento da mesma torna-se indispensável. No primeiro trabalho da série fisiologia reprodutiva dos animais domésticos, foi abordado de forma clara, didática e objetiva os mecanismos de diferenciação (...) sexual dos embriões em desenvolvimento, quais os genes envolvidos nesse processo e tudo mais. Nesse segundo trabalho, a abordagem será teórica, mas também clara, sobre a formação primordial dos gametas femininos e masculinos, através da ovogênese nas fêmeas e a espermatogênese nos machos. Esse trabalho visa levar a importância do processo de formação dos gametas e a produção hormonal das gônadas, bem como o entendimento sobre as interações com o eixo hipotálamo-hipofisário. -/- •____INTRODUÇÃO -/- A reprodução sexual é um processo mediante a qual dois organismos da mesma espécie unem seu material genético para dar lugar a um organismo fixo com combinação única de genes; para isso, cada organismo produz células que contém a metade do material genético característico da espécie. Essas células haploides (1n) são denominadas gametas; ao combinar-se um gameta masculino com um feminino produz-se uma célula diploide (2n) (zigoto ou ovo) a partir da qual se forma o embrião. A grande maioria das espécies com reprodução sexual são anisogâmicas, o que significa que produzem dois tipos de gametas diferentes: os gametas masculinos são microscópios, móveis e produzem-se em grande quantidade, enquanto que os femininos são grandes, imóveis e produzem-se em menor quantidade. O tipo de gameta que um indivíduo produz é o que define seu sexo; sobre os animais o macho é o indivíduo que produz grandes quantidades de espermatozoides e a fêmea produz uma menor quantidade de óvulos, enquanto que nas plantas as gônadas masculinas são as produtoras pólen e as femininas produzem oosferas. Os gametas são diferentes do resto das células do organismo, as quais se chamam células somáticas; essas últimas são diploides porque contém dois pares de cromossomos, um par herdado do pai do indivíduo e o outro da mãe. As células somáticas, ademais, se dividem por mitose, ao qual os cromossomos se duplicam antes de cada divisão celular e cada uma das células filhas recebe um complemento diploide idêntico dos cromossomos, logo todas as células somáticas de um indivíduo possuem o mesmo material genético, embora cada tipo celular expresse diferentes combinações de genes. Em contraponto, os gametas são células haploides porque possuem somente um par de cromossomos e a metade do material genético característico da espécie. Cada um dos cromossomos em um gameta é resultado da recombinação dos genes contidos nos cromossomos paterno e materno do indivíduo que originam o gameta, e cada um destes possuem uma combinação única de genes. Os gametas se formam a partir das células germinais, que são células que em sua origem são diploides e elas de “comprometem” a manter-se como uma linha celular especial que em determinado momento sofrerá o processo de meiose para dar origem aos gametas haploides, sejam óvulos ou espermatozoides segundo o sexo do animal. Como descrito no trabalho sobre a diferenciação sexual, as células germinativas primordiais originam-se no epiblasto do embrião, e migram desde o saco vitelino até colonizar as cristas gonodais, onde, por sua vez, proliferam-se e se organizam junto com as células somáticas da gônada primitiva para formar o testículo ou o ovário. As células germinais masculinas e femininas tem a mesma origem embrionária. As gônadas indiferenciadas em um embrião possuem três tipos celulares: as células que dão origem aos gametas (ovogonia ou espermatogonia), as precursoras de células que nutrem os gametas em desenvolvimento (células da granulosa no ovário; células de Sertoli no testículo) e as precursoras de células que secretam hormônios sexuais (células da teca no ovário; células de Leydig no testículo). As células germinais são as únicas estruturas do organismo que têm a capacidade de dividir-se por meiose sofrendo uma redução no número de seus cromossomos, sendo responsável pela transmissão da carga genética aos descendentes. Em contraste, as células somáticas somente se dividem por mitose. A formação dos gametas compreende fases sequenciais de mitose, meiose e pós-meiose. Esses processos são altamente organizados e necessitam de um preciso e bem coordenado programa de expressão genética. Uma das características importantes da gametogênese é a redução cromossômica, que através da meiose, reduz pela metade o número de cromossomos e produz células distintas entre si, devido a trocas de material genético entre os pares de cromossomos provenientes do pai e da mãe, o que ocorre no processo de “crossing over” durante a primeira fase da meiose. A gametogênese é o processo mediante o qual as células germinais de cada sexo se multiplicam, dividem e diferenciam até formar os gametas. No caso da formação dos gametas masculinos o processo recebe o nome específico de espermatogênese, e para os gametas femininos é denominado como ovogênese. Embora os dois processos alcancem o objetivo comum de produção das células haploides, por onde compartilham algumas características, existem diferenças marcadas entre eles devido a necessidade de produzir um número muito distinto de gametas, de tamanho diferente, e com características de motilidade também distintas. -/- •___ESPERMATOGÊNESE -/- A espermatogênese é o processo mediante o qual se produz os gametas masculinos denominados espermatozoides. Durante a vida fetal as células germinais e as células somáticas do testículo em formação organizam-se em túbulos seminíferos que se derivam dos cordões sexuais primários e conformam a maior parte da medula do testículo. Na etapa fetal cada tubo seminífero é delimitado por uma membrana basal, recoberta na parte interior pelas células precursoras das células de Sertoli (um tipo de células somáticas). No exterior do túbulo localizam-se as células precursoras das células de Leydig ou intersticiais (figura 1), que também são células somáticas. Entre a membrana basal e as células de Sertoli encontram-se algumas células germinais denominadas espermatogonias de reserva A0 (denominadas gonócitos) que serão o único tipo de células germinais presentes no testículo enquanto o animal não alcançar a puberdade. As células de Sertoli estabelecem na região basal uniões oclusoras entre si, formando parte da barreira hemato-testicular. As espermatogonias A0 localizam-se por dentro da membrana basal do túbulo seminífero, embora fora da barreira hemato-testicular. Figura 1: fase neonatal. Nota-se a grande infiltração de tecido intersticial em quase 50% da seção originando que os túbulos sejam pequenos e redondos em sua maioria. O citoplasma e núcleo das células pré-Leydig são notadas claramente por essa ser uma espécie suína onde o tecido intersticial está claramente diferenciado. Hematoxilina-eosina (X 220.5). Fonte: Embrapa. -/- O número de células de Sertoli no testículo depende da influência do hormônio folículo estimulante (FSH) presente durante a vida fetal e as primeiras etapas de vida pós-natal. A população de células de Sertoli ao chegar a puberdade se manterá fixa durante o resto da vida do animal; existe uma relação positiva entre o tamanho e a população de células de Sertoli e a capacidade de produção de espermatozoides do testículo. As células de Sertoli são as únicas células somáticas que estão no epitélio seminífero, e sua função é a nutrição, sustentação e controle endócrino das células germinais. As células de Sertoli participam ativamente no processo de liberação dos espermatozoides para a luz do túbulo. Nesse momento, as células de Sertoli realizam a fagocitose de parte do citoplasma do espermatozoide dos chamados corpos residuais. As células de Sertoli também fagocitam as células germinais que se degeneram no curso normal da espermatogênese. Essas células ainda sintetizam grande quantidade de proteínas, como por exemplo as proteínas ABP (androgen hinding protein), que transportam andrógenos para todo o aparelho reprodutivo, transferrinas, que transportam ferro para a respiração celular das células germinais e também às inibinas, que regulam a liberação de FSH pela hipófise, através de um sistema de retroalimentação (feedback) negativa (figura 2). Figura 2: epitélio seminífero, células de Sertoli (flecha) (400 X). Fonte: Embrapa. -/- Antes da puberdade dos túbulos seminíferos observam-se ao corte como estruturas de diâmetro pequeno, sem luz, e conformados unicamente pelas células de Sertoli e espermatogonias de reserva e rodeados por abundante tecido intersticial, ao que estão presentes as células precursoras das células de Leydig. Ainda antes da puberdade, a diferenciação celular manifesta-se primeiro pela presença de espermatócitos primários, os quais se degeneram em geral na fase de paquíteno, por falta de estimulação hormonal. A partir de que o animal chega a puberdade inicia-se o processo de espermatogênese, que se manterá durante toda a vida do animal, exceto em espécies de animais silvestres muito estacionais, ao qual pode se suspender durante a época não reprodutiva para voltar e ser retomada na época ou estação reprodutiva. Depois da puberdade, os túbulos seminíferos possuem um diâmetro muito maior; em seu interior observa-se um grande número de células germinais de todos os tipos, diferentes estádios de divisão, e em seu lúmen contém líquido e espermatozoides. Ainda sobre o alcancei da puberdade, as espermatogonias começam a dividir-se aceleradamente por mitose, enquanto que no espaço intersticial as células mesenquimais também começam a se diferenciar e a dar origem as células de Leydig (figura 3). A partir dessa etapa as células de Leydig (totalmente diferenciadas) são também evidentes no exterior do túbulo, junto com as células mioides ou peritubulares que o rodeiam o que ao contrair-se são responsáveis por controlar o avanço dos fluidos e as células presentes no lúmen do túbulo. As células mioides estão situadas ao redor do túbulo, e é creditado a elas a promoção da contração e da integridade estrutural do túbulo. Esse tipo celular apenas se diferencia na puberdade pela ação dos andrógenos (figura 4). As interações entre as células de Sertoli e as mioides parecem ter um papel importante na manutenção das funções do testículo. Durante o processo de espermatogênese, as espermatogonias de reserva dividem-se periodicamente e enquanto algumas células fixas permanecem como espermatogonias de reserva, outras proliferam e sofrem uma seção de divisões mitóticas durante as quais se vão diferenciando até formarem espermatócitos primários (espermatocitogênese ou fase de mitose), logo sofrem divisões especiais mediante as quais reduzem seu número de cromossomos (fase de meiose), e ao final trocam de forma para converter-se em espermatozoides (espermatocitogênese) (figura 5). Cada uma dessas etapas da espermato- gênese será descrito detalhadamente adiante, antes é necessário a explicação de algumas características das células de Sertoli e de Leydig que ajudarão a entender seu papel durante a espermatogênese. Figura 3: células de Leydig no espaço intersticial do testículo bovino adulto PAS (400 X). Fonte: Embrapa. -/- Figura 4: o estabelecimento da puberdade pela presença de espermatozoides no túbulo. Hematoxilina-eosina (400 X). Fonte: Embrapa. Figura 5: fases mitóticas das espermatogonias (A0 e B) para formação de um espermatócito primário e as duas fases de meiose que se sucedem antes da espermatogênese. Fonte: ZARCO, 2018. -/- Ao início da espermatocitogênese as uniões oclusoras entre as células de Sertoli se abrem por etapas (como as comportas de um submarino) para permitir a passagem das espermatogonias em direção ao centro do túbulo seminífero sem que se estabeleça uma continuidade entre o exterior e o interior da barreira hemato-testicular. Uma vez ultrapassada essa barreira, as sucessivas gerações de espermatogonias, espermatócitos, espermátides e espermatozoides irão se localizar em direção ao interior do túbulo seminífero, em estreita associação com as células de Sertoli. Em consequência, as células de Sertoli dividem o túbulo seminífero em dois compartimentos; o compartimento basal (debaixo das uniões oclusoras das células de Sertoli), ao qual residem as espermatogonias de reserva, e o compartimento adluminal (em direção ao centro do túbulo), cujos espaços entre as células de Sertoli desenvolvem o resto do processo de espermatogênese (meiose e espermatocitogênese). Esse feito é importante porque durante a vida fetal as únicas células germinais existentes eram as espermatogonias de reserva, pelo que os antígenos expressados por gerações mais avançadas (espermatogonias intermediárias, secundárias, espermátides e espermatozoides) não são reconhecidos como próprios do corpo pelo sistema imunológico. Logo, o anterior implica que deve existir uma barreira entre eles e o sangue para evitar um ataque imunológico. Em todas as etapas da espermatogênese, as células de Sertoli atuam como células de suporte para as células germinais, que sempre permanecem recoberta pela membrana das células de Sertoli. Também atuam como células nutricionais já que proporcionam o meio em que as células germinais se desenvolvem e maturam, assim como as substâncias que regulam e sincronizam as sucessivas divisões e transformações das células germinais. As células de Sertoli produzem hormônios, como estrógenos e inibina que atuam sobre a hipófise para regular a secreção das gonadotropinas que controlam a espermatogênese. As células de Leydig que residem no exterior do túbulo seminífero também são importantes para a espermatogênese: produzem a testosterona que estimula e mantém a espermatogênese, bem como serve como substrato sobre o qual atua como aromatizador das células de Sertoli para transformá-las em estrógenos. Como supracitado, para seu estudo podemos dividir a espermatogênese em três fase: espermatocitogênese, meiose e espermiogênese (figura 6). Agora, serão descritas cada uma dessas etapas. Em algumas espécies, incluindo no homem, os macrófagos representam o segundo tipo celular intersticial mais numeroso no testículo, depois das células de Leydig. Os macrófagos e vários subtipos de linfócitos são identificados nós testículos de ovinos e ratos. Eles estão intimamente associados com as células de Leydig e atuam juntamente na regulação da esteroidogênese. Figura 6: fluxograma da espermatogênese. -/- Espermatocitogênese -/- A espermatocitogênese, também chamada de etapa proliferativa ou de mitose, consiste numa série de divisões mitóticas sofridas pelas células descendentes de uma espermatogonia de reserva. Uma vez que a célula se divide, abandona o estado de reserva e começa um processo de diferenciação. As espermatogonias de reserva (denominadas espermatogonias A0 na rata ou As nos humanos) são células que existem desde a vida fetal e que permanecem mitoticamente inativas durante a infância. Uma vez que alcançam a puberdade começam a dividir-se em intervalos regulares, e as células filhas podem permanecer como espermatogonias de reserva ou abandonar a reserva e ingressar na dita espermatocitogênese. Uma vez abandonada a reserva, as células filhas que vão se formando em cada divisão permanecem unidas por pontes citoplasmáticas, constituindo um clone que se divide sincronicamente. As células que se formam depois de cada divisão continuam sendo espermatogonias, porém cada geração é ligeiramente diferente da anterior. Na rata, por exemplo, as espermatogonias tipo A0 ao dividir-se originam espermatogonias do tipo A1, que em sucessivas divisões formam espermatogonias dos tipos A2, A3 e A4, as quais, por sua vez, sofrem outra mitose para formar espermatogonias intermediárias e uma mais para formar espermatogonias do tipo B. Essas últimas se diferenciam (sem se dividir) em espermatócitos primários, processo em que termina a fase de espermatocitogênese, que literalmente significa processo de geração de espermatócitos. As espermatogonias tipo A0 são a fonte para a contínua produção de gametas. A metade delas se dividem e formam células iguais (as chamadas células tronco) e a outra metade forma as espermatogonias A1, que sofre novas divisões mitóticas e formam os tipos 2, 3 e 4. O tipo A4 sofre mitose para formar a intermediária (A In), que por mitose, forma a tipo B (figura 6). Esses tipos de espermatogonias podem ser identificadas em evoluções histológicas de acordo com sua organização topográfica na membrana basal dos túbulos seminíferos ou mediante seu conteúdo de heterocromatina. Outra maneira de diferenciação se baseia em marcadores moleculares específicos que distinguem as espermatogonias tronco (A0) das demais, com os fins de isolamento, desenvolvimento in vitro e transplante. As tipo B passam por mitose para formarem os espermatócitos primários; estes iniciam a primeira etapa da meiose formando os espermatócitos secundários; na segunda etapa da divisão meiótica, cada espermatócito secundário se divide e formam as chamadas espermátides. Quando o testículo alcança seu desenvolvimento total, a meiose completa-se e as espermátides originadas se convertem em espermatozoides. Um dos maiores sinais característicos desse fenômeno é o alargamento das espermátides e sua migração em direção ao lúmen do túbulo seminífero (figuras 4, 7 e 8). Figura 7: espermatogonias marcadas por imuno-histoquímica, anticorpo monoclonal TGFa (400 x). Figura 8: fases de divisões meióticas (M), espermatócitos em paquíteno (PA) e espermatócitos secundários (ES). -/- Figura 9: estádio posterior a liberação dos espermatozoides na luz do túbulo. Hematoxilina-eosina (400 x). Mediante as seis divisões mitóticas que ocorrem durante a espermatocitogênese se forma potencialmente um clone de 64 espermatócitos primários a partir de cada espermatogonia A que ingressa sobre o processo. Não obstante, algumas células sofrem apoptose em cada uma das etapas do processo, ao qual o número real formado é menor. Em outras espécies produzem-se um transcurso similar de divisões mitóticas sucessivas durante a espermatocitogênese, embora a nomenclatura utilizada possa ser distinta, por exemplo nos bovinos as duas últimas divisões mitóticas dão origem as espermatogonias de tipo B1 e B2. -/- Meiose -/- Uma vez que as espermatogonias B se diferenciam em espermatócitos primários, esses iniciam a etapa de meiose, com uma nova divisão; desta vez a divisão é do tipo meiótica. Ao completar-se a primeira divisão meiótica (meiose I) se obtém os espermató-citos secundários, que ao sofrer a segunda divisão meiótica (meiose II) dão origem as espermátides. Vale salientar que a meiose é o processo mediante o qual reduz-se a metade do número de cromossomos, pelo que as espermátides que se obtém são células haploides (1n). Os espermatócitos secundários que se formam depois da primeira divisão meiótica contém a metade do número normal de cromossomos, porém a mesma quantidade de DNA já que cada cromossomo é duplo. As espermátides formadas na conclusão da segunda divisão meiótica (figura 7), por sua vez, contém a metade dos cromossomos, e esse já não são duplos, já que se trata de células 1n. Também deve-se enfatizar que durante a meiose é relevante o entrecruzamento dos cromossomos homólogos, pelo que cada espermátide possui uma combinação única e diferente de genes paternos e maternos. Outro ponto que deve ser levado em consideração é que cada espermátide somente possui um cromossomo sexual; a metade das espermátides contém o cromossomo X herdado da mãe do macho que está levando a cabo a espermatogênese e a outra metade contém o cromossomo Y herdado de seu pai. Para cada espermatócito primário que entra no processo de meiose obtém-se cerca de quatro espermátides, pelo qual ao ser completada a meiose potencialmente se poderiam formar até 256 espermátides por cada espermatogonia que abandona a reserva e ingressa na espermatocitogênese. -/- Espermiogênese -/- Durante a espermiogênese, também chamada de fase de diferenciação, as esper-mátides sofrem, sem se dividir, uma metamorfose que as transforma em espermatozoides, os quais finalmente são liberados das células de Sertoli em direção ao lúmen do túbulo seminífero. A espermiogênese é um processo complicado e longo já que a espermátide deve sofrer complexas trocas nucleares, citoplasmáticas e morfológicas que resultam na forma-ção dos espermatozoides. Algumas dessas mudanças incluem a condensação do material nuclear para formação de um núcleo plano e denso, a eliminação do citoplasma para a constituição de uma célula pequena, a formação de uma estrutura especializada denomi-nada acrossomo ou tampa cefálica, e a formação do pescoço e da cauda (flagelo) do esper-matozoide, do que depende a sua motilidade. Durante a maior parte da espermiogênese, as espermátides se mantém com uma estreita associação com as células de Sertoli; logo, chega-se a observar, então, flagelos que se projetam em direção a luz do túbulo que pare-cem sair das células de Sertoli, sendo na realidade os flagelos dos espermatozoides que ainda não tinham sido liberados pelo lúmen. Ao liberar os espermatozoides em direção a luz do túbulo, as células de Sertoli realizam a fagocitose de parte do citoplasma dos espermatozoides (corpos residuais). Também fagocitam os restos de todas as células germinais que sofrem apoptose ou degeneram-se durante a espermatogênese. Credita-se que ao realizar essas funções as células de Sertoli podem fazer uma monitoração eficiente da espermatogênese, o que lhes permitiria emitir sinais para colaborar na regulação desse processo em nível gonodal e a nível sistêmico através da secreção de hormônios como a inibina e o estradiol. Além da inibina e activina, as células de Sertoli sintetizam outras proteínas, como a ABP (proteína ligadora de andrógenos) que serve como uma molécula de transporte de andrógenos dentro dos túbulos seminíferos, ductos deferentes e epidídimo, ou a transfer-rina, que transporta o ferro necessário para a respiração celular. -/- Resultados da espermatogênese -/- O resultado da espermatogênese não significa apenas uma simples multiplicação das células germinais (até 256 espermatozoides a partir de cada espermatogonia A1), senão que através dela são produzidos gametas haploides pequenos, móveis e com grande diversidade genética entre eles, ao mesmo tempo que se mantêm uma reversa de células mãe (espermatogonias A0) a partir das quais se poderiam originar novos ciclos de esper-matogênese durante o resto da vida do animal. -/- Controle hormonal da espermatogênese -/- Como mencionado, o FSH reproduz um importante papel para o estabelecimento das células de Sertoli durante a vida fetal e início da vida pós-natal. O começo da esper-matogênese também é estimulado pelo FSH, que atua sobre as células de Sertoli para estimular sua função e a ativação de sinais dessas células em direção as células germinais, incluindo-as a abandonar a reserva e ingressar na espermatogênese. O FSH, assim mesmo, estimula a mitose durante o resto da espermatogênese e aumenta a eficiência do processo, já que reduz a apoptose e a degeneração de espermatogonias intermediárias e do tipo B. O FSH também estimula as células de Sertoli para produzirem inibina e ABP. Uma vez iniciada a espermatogênese somente requerem níveis baixos de FSH para se mantê-la. As células de Sertoli também devem ser estimuladas pela testosterona para funcio-nar de maneira adequada; se requer também do LH hipofisário: hormônio que estimula as células de Leydig para produzir testosterona. Por sua vez, a secreção de LH e FSH é regulada pelo GnRH hipotalâmico: esse neurohormônio também faz parte do mecanismo de regulação da espermatogênese. A espermatogênese também é modulada em nível local mediante a produção de determinados fatores e interações entre as células. Dentro dos fatores locais podemos mencionar o fator de crescimento parecido com a insulina 1 (IGF-1), o fator de crescimen-to transformante beta (TGF- β), activina, ocitocina e diversas citocinas. Entre as intera-ções celulares existem tanto uniões de comunicação entre as células de Sertoli e as células germinais, como pontes citoplasmáticas entre todas as células germinais que formam o clone de células descendentes de uma espermatogonia A1. Uma vez que as células de Sertoli iniciam sua função na puberdade é possível manter experimentalmente a espermatogênese somente com testosterona, sem ser requeri-dos nenhum outro hormônio. A quantidade de espermatozoides produzidos, no entanto, é maior quando há presença do FSH. Abaixo do estímulo do FSH as células de Sertoli produzem estradiol e inibina, hormônios que geram uma retroalimentação sobre o eixo hipotálamo-hipofisário para a regulação da secreção de gonadotropinas. Em particular, a inibina reduz a secreção de FSH, pelo qual é factível que sirva como um sinal que evite uma excessiva estimulação as células de Sertoli. -/- Ciclo do epitélio seminífero -/- Em cada espécie as espermatogonias de reserva iniciam um novo processo de divi-sões celulares em intervalos fixos: a casa 14 dias no touro; 12 dias no garanhão e a cada 9 dias no cachaço (reprodutor suíno). A nova geração de células que começam a proliferar sobre a base do tubo deslocam-se em direção ao centro do túbulo a geração anterior, que por sua vez deslocam-se as gerações anteriores. Devido as mudanças que vão sofrendo cada geração celular se ajustam a tempos característicos de cada etapa, já que rodas as células em uma determinada seção do túbulo estão sincronizadas entre si pelas células de Sertoli; em cada espécie somente é possível encontrar um certo número de combinações celulares: 14 diferentes combinações no caso da rata, 8 no touro e 6 no ser humano. A sucessão de possíveis combinações até regressar a primeira combinação se conhece como o ciclo do epitélio seminífero. Na maioria das espécies os espermatozoides que são libera-dos em direção a luz do túbulo provém das células que entraram no processo de esperma-togênese quatro gerações antes que a geração que está ingressando nesse momento, pelo que a espermatogênese no touro dura ao redor de 60 dias e um pouco menos em outras espécies domésticas. Significa que os efeitos negativos das alterações na espermatogêne-se podem estar presentes até dois meses depois de que se produziram essas alterações. Como supracitado, geralmente se observa a mesma combinação celular em toda a área de uma determinada secção transversal do túbulo seminífero. No entanto, se fizermos uma série de secções, observa-se que ao longo do túbulo há uma sucessão ordenada de combinações (a primeira em uma determinada secção; a segunda combinação na seguinte secção, e assim sucessivamente em secções subsequentes até regressar a primeira combi-nação. Teremos, então, que ao início da divisão das espermatogonias A1 se produz de forma sincronizada em uma secção do túbulo, e vai-se transmitindo como uma onda peristáltica as secções adjacentes. Esse processo é denominado como onda do epitélio seminífero e graças à esse túbulo seminífero sempre tem secções em todas as etapas da espermatogênese, com o que se alcança uma produção constante de espermatozoides. -/- Alterações da espermatogênese -/- Nas espécies estacionais a espermatogênese, como já mencionado, pode reduzir-se ou inclusive suspender sua atividade fisiológica durante a época não reprodutiva dessas espécimes, porém esse processo fisiológico não pode ser considerado como uma altera-ção. No entanto, a espermatogênese só pode ser alterada pelas enfermidades ou por fatores externos. A principal causa de alterações na espermatogênese é o aumento da temperatura testicular. Por isso, os testículos são localizados na saco escrotal e são “caídos” para fora do corpo como pode-se observar nos bovinos, caprinos, ovinos, caninos e no próprio homem. A temperatura testicular deve estar cerca de 2 a 6 °C abaixo da temperatura corporal normal. As células germinais masculinas são sensíveis ao calor, pelo qual na maioria dos mamíferos os testículos se encontram fora da cavidade abdominal e existe um sofisticado sistema de termorregulação para mantê-los a uma temperatura menor que a corporal. Se a temperatura corporal for elevada ou se os testículos permanecerem na cavidade abdominal, ou ainda se os sistemas termorreguladores do testículo sejam afetados por fatores inflamatórios como edema ou falta de mobilidade testicular dentro do escroto, a temperatura do tecido testicular aumentará e a espermatogênese sofrerá alterações proporcionais ao excesso de temperatura e a duração da elevação. A espermatogênese também pode ser afetada pela exposição a hormônios ou a outras substâncias. É possível que a causa mais comum (sobretudo no homem) seja o uso de esteroides anabólicos, que elevam a concentração de andrógenos na circulação, provo-cando um feedback negativo sobre a secreção de gonadotropinas. Ao deixar de estimular-se o testículo pelas gonadotropinas, este deixará de produzir testosterona, e as concentra-ções de andrógeno exógeno nunca alcançará as altíssimas concentrações de testosterona que normalmente estão presentes a nível do tecido testicular por ser o local onde se produz o hormônio. Também se supõe que diversas substâncias com propriedades estrogênicas derivadas de processos industriais (indústria dos plásticos, hidrocarbonetos etc.) e presentes no ambiente (fatores xenobióticos) podem ser responsáveis pelas alterações na espermatogênese em diversas espécies, entre as quais se inclui o ser humano. -/- • OVOGÊNESE E FOLICULOGÊNESE -/- A ovogênese é o processo seguido pelas células germinais da fêmea para a forma-ção dos óvulos, que são células haploides. Durante a vida fetal as células germinais proliferam-se no ovário por mitose, formando um grande número de ovogonias, algumas das quais se diferenciam em ovócitos primários que iniciam sua primeira divisão meiótica para deter-se na prófase da divisão. Somente alguns desses ovócitos primários retornarão e concluirão a primeira divisão meiótica em algum momento da vida adulta do animal, dando origem a um ovócito secundário e a um corpo polar. O ovócito secundário inicia a sua segunda divisão meiótica, a qual volta a ficar suspensa até receber um estímulo apropriado, já que somente os ovócitos secundários que são ovulados e penetrados por um espermatozoide retornam e concluem a segunda divisão meiótica, dando origem a um óvulo (figura 10). O processo de ovogênese é realizado dentro dos folículos ovarianos, que também tem que sofrer um longo transcurso de desenvolvimento e diferenciação denominado foliculogênese pelo que a ovogênese como tal realiza-se dentro do marco desse último processo. Por essa razão, na seguinte seção descreverei tanto a ovogênese como a folicu-logênese, e a relação que existe entre ambos. Figura 10: representação da ovogênese. Na etapa de proliferação, as células germinais se diferen-ciam por mitose. A meiose I se caracteriza por uma prófase prolongada, ocorrendo a duplicação do DNA. Nas duas divisões, que ocorrem antes da ovulação e depois da fertilização, a quantidade de DNA é reduzida a 1n, com o fim de que a fusão dos pronúcles (singamia) pós-fertilização, seja gerado um zigoto com um número de cromossomos de 2n (diploide). -/- Geração de ovócitos primários e folículos primordiais Tanto a ovogênese como a foliculogênese iniciam-se durante a vida fetal, quando as células germinais primordiais provenientes do saco vitelino colonizam a gônada primitiva e, junto com as células somáticas z organizam-se para a formação dos cordões sexuais secundários, que se desenvolvem principalmente no córtex do ovário. Nesse período, as células germinais que colonizaram o ovário sofrem até 30 divisões mitóticas, proliferando-se até formar milhares ou milhões de ovogonias, que inicialmente formam “ninhos” constituídos cada um deles por um clone de várias ovogonias que descendem da mesma célula precursora e que se mantêm unidas por pontes citoplasmáticas, sincronizan-do suas divisões mitóticas. Nessa etapa alcança-se a máxima população de células germinais no ovário, que antes de nascer se reduzirá drasticamente por apoptose. No ovário do feto humano chegam a haver até sete milhões de células germinais que ao nascimento se reduzem a dois milhões. Os ovários fetais do bovino, de maneira análoga, chegam a ter até 2.100.000 células germinais, que ao nascimento reduzem para 130.000 aproximadamente. A redução no número de ovogonias produz-se ao mesmo tempo que essas células, que vêm dividindo-se por mitose e estão agrupadas em ninhos, iniciam sua primeira divisão meiótica para se transformarem em ovócitos primários: células germinais que se encontram em uma etapa de suspensão (diplóteno) da prófase da primeira divisão meiótica. Nesse período produz-se uma grande proporção de células germinais; as células somáticas dos cordões sexuais, por sua vez, emitem projeções citoplasmáticas que separam a isolam os ovócitos primários sobreviventes, ficando cada um deles rodeados por uma capa de células aplanadas da (pré) granulosa. Ao mesmo tempo em que se forma uma membrana basal entre as células da granulosa e o tecido intersticial do ovário. Ao ovócito primário rodeado de uma capa de células da (pré) granulosa aplanadas e delimita-das por uma membrana basal denomina-se de folículo primordial (figura 11). Nas vacas os folículos primordiais bem formados já estão presentes nos ovários a partir do dia 90 da gestação. A maioria dos folículos primordiais com os que nasce uma fêmea se manterão inativos durante um longo tempo; muitos deles durante toda a vida do animal. Nos folículos primordiais inativos tanto os ovócitos primários como as células da granulosa conservam sua forma original e mantém um metabolismo reduzido estritamente ao mínimo necessário para manter-se viáveis. Por essa razão, ao realizar um corte histológico de qualquer ovário as estruturas mais numerosas que se observam serão os folículos primordiais. No entanto, cada dia da vida de um animal, inclusive desde a vida fetal, um certo número de folículos primordiais reiniciam seu desenvolvimento, e a partir desse momento um folículo exclusivamente pode ter dois destinos: o primeiro, prosseguir seu desenvolvi-mento até chegar a ovular, e o segundo (que é muito mais frequente) encontrar em algum momento condições inadequadas que fazem fronteira com ele para parar seu desenvolvi-mento, levando-o a sofrer atresia e degenerar até desaparecer do ovário. Figura 11: sequência da foliculogênese apresentando as diferentes estruturas que podemos encontrar em cada fase. Fonte: ZARCO, 2018. Culminação da ovogênese A ovogênese somente se completará quando um ovócito primário reinicia a meio-se; completa sua primeira divisão meiótica para formar um ovócito secundário e um primeiro corpo polar e, quando, finalmente sofrer uma segunda divisão meiótica para formar um óvulo e um segundo corpo polar. Os óvulos são as células 1n que constituem os gametas femininos, pouco numerosos, grandes e imóveis. A grande maioria dos ovóci-tos primários, como veremos mais adiante, nunca retomam a meiose e, em consequência, não chegam a formar ovócitos secundários, e muitos dos ovócitos secundários tampouco sofrem uma segunda divisão meiótica, pelo que não chegam a formar os óvulos. Ao longo da vida de uma fêmea, na maioria das espécies, menos de 0,1% dos ovócitos primários (um a cada mil) chega a terminar a ovogênese, dando origem a um óvulo. O supracitado deve-se a que a ovogênese somente pode retomar-se e ser completa-da em ovócitos primários que se encontram dentro dos folículos primordiais que (uma vez ativados) vão alcançando diversas etapas de seu desenvolvimento em momentos precisos aos que encontram as condições ideais de oxigenação, nutrição, vascularização e exposição a fatores parácrinos e a exposição a concentrações de hormônios que se requerem para que o folículo continue em cada etapa de seu desenvolvimento com o processo de foliculogênese até chegar a ovular. Qualquer folículo que não esteja nessas condições ao longo do desenvolvimento sofrerá degeneração e atresia, pelo que o ovócito primário em seu interior nunca chegará ao ponto em que pode retomar a primeira divisão meiótica. No que resta da presente seção revisaremos o processo de foliculogênese em cujo marco se desenvolve a ovogênese; havemos que tomar de conta que essa última se limita ao que ocorre nas células germinais (ovogonia, ovócito primário, secundário e óvulo), pelo qual depende intimamente do desenvolvimento do folículo de que essas células formam parte. Em um princípio a ativação do folículo primordial e o desenvolvimento folicular são independentes das gonadotropinas: não se conhecem os mecanismos precisos median-te os quais um folículo primordial se ativa e reinicia seu desenvolvimento, nem como se decide quais folículos, dentre as dezenas de milhares de ou centenas de milhares presentes em um ovário se reativarão em um dia em particular. A reativação trata-se de uma liberação de influência de fatores inibidores, já que os folículos primordiais se reativam espontaneamente quando cultivados in vitro, isolados do resto do tecido ovariano. Uma vez que um folículo primordial se ativa, inicia-se um longo processo de desenvolvimento que somente depois de vários meses (ao redor de cinco meses no caso dos bovinos) o levará a um estádio em que seu desenvolvimento posterior requer a presença das gonado-tropinas; daí que se diz que as primeiras etapas do desenvolvimento são independentes das gonadotropinas. Durante a fase independente de gonadotropinas, um folículo primordial que tenha sido ativado e tenha começado a crescer; passará primeiro para a etapa de folículo primá-rio, caracterizada por conter um ovócito primário que está rodeado, por sua vez, por uma capa de células da granulosa, que não são planas, e sim cúbicas. Depois, se o folículo continuar crescendo se transformará em um folículo secundário, ao qual as células da granulosa começam a proliferar (aumentando em número) e se organizam em duas ou mais capas que rodeiam o ovócito primário. Entre o ovócito e as células da granulosa que o rodeiam se forma nesta uma zona pelúcida; ainda assim o ovócito mantém contato direto com essas células, mediante o estabelecimento de pontes citoplasmáticas que atravessam a zona pelúcida. Através dessas pontes citoplasmáticas as células da granulosa podem passar nutrientes e informação ao ovócito primário. O volume e o diâmetro do ovócito primário aumentam ao mesmo tempo que as células da granulosa proliferam-se, para incrementar as capas ao redor do ovócito. De maneira gradual o citoplasma do ovócito primário aumenta até 50 vezes seu volume e a proliferação das células continua. Esses folículos que possuem cada vez mais células e portanto mais capas de células da granulosa se denominam folículos secundários. Para evitar confusões, há a necessidade de nomen-clatura ao qual o folículo vá mudando de nome de primordial a primário e logo, de secun-dário, a terciário, por sua vez, o ovócito que encontra-se em seu interior, a todo momento, segue sendo um ovócito primário. Durante a etapa dependente de gonadotropinas, os folículos secundários começam a formar um espaço cheio de líquido, o antro folicular, desse modo se convertem em folí-culos terciários. Com a utilização de outra nomenclatura, a formação do antro marca a transição entre folículos pré-antrais (sem antro) e folículos antrais (com antro). Em algum momento dessa transição entre folículo secundário e terciário, também aparece a depen-dência de folículos em direção as gonadotropinas, pelo qual somente podem seguir crescendo na presença do hormônio luteinizante (LH) e do hormônio folículo estimulante (FSH). Nos bovinos e em outras espécies (para seu estudo), os folículos antrais são dividi-dos em pequenos, médios e grandes. Embora todos eles possuam um antro folicular, dependendo do seu grau de desenvolvimento requerem diferentes concentrações de gona-dotropinas para continuar o crescimento. Os folículos antrais mais pequenos somente re-querem concentrações baixas de LH e FSH, pelo qual podem continuar crescendo em qualquer momento do ciclo estral inclusive em animais que não estão ciclando (fêmeas em anestro pré-puberal, gestacional, lactacional, estacional). Nas etapas posteriores os folículos antrais requerem primeiro concentrações elevadas de FSH, e nas etapas finais somente podem continuar crescendo na presença de pulsos frequentes de LH, pelo qual somente os folículos que encontram-se sob concentrações apropriadas desses hormônios podem seguir crescendo. Por essa razão, nos animais que se encontram em anestro de qualquer tipo somente é possível encontrar folículos antrais pequenos ou médios, segundo a espécie, e nos animais que se encontram ciclando (estro) o maior tamanho folicular encontrado em um determinado dia do ciclo dependerá das concentrações de FSH e LH presentes nesse momento e nos dias anteriores. Um folículo que chega ao estado máximo de desenvolvimento, conhecido como folículo pré-ovulatório, ao final, somente chegará a ovular se for exposto a um pico pré-ovulatório de LH. Como supracitado, cada dia na vida de uma fêmea inicia seu desenvolvimento um certo número de folículos; a grande maioria sofrem atresia, mas depois da puberdade em cada dia do ciclo estral um ou vários folículos vão encontrando ao longo do seu desenvol-vimento concentrações hormonais que lhes permite chegar na etapa de folículo pré-ovula-tório. Somente nestes folículos, e como consequência de um pico pré-ovulatório de LH, se reinicia e completa-se a primeira divisão meiótica do ovócito primário, produzindo duas células distintas. Uma delas é o ovócito secundário, que retém praticamente todo o citoplasma. Contém, assim mesmo, em seu núcleo um par de cromossomos duplos, a outra é o primeiro corpo polar, que é exclusivamente um núcleo com uma quantidade mínima de citoplasma. Na maioria das espécies ovula-se um ovócito secundário que se encontra, então, suspendido na segunda divisão meiótica. Esta segunda divisão meiótica somente reinicia-rá e completarar-se uma vez que o espermatozoide começa a penetrar sob o ovócito secundário. Ao concluir-se a divisão se forma o segundo corpo polar e completa-se a ovogênese com o qual se obtém o óvulo, célula 1n que constitui o gameta feminino. No entanto, o óvulo existe pouco tempo como tal, já que em poucos minutos/horas (depen-dendo da espécie) se produzirá a fusão do núcleo do mesmo (pró-núcleo feminino) com o do espermatozoide (pró-núcleo masculino), com o qual se completa a fertilização e se forma um novo indivíduo (o ovo ou zigoto). -/- Ondas foliculares -/- Como mencionado supra, todos os dias um determinado número de folículos pri-mordiais se ativam e começam a crescer, os quais crescem em um ritmo característico em cada espécie. Isso provoca que em qualquer momento existam nos ovários folículos pri-mordiais (que começam a crescer em alguns dias ou semanas), assim como folículos secundários em diversas etapas do desenvolvimento, os quais iniciaram seu desenvolvi-mento em semanas ou inclusive meses (segundo o grau de desenvolvimento atual). Também em qualquer momento poderá haver folículos antrais nas etapas iniciais de seu desenvolvimento (com antros que já se podem detectar em cortes histológicos mas não são visíveis macroscopicamente). Todos esses folículos chegaram até seu estado de de-senvolvimento atual (primário, secundário ou antral pequeno), independente da etapa do ciclo estral em que sejam observados ou encontrados. Nos bovinos, os folículos que chegam ao início da etapa antral iniciaram seu desenvolvimento cinco meses antes, e todavia requerem ao redor de 42 dias para chegar ao estado pré-ovulatório. Para continuar seu desenvolvimento, os folículos antrais pequenos devem encon-trar concentrações altas de FSH, que os estimulam para prosseguir o crescimento. Cada vez que se produz uma elevação nas concentrações de FSH, esse hormônio estimula o desenvolvimento de um grupo de folículos antrais pequenos, que começaram a crescer muito tempo antes e que o dia da elevação de FSH tenha alcançado o grau de desenvolvi-mento preciso para responder com eficiência a este hormônio, o qual atuará através de seus receptores nas células da granulosa para estimular a produção de estradiol, a secreção de inibina, a produção de líquido folicular e a proliferação das células da granulosa. Um grupo de folículos antrais pequenos é assim recrutado pelo FSH para acelerar seu cresci-mento e aumentar sua produção de estradiol e inibina (figura 12). Mediante um seguimento ultrassonográfico dos ovários é possível identificar pou-cos dias depois um certo número de folículos, que por haver sido recrutados começam um período de crescimento acelerado. Durante alguns dias vários folículos crescem juntos, porém depois um deles é selecionado para continuar crescendo, enquanto que o restante do grupo deixam de fazê-lo e terminam sofrendo atresia. Através da ultrassom é possível identificar o folículo selecionado, agora chamado folículo domi-nante, já que sua trajetória de crescimento sofre um desvio com respeito a seguida pelo restante do grupo. Os folículos que não foram selecionados deixam de crescer e sofrem atresia já que deixam de possuir o suporte gonadotrópico de FSH, uma vez que as concentrações desse hormônio são suprimidos pela inibina e o estradiol produzidos pelo conjunto de folículos que conformam a onda folicular (figura 12), porém o folículo mais desenvolvido do grupo se converterá em dominante. A inibina atua diretamente a nível hipofisário para reduzir a secreção de FSH. Figura 12: onda folicular e relação dos níveis de FSH, estradiol e LH. Fonte: ZARCO, 2018. -/- Figura 13: Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. Fonte: SILVA, E. I. C. da, 2019. -/- A razão pela qual o folículo dominante é capaz de continuar seu desenvolvimento apesar da baixa nas concentrações de FSH é que o folículo é o único que alcançou o grau de progresso necessário para que apareçam os receptores para LH em suas células da granulosa. Esse processo permite ao folículo dominante ser estimulado pela LH, e que requeira baixas concentrações de FSH para manter seu desenvolvimento. A secreção de LH em forma de pulsos de baixa frequência (um pulso a cada quatro a seis horas), característica da fase lútea do ciclo estral; é suficiente para permitir que um folículo dominante continue crescendo por mais dias depois da sua seleção e que mais tarde mantenha-se viável durante alguns dias embora não aumentem de tamanho. Contu-do, se durante o período viável desse folículo não seja finalizada a fase lútea e não diminuam as concentrações de progesterona, o folículo terminará sofrendo atresia devido a exigência de um padrão de secreção acelerada de LH (aproximadamente um pulso por hora) durante o desenvolvimento pré-ovulatório, que somente pode ser produzido com a ausência da progesterona. Uma vez que um folículo dominante sofre atresia deixa de produzir inibina, pelo qual as concentrações de FSH podem elevar-se novamente para iniciar o recrutamento de outro grupo de folículos a partir da qual se origina uma nova onda folicular. Durante o ciclo estral de uma vaca podem gerar-se dois ou três ondas foliculares; somente em raros casos quatro. A etapa de dominância folicular da primeira onda na grande maioria dos casos não coincide com a regressão do corpo lúteo, pelo qual o primei-ro folículo dominante quase invariavelmente termina em atresia. Em algumas vacas o fo-lículo dominante da segunda onda ainda está viável quando se produz a regressão do corpo lúteo e acelera-se a secreção de LH, pelo qual esse segundo folículo dominante se converte em folículo pré-ovulatório e, ao final ovula. Em outros animais o segundo folícu-lo dominante também perde a sua viabilidade antes da regressão do corpo lúteo, por onde nesses animais se inicia uma terceira onda folicular, da qual surge o folículo que finalmen-te ovulará depois de produzir-se a regressão do corpo lúteo. Sem importar a onda em que se origine, uma vez que um folículo dominante é ex-posto a alta frequência de secreção de LH que se produz depois da regressão do corpo lúteo, aumenta ainda mais sua secreção de estradiol até que as altas concentrações desse hormônio comecem a exercer um feedback positivo para a secreção do LH. Isso provoca-rá a aceleração da frequência de secreção do LH até que os pulsos são tão frequentes que começam a ficar por cima e produzir-se o pico pré-ovulatório de LH, que é responsável pela realização da ovulação e a maturação final do ovócito. -/- •___DIFERENÇAS ENTRE ESPERMATOGÊNESE E OVOGÊNESE -/- Enquanto que na fêmea a ovogênese inicia-se durante a vida fetal, no macho a es-permatogênese começa na puberdade. Na fêmea, a partir de um ovócito primário se origi-na um óvulo; no macho, de um espermatócito primário se produzem, teoricamente, quatro espermatozoides. Outra característica interessante é que enquanto a fêmea já conta desde o nasci-mento com todos os ovócitos que necessitará na vida adulta, o macho necessitará chegar a puberdade para iniciar o desenvolvimento das células sexuais, já que ao nascer somente possui gonócitos precursores das células germinais, células de Sertoli e intersticiais. Na vida adulta de uma fêmea, o número de células germinais desaparece paulati-namente. Uma vez iniciada a espermatogênese no macho, a cada ciclo do epitélio seminí-fero as células germinais são renovadas mantendo a provisão para toda a vida reprodutiva. Na fêmea, a meiose sofre duas interrupções em seu transcurso, e no macho é ininterrupta. Figura 14: representação em diagramação comparativa do desenvolvimento da gametogênese. -/- Principais pontos abordados sobre as diferenças entre a gametogênese masculina e feminina: ❙ Na ovogênese a meiose contêm-se em duas ocasiões esperando acontecimentos externos para prosseguir. Já na espermatogênese não existe a suspensão da meiose. ❙ A espermatogênese é um processo contínuo, enquanto que a ovogênese pode completar exclusivamente um óvulo em cada ciclo estral; já que só pode ser completada por mais de um nas espécies que ovulam vários ovócitos no caso das porcas, cadelas, gatas etc. ❙ Na espermatogênese existem células de reserva que permitem a continuação du-rante toda a vida, enquanto que na ovogênese o número de ovócitos primários é limitado. A fêmea somente conta com os que nasceu, e eles não se dividem. ❙ Na espermatogênese obtém-se até 256 espermatozoides para cada espermatogo-nia que inicia o processo, enquanto que na ovogênese somente se obtém um óvulo a partir de cada ovócito primário. ❙ Durante a espermatogênese se produz uma metamorfose que transforma as es-permátides em espermatozoides. Na ovogênese não ocorre um processo análogo. ❙ Na espermatogênese, durante a meiose produzem-se quatro espermátides a partir de cada espermatócito primário. Na ovogênese se produz somente um óvulo a partir de cada ovócito primário; produz, ademais, dois corpos polares. ❙ Todos os óvulos que se produzem durante a ovogênese contém um cromossomo X, enquanto que a metade dos espermatozoides possuem um cromossomo Y e a outra metade um cromossomo X. ❙ Na espermatogênese produzem-se centenas ou dezenas de milhões de esperma-tozoides por dia, enquanto que na ovogênese se produz um ou alguns óvulos a cada ciclo estral. ❙ A espermatogênese produz gametas macroscópicos e com motilidade própria, enquanto que a ovogênese produz gametas grandes e imóveis. -/- REFERÊNCIAS BIBLIOGRÁFICAS -/- ABDEL-RAOUF, Mohammed et al. The postnatal development of the reproductive organs in bullswith special reference to puberty.(Including growth of the hypophysis and the adrenals). Acta endocrinologica, n. Suppl No. 49, 1960. ADONA, Paulo Roberto et al. Ovogênese e foliculogênese em mamíferos. Journal of Health Sciences, v. 15, n. 3, 2013. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics: a review with emphasis on the bovine species. Part I: Folliculogenesis and pre‐antral follicle development. Reproduction in domestic animals, v. 45, n. 1, p. 171-179, 2010. AERTS, J. M. J.; BOLS, P. E. J. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: Antral development, exogenous influence and future prospects. Reproduction in domestic animals, v. 45, n. 1, p. 180-187, 2010. ALBERTINI, David F.; CARABATSOS, Mary Jo. Comparative aspects of meiotic cell cycle control in mammals. Journal of molecular medicine, v. 76, n. 12, p. 795-799, 1998. AUSTIN, Colin Russell; SHORT, R. Reproduction in mammals. Cambridge, 1972. BAKER, T. G. Oogenesis and ovulation. In. Reproduction in Mammals I Germ Cells and Fertilization, p. 29-30, 1972. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BIGGERS, John D.; SCHUETZ, Allen W. Oogenesis. University Park Press, 1972. BINELLI, Mario; MURPHY, Bruce D. Coordinated regulation of follicle development by germ and somatic cells. Reproduction, Fertility and Development, v. 22, n. 1, p. 1-12, 2009. CHIARINI-GARCIA, Helio; RUSSELL, Lonnie D. High-resolution light microscopic characterization of mouse spermatogonia. Biology of reproduction, v. 65, n. 4, p. 1170-1178, 2001. CHOUDARY, J. B.; GIER, H. T.; MARION, G. B. Cyclic changes in bovine vesicular follicles. Journal of animal science, v. 27, n. 2, p. 468-471, 1968. CLERMONT, Yves; PEREY, Bernard. Quantitative study of the cell population of the seminiferous tubules in immature rats. American Journal of Anatomy, v. 100, n. 2, p. 241-267, 1957. COSTA, DEILER SAMPAIO; PAULA, T. A. R. Espermatogênese em mamíferos. Scientia, v. 4, 2003. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia Clínica do Ciclo Estral de Vacas Leiteiras: Desenvolvimento Folicular, Corpo Lúteo e Etapas do Estro. 2020. Acervo pessoal. DA SILVA, Emanuel Isaque Cordeiro. Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio. 2020. Acervo pessoal. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. EPIFANO, Olga; DEAN, Jurrien. Genetic control of early folliculogenesis in mice. Trends in Endocrinology & Metabolism, v. 13, n. 4, p. 169-173, 2002. ERICKSON, B. H. Development and senescence of the postnatal bovine ovary. Journal of animal science, v. 25, n. 3, p. 800-805, 1966. REFERÊNCIAS BIBLIOGRÁFICAS -/- FELDMAN, Edward C. et al. Canine and feline endocrinology-e-book. Elsevier health sciences, 2014. FUSCO, Giuseppe; MINELLI, Alessandro. The Biology of Reproduction. Cambridge University Press, 2019. GALINA-HIDALGO, Carlos Salvador. A study of the development of testicular function and an evaluation of testicular biopsy in farm animals. 1971. Tese de Doutorado. Royal Veterinary College (University of London). GALLICANO, G. Ian. Composition, regulation, and function of the cytoskeleton in mammalian eggs and embryos. Front Biosci, v. 6, p. D1089-1108, 2001. GILBERT, Scott F. Biología del desarrollo. Ed. Médica Panamericana, 2005. GNESSI, Lucio; FABBRI, Andrea; SPERA, Giovanni. Gonadal peptides as mediators of development and functional control of the testis: an integrated system with hormones and local environment. Endocrine reviews, v. 18, n. 4, p. 541-609, 1997. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HEDGER, Mark P. Testicular leukocytes: what are they doing?. Reviews of reproduction, v. 2, n. 1, p. 38-47, 1997. HUTSON, James C. Testicular macrophages. In: International review of cytology. Academic Press, 1994. p. 99-143. HYTTEL, P. Gametogênese. In. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. São Paulo: Elsevier Brasil, 2012. JOHNSON, Martin H. Essential reproduction. Nova Jersey: John Wiley & Sons, 2018. JONES, Richard E.; LOPEZ, Kristin H. Human reproductive biology. Academic Press, 2013. KIERSZENBAUM, Abraham L.; TRES, Laura L. Primordial germ cell‐somatic cell partnership: A balancing cell signaling act. Molecular Reproduction and Development: Incorporating Gamete Research, v. 60, n. 3, p. 277-280, 2001. MATZUK, Martin M. et al. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science, v. 296, n. 5576, p. 2178-2180, 2002. MCLAREN, Anne. Germ and somatic cell lineages in the developing gonad. Molecular and cellular endocrinology, v. 163, n. 1-2, p. 3-9, 2000. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. MERCHANT-LARIOS, Horacio; MORENO-MENDOZA, Norma. Onset of sex differentiation: dialog between genes and cells. Archives of medical research, v. 32, n. 6, p. 553-558, 2001. MINTZ, Beatrice et al. Embryological phases of mammalian gametogenesis. Embryological phases of mammalian gametogenesis., v. 56, n. Suppl. 1, p. 31-43, 1960. MORALES, M. E. et al. Gametogénesis. I. Revisión de la literatura, con enfoque en la ovogénesis. Medicina Universitaria, v. 8, n. 32, p. 183-9, 2006. NAKATSUJI, NORIO; CHUMA, SHINICHIRO. Differentiation of mouse primordial germ cells into female or male germ cells. International Journal of Developmental Biology, v. 45, n. 3, p. 541-548, 2002. NILSSON, Eric; PARROTT, Jeff A.; SKINNER, Michael K. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Molecular and cellular endocrinology, v. 175, n. 1-2, p. 123-130, 2001. REFERÊNCIAS BIBLIOGRÁFICAS -/- NORRIS, David O.; LOPEZ, Kristin H. The endocrinology of the mammalian ovary. In: Hormones and reproduction of vertebrates. Academic Press, 2011. p. 59-72. PEDERSEN, Torben. Follicle growth in the immature mouse ovary. European Journal of Endocrinology, v. 62, n. 1, p. 117-132, 1969. PINEDA, Mauricio H. et al. McDonald's veterinary endocrinology and reproduction. Iowa state press, 2003. ROSER, J. F. Endocrine and paracrine control of sperm production in stallions. Animal Reproduction Science, v. 68, n. 3-4, p. 139-151, 2001. RUSSELL, Lonnie D. et al. Histological and histopathological evaluation of the testis. International journal of andrology, v. 16, n. 1, p. 83-83, 1993. RÜSSE, I.; SINOWATZ, F. Gametogenese. Lehrbuch der Embryologie der Haustiere, p. 42-92, 1991. SAITOU, Mitinori; BARTON, Sheila C.; SURANI, M. Azim. A molecular programme for the specification of germ cell fate in mice. Nature, v. 418, n. 6895, p. 293-300, 2002. SALISBURY, Glenn Wade et al. Physiology of reproduction and artificial insemination of cattle. WH Freeman and Company., 1978. SAWYER, Heywood R. et al. Formation of ovarian follicles during fetal development in sheep. Biology of reproduction, v. 66, n. 4, p. 1134-1150, 2002. SCARAMUZZI, R. J.; MARTENSZ, N. D.; VAN LOOK, P. F. A. Ovarian morphology and the concentration of steroids, and of gonadotrophins during the breeding season in ewes actively immunized against oestradiol-17β or oestrone. Reproduction, v. 59, n. 2, p. 303-310, 1980. SEIDEL JR, G. E. et al. Control of folliculogenesis and ovulation in domestic animals: puberal and adult function. In: 9th International Congress on Animal Reproduction and Artificial Insemination, 16th-20th June 1980. II. Round tables. Editorial Garsi., 1980. p. 11-16. SKINNER, Michael K. Cell-cell interactions in the testis. Endocrine Reviews, v. 12, n. 1, p. 45-77, 1991. SMITZ, J. E.; CORTVRINDT, Rita G. The earliest stages of folliculogenesis in vitro. Reproduction, v. 123, n. 2, p. 185-202, 2002. SORENSEN, Anton Marinus. Reproducción animal: principios y prácticas. México, 1982. SUTOVSKY, Peter; MANANDHAR, Gaurishankar. Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. In. The sperm cell: Production, maturation, fertilization, regeneration, p. 1-30, 2006. TAZUKE, Salli I. et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, v. 129, n. 10, p. 2529-2539, 2002. VAN STRAATEN, H. W. M.; WENSING, C. J. G. Leydig cell development in the testis of the pig. Biology of Reproduction, v. 18, n. 1, p. 86-93, 1978. TURNBULL, K. E.; BRADEN, A. W. H.; MATTNER, P. E. The pattern of follicular growth and atresia in the ovine ovary. Australian Journal of Biological Sciences, v. 30, n. 3, p. 229-242, 1977. WASSARMAN, Paul M. Gametogenesis. Londres: Academic Press, 2012. WROBEL, K.-H.; SÜß, Franz. Identification and temporospatial distribution of bovine primordial germ cells prior to gonadal sexual differentiation. Anatomy and embryology, v. 197, n. 6, p. 451-467, 1998. REFERÊNCIAS BIBLIOGRÁFICAS -/- ZARCO, L. Gametogénese. In. PORTA, L. R.; MEDRANO, J. H. H. Fisiología reproductiva de los animales domésticos. Cidade do México: FMVZ-UNAM, 2018. ZIRKIN, Barry R. et al. Endocrine and Paracrine Regulation of Mammalian Spermatogenesis. In: Hormones and Reproduction of Vertebrates. Academic Press, 2011. p. 45-57. -/- REALIZAÇÃO -/- . (shrink)
O Programa de Filosofia para Crianças de Matthew Lipman e Ann Margaret Sharp tem pouco mais de 40 anos e à sua criação de imediato se sucederam a difusão e a adaptação em diversos contextos geográficos e culturais. Quer isto dizer que a história da Filosofia para Crianças, sobretudo nas últimas décadas, tem consistido numa marcha, mais ou menos vertiginosa, de inovação e renovação. E nem sempre este ritmo de rápida disseminação se tem mostrado compatível com a sedimentação de reflexões (...) apuradas sobre as diferentes dimensões e problemáticas que a prática coloca. A formação dos facilitadores de sessões de Filosofia para Crianças, de acordo com o modelo da comunidade de investigação filosófica de Lipman e Sharp, é uma das dimensões deste projeto pioneiro que aguardam um debate de maior desenvolvimento. A presente reflexão pretende contribuir para essa discussão, apresentando de forma concisa algumas posições que consideramos relevantes para a compreensão do que está em causa. Não temos a pretensão de assumir a forma acabada de um cânone, mas de justificar opções que nos parecem decisivas no presente contexto de implementação da Filosofia para Crianças em Portugal. Esperamos, assim, contribuir para que se possa gerar uma comunidade alargada de diálogo sobre este tópico. (shrink)
L'évaluation des écosystèmes est l'un des pivots essentiels pour l'élaboration de moyens adap- tés permettant de lutter contre la diminution massive de la biodiversité. Pour la première fois, elle a fait l'objet d'une analyse à l'échelle mondiale dans le cadre de l'Evaluation des écosys- tèmes en début de millénaire (EM). Le rassemblement de plus d’un millier de chercheurs et de plusieurs organismes internationaux durant quatre années ont permis de dessiner la carte nécessaire à toute action efficace. L'article expose les éléments (...) principaux de l'EM : l'évaluation des écosystèmes en tant que tels, mais surtout des services écosystémiques, dans toutes leurs dimensions, en ce que leur évolution affecte le bien-être humain. Il analyse ensuite les quatre points principaux de l'apport de l'EM, des avantages de l'utilisation croissante des services éco- logiques à sa non viabilité. Des scénarios, modèles et outils sont proposés pour inverser la courbe négative d'appauvrissement de la biodiversité et des services écosystémiques dans un premier bilan des retombées de l'EM. (shrink)
Mobile phones are reportedly the most rapidly expanding e-reading device worldwide. However, the embodied, cognitive and affective implications of smartphone-supported fiction reading for leisure (m-reading) have yet to be investigated empirically. Revisiting the theoretical work of digitization scholar Anne Mangen, we argue that the digital reading experience is not only contingent on patterns of embodied reader–device interaction (Mangen, 2008 and later) but also embedded in the immediate environment and broader situational context. We call this the situation constraint. Its application (...) to Mangen’s general framework enables us to identify four novel research areas, wherein m-reading should be investigated with regard to its unique affordances. The areas are reader–device affectivity, situated embodiment, attention training and long-term immersion. (shrink)
We advocate and develop a states-based semantics for both nominal and adjectival confidence reports, as in "Ann is confident/has confidence that it's raining", and their comparatives "Ann is more confident/has more confidence that it's raining than that it's snowing". Other examples of adjectives that can report confidence include "sure" and "certain". Our account adapts Wellwood's account of adjectival comparatives in which the adjectives denote properties of states, and measure functions are introduced compositionally. We further explore the prospects of applying these (...) tools to the semantics of probability operators. We emphasize three desirable and novel features of our semantics: (i) probability claims only exploit qualitative resources unless there is explicit compositional pressure for quantitative resources; (ii) the semantics applies to both probabilistic adjectives (e.g., "likely") and probabilistic nouns (e.g., "probability"); (iii) the semantics can be combined with an account of belief reports that allows thinkers to have incoherent probabilistic beliefs (e.g. thinking that A & B is more likely than A) even while validating the relevant purely probabilistic claims (e.g. validating the claim that A & B is never more likely than A). Finally, we explore the interaction between confidence-reporting discourse (e.g., "I am confident that...") and belief-reports about probabilistic discourse (e.g.,"I think it's likely that.."). (shrink)
In recent decades much literature has been produced on disagreement; the puzzling conclusion being that epistemic disagreement is, for the most part, either impossible (e.g. Aumann (Ann Stat 4(6):1236–1239, 1976)), or at least easily resolvable (e.g. Elga (Noûs 41(3):478–502, 2007)). In this paper I show that, under certain conditions, an equally puzzling result arises: that is, disagreement cannot be rationally resolved by belief updating. I suggest a solution to the puzzle which makes use of some of the principles of Hintikka’s (...) Socratic epistemology. (shrink)
Endowing artificial systems with explanatory capacities about the reasons guiding their decisions, represents a crucial challenge and research objective in the current fields of Artificial Intelligence (AI) and Computational Cognitive Science [Langley et al., 2017]. Current mainstream AI systems, in fact, despite the enormous progresses reached in specific tasks, mostly fail to provide a transparent account of the reasons determining their behavior (both in cases of a successful or unsuccessful output). This is due to the fact that the classical problem (...) of opacity in artificial neural networks (ANNs) explodes with the adoption of current Deep Learning techniques [LeCun, Bengio, Hinton, 2015]. In this paper we argue that the explanatory deficit of such techniques represents an important problem, that limits their adoption in the cognitive modelling and computational cognitive science arena. In particular we will show how the current attempts of providing explanations of the deep nets behaviour (see e.g. [Ritter et al. 2017] are not satisfactory. As a possibile way out to this problem, we present two different research strategies. The first strategy aims at dealing with the opacity problem by providing a more abstract interpretation of neural mechanisms and representations. This approach is adopted, for example, by the biologically inspired SPAUN architecture [Eliasmith et al., 2012] and by other proposals suggesting, for example, the interpretation of neural networks in terms of the Conceptual Spaces framework [Gärdenfors 2000, Lieto, Chella and Frixione, 2017]. All such proposals presuppose that the neural level of representation can be considered somehow irrelevant for attacking the problem of explanation [Lieto, Lebiere and Oltramari, 2017]. In our opinion, pursuing this research direction can still preserve the use of deep learning techniques in artificial cognitive models provided that novel and additional results in terms of “transparency” are obtained. The second strategy is somehow at odds with respect to the previous one and tries to address the explanatory issue by avoiding to directly solve the “opacity” problem. In this case, the idea is that one of resorting to pre-compiled plausible explanatory models of the word used in combination with deep-nets (see e.g. [Augello et al. 2017]). We argue that this research agenda, even if does not directly fits the explanatory needs of Computational Cognitive Science, can still be useful to provide results in the area of applied AI aiming at shedding light on the models of interaction between low level and high level tasks (e.g. between perceptual categorization and explanantion) in artificial systems. (shrink)
Since the wife-husband team of Anne Case and Angus Deaton popularized the term deaths of despair, psychologists have become more interested in decoupling despair from clinical depression and anxiety. Despair’s central marker is the loss of hope. It is characterized by feelings of social and spiritual isolation, meaninglessness, hopelessness, helplessness, demoralization, and shame. Causes of despair are complex, ranging from individual (e.g., grief, bad health, addiction, abuse), to societal (e.g., social and cultural dislocation, unemployment, economic disaster, poverty), to a (...) combination of both. Sometimes, acknowledging and/or addressing despair’s material causes is enough. But the problem with despair is that it tends to generate a vicious cycle of self-defeat. Often, it manifests in self-perpetuating negative cognitive biases, self-defeating emotional reactions, and self-destructive behavior. To break free, the person must address the psychological and spiritual roots of her despair. Here, I offer insights from a Christian tradition grounded in the monastic spirituality of the Desert Fathers in the hopes that these might help a therapist seeking to do just that. After distinguishing between an emotion and a sin of despair, I locate the latter’s roots in the vices of acedia and pride. Finally, I point to the virtue of humility as a traditional cure for despair. (shrink)
Nossa seleção de verbetes parte do interesse de cada pesquisador e os dispomos de maneira histórico-cronológica e, ao mesmo tempo, temática. O verbete de Melissa Lane, “Filosofia Política Antiga” vai da abrangência da política entre os gregos até a república e o império, às portas da cristianização. A “Filosofia Política Medieval”, de John Kilcullen e Jonathan Robinson, é o tópico que mais demanda espaço na nossa seleção em virtude das disputas intrínsecas ao período, da recepção de Aristóteles pelo medievo e (...) da tensão entre poder Papal e Civil. No verbete “Liberalismo”, de Gerald Gaus, Shane Courtland e David Schmidtz, vemos as fontes fundantes da Filosofia Política da modernidade. As ideias de liberdade negativa e positiva se coadunam com a Ética Liberal e sua influência sobre a abrangência do valor fundamental da liberdade individual diante das políticas públicas. O texto de Ian Carter, “Liberdade Positiva e Liberdade Negativa”, expõe o paradoxo da liberdade em suas concepções valorativas e neutra, muito úteis para compreender os problemas políticos que enfrentamos hoje. Por fim, Bas Van Der Vossen no texto “Libertarianismo” trata das noções tensas entre Estado e indivíduos. A concepção de “liberdade de si”, genuinamente negativa, ganha destaque justificatório. Jackie Scully, no verbete Bioética Feminista, exemplifica o valor da influência dessas correntes no âmago de todos os contemporâneos. Sua escrita homenageia postumamente Anne Donchin com um apanhado histórico da luta de inserção de políticas feministas na pesquisa acadêmica global. No verbete “Democracia”, os professores brasileiros Gustavo Dalaqua e Alberto Ribeiro Barros acrescentaram tópicos importantes ao tema geral, respectivamente: “Construtivismo Representativo vs. Representação Descritiva” e “Democracia Contestatória de Philip Pettit”. O texto de Thomas Christiano perpassa os principais argumentos de justificação política contra e a favor da democracia ocidental, com foco central nas concepções de liberdade e igualdade. Os verbetes dispostos nessa seleção de textos são tendenciosos na medida que expressam o interesse genuíno de cada pesquisador com os assuntos relevantes em suas pesquisas. Em virtude disso, a escolha “adota um lado” em detrimento de outros – mais especificamente: de outro que poderia ser mais “progressista”. Por si só, o livro já nasce reclamando um segundo volume, que será providenciado. Colocamos de lado qualquer exigência de “imparcialidade”, algo que não existe na Filosofia, muito menos na Filosofia Política. Sobressai, nesse aspecto, o caráter reflexivo que o assunto exige e a importância do assunto, sem o qual não teríamos a modernas concepções de representatividade, as teorias da justiça ou mesmo as ciências sociais. Um outro volume, portanto, se faz imperativo, por conta da abrangência da própria SEP e do respeito a seu projeto inicial, genuinamente um plano plural. (shrink)
The Louvre Museum is the largest of the world's art museums by its exhibition surface. These represent the Western art of the Middle Ages in 1848, those of the ancient civilizations that preceded and influenced it (Oriental, Egyptian, Greek, Etruscan and Roman), and the arts of early Christians and Islam. At the origin of the Louvre existed a castle, built by King Philip Augustus in 1190, and occupying the southwest quarter of the current Cour Carrée. In 1594, Henri IV decided (...) to unite the palace of the Louvre with the palace of the Tuileries built by Catherine de Medicis. The Cour Carrée was built by the architects Lemercier and then Le Vau, under the reign of Louis XIII and Louis XIV. The Department of Paintings currently has about 7,500 paintings (of which 3,400 are exposed), covering a period that goes from the Middle Ages to 1848 (date of the beginning of the Second Republic). By including the deposits, the collection is, with 12,660 works, the largest collection of ancient paintings in the world. With rare exceptions, the works after 1848 were transferred to the Musée d'Orsay when it was created in 1986. CONTENTS: Louvre Museum - Variety of exhibited works - The Royal Palace - The collections - - Eastern antiquities - - Arts of Islam - - Egyptian Antiquities - - Greek, Etruscan and Roman Antiquities - - Paintings - - - French school - - - Northern Schools (Flanders, Netherlands, Germany) - - - Italian School - - - Other schools Painting - Definitions - Painting genres - - The landscape - - Still life Paintings - FRANCOIS BOUCHER - - Vulcan presenting arms to Venus for Aeneas - RAPHAEL - - Portrait of Baldassare Castiglione - RUBENS - - Helena Fourment with children - LOUIS DAVID - - Madame Récamier - REMBRANDT - - Portrait of Heindrickje Stoffels - VELAZQUEZ - - Portrait of the Infanta Margarita - SIMONE MEMMI - - Jesus Christ walking on Calvary - JAN STEEN - - The Bad Company - HANS HOLBEIN - - Erasmus - CORREGGIO - - Mystic Marriage of Saint Catherine - LANCRET - - Conversation - JAN VAN DER MEER (VERMEER) - - The Lacemaker - VAN DYCK - - Charles I at the Hunt - FRANÇOIS CLOUET - - Elisabeth of Austria (1554-1592), Wife of Charles IX and Queen of France (1570 - 1574) - DELACROIX - - The Barque of Dante - EL GRECO - - Saint Louis, King of France, and a page - REMBRANDT - - Pilgrims at Emmaus (The Supper at Emmaus) - GERARD DAVID - - Marriage at Cana - RAPHAEL - - Portrait of Dona Isabel de Requesens, Vice-Queen of Naples - RUBENS - - La Kermesse (The Village Fête, or Noce de village) - FRANS HALS - - The Gypsy Girl - DECAMPS - - The Sonneurs - HOLBEIN THE YOUNGER - - Anne of Cleves - P. PRUD’HON - - Psyche transported to Heaven - PHILIPPE DE CHAMPAIGNE - - Portrait of Richelieu - LANCRET - - The Autumn - L. DAVID - - Madame Seriziat - COROT - - Recollection of Mortefontaine - LEONARDO DA VINCI - - La belle ferronnière - CORREGGIO - - Venus and Cupid with a Satyr - WATTEAU - - Pilgrimage to Cythera (The Embarkation for Cythera) - NICOLAS POUSSIN - - The Inspiration of the Poet - PRUD’HON - - The Empress Josephine (1763-1814) - FRAGONARD - - The Bathers - H. RIGAUD - - Louis XIV (1638–1715) - TERBURG - - The Concert - LEOPOLD ROBERT - - The Pilgrimage to the Madonna of the Arch - LARGILLIERE - - Family Portrait - MANTEGNA - - Parnassus - MEMLING - - The Virgin and Child between St James and St Dominic - FRAGONARD - - The Music Lesson - JEAN VAN EYCK - - The Virgin of chancellor Rolin - PAOLO VERONESE - - Susannah and the Elders - FRANÇOIS BOUCHER - - Diana leaving her bath - GÉRICAULT - - The Raft of the Medusa - MURILLO - - Assumption of the Virgin - CLAUDE GELLEE (LORRAIN) - - Ulysses returning Chryseis to her father (Marine, setting sun) - INGRES - - Madame Riviere - E. MURILLO - - The Young Beggar - GREUZE - - The Broken Pitcher - PIETER DE HOOCH - - Card players in an opulent interior - POUSSIN - - Et in Arcadia ego - QUENTIN MATSYS - - The moneylender and his wife - ANDREA SOLARIO - - Madonna with the Green Cushion - TITIEN - - Woman with a Mirror - DAVID TENIERS (the Younger) - - The Works of Mercy - LEONARDO DA VINCI - - Mona Lisa (La Gioconda) - Armand Dayot . (shrink)
Wittgenstein’s concepts shed light on the phenomenon of schizophrenia in at least three different ways: with a view to empathy, scientific explanation, or philosophical clarification. I consider two different “positive” wittgensteinian accounts―Campbell’s idea that delusions involve a mechanism of which different framework propositions are parts, Sass’ proposal that the schizophrenic patient can be described as a solipsist, and a Rhodes’ and Gipp’s account, where epistemic aspects of schizophrenia are explained as failures in the ordinary background of certainties. I argue that (...) none of them amounts to empathic-phenomenological understanding, but they provide examples of how philosophical concepts can contribute to scientific explanation, and to philosophical clarification respectively. (shrink)
Abstract: Alienation and slavery from Precious or what we don't want to see. It is our purpose to establish, in a parallel reading, these two films (highly rewarded), namely The Fence and Precious, that apparently being so different, are an illustration of the reality of life and the modern democratic world: the social uprooting and slavery. If in the movie of Phillip Noyce and Christone Olsen The Fence, is told a story of three young Aboriginal girls who are forcibly taken (...) to be transformed into domestic slaves, in the movie of Lee Daniels Precious, the young woman is already a servant in her own home and seeks the transformation of her life. Uniting these two stories, we find fundamental elements: illiteracy, ill-treatment, the idea of a migration (real or metaphysical), among others, but whose fundamental notion is the journey. If the film The Fence, the fence itself is used to conduct the three young Aboriginal to a real reunion with the family, in Precious, the metaphorical ‘fence’ is the limit of her world. From this interpretation, we will undertake our reflection about what we consider to be the alienation of the modern world and the silence we produce about them. (shrink)
Democracy is the central political issue of our age, yet debates over its nature and goals rarely engage with feminist concerns. Now that women have the right to vote, they are thought to present no special problems of their own. But despite the seemingly gender-neutral categories of individual or citizen, democratic theory and practice continues to privilege the male. This book reconsiders dominant strands in democratic thinking - focusing on liberal democracy, participatory democracy, and twentieth century versions of civic republicanism (...) - and approaches these from a feminist perspective. Anne Phillips explores the under-representation of women in politics, the crucial relationship between public and private spheres, and the lessons of the contemporary women's movement as an experience in participatory democracy. (shrink)
This paper aims to resolve an unremarked-upon tension between Anne Conway’s commitment to the moral responsibility of created beings, or creatures, and her commitment to emanative, constant creation. Emanation causation has an atemporal aspect according to which God’s act of will coexists with its effect. There is no before or after, or past or future in God’s causal contribution. Additionally, Conway’s constant creation picture has it that all times are determined via divine emanation. Creaturely agency, by contrast, is fundamentally (...) temporal, occurring successively over time. It is unclear how creatures can count as emanative causes, which coexists with its effect, given that their agency is limited by time, proceeding from before to after, or past to future. Conway’s account of divine justice in the progress of time, however, requires that creatures are causally responsible. That is, moral responsibility requires causal responsibility. I propose that Conway’s distinction between vital motion and local motion enables a resolution of the tension. Vital motion contributes an atemporal aspect to creaturely agency so that creatures can count as secondary emanative causes. (shrink)
Dog whistling—speech that seems ordinary but sends a hidden, often derogatory message to a subset of the audience—is troubling not just for our political ideals, but also for our theories of communication. On the one hand, it seems possible to dog whistle unintentionally, merely by uttering certain expressions. On the other hand, the intention is typically assumed or even inferred from the act, and perhaps for good reason, for dog whistles seem misleading by design, not just by chance. In this (...) paper, I argue that, to understand when and why it’s possible to dog-whistle unintentionally (and indeed, intentionally), we’ll need to recognize the structure of our linguistic practices. For dog whistles and for covertly coded speech more generally, this structure is a pair of practices, one shared by all competent speakers and the other known only to some, but deployable in the same contexts. In trying to identify these enabling conditions, we’ll discover what existing theories of communicated content overlook by focusing on particular utterances in isolation, or on individual speakers’ mental states. The remedy, I argue, lies in attending to the ways in which what is said is shaped by the temporally extended, socio-politically structured linguistic practices that utterances instantiate. (shrink)
In a recent article, Erasmus, Brunet, and Fisher (2021) argue that Artificial Neural Networks (ANNs) are explainable. They survey four influential accounts of explanation: the Deductive-Nomological model, the Inductive-Statistical model, the Causal-Mechanical model, and the New-Mechanist model. They argue that, on each of these accounts, the features that make something an explanation is invariant with regard to the complexity of the explanans and the explanandum. Therefore, they conclude, the complexity of ANNs (and other Machine Learning models) does not make them (...) less explainable. In this reply, it is argued that Erasmus et al. left out one influential account of explanation from their discussion: the Unificationist model. It is argued that, on the Unificationist model, the features that makes something an explanation is sensitive to complexity. Therefore, on the Unificationist model, ANNs (and other Machine Learning models) are not explainable. It is emphasized that Erasmus et al.’s general strategy is correct. The literature on explainable Artificial Intelligence can benefit by drawing from philosophical accounts of explanation. However, philosophical accounts of explanation do not settle the problem of whether ANNs are explainable because they do not unanimously declare that explanation is invariant with regard to complexity. (shrink)
Resumo: A crise na União Europeia e os programas de austeridade subsequentes fizeram emergir uma miríade de movimentos sociais, diversos na sua natureza e nos seus propósitos. O que se pretende aferir neste artigo é a relação e a conexão existentes entre o Estado, o poder económico, a sociedade civil e os movimentos sociais neste contexto específico de crise. Procuraremos, nesta breve abordagem, explanar alguns elementos de originalidade intrínsecos aos movimentos sociais hodiernos, patentes na sua forma de participação e organização, (...) assim como aplicar estas questões teóricas relevantes ao contexto português. A parte empírica, dada a escassez de estudos de caso existentes, será apoiada no último inquérito do European Social Survey, de 2012. Analisando um conjunto de perguntas aí explícitas, podemos compreender, de forma indirecta, algumas das dinâmicas que caracterizam estes movimentos. Abstract: The crisis in the European Union and the subsequent austerity programs have unleashed a myriad of social movements, diverse in its nature and purpose. The purpose of this paper is to assess the relationship and connection between the State, economic power, civil society and social movements in this specific context of crisis. We will try, in this brief approach, to explain some elements of originality intrinsic to modern social movements, evident in their form of participation and organization, as well as to apply these theoretical questions relevant to the Portuguese context. The empirical part, given the paucity of existing case studies, will be supported in the last survey of the European Social Survey of 2012. By analyzing a set of questions explicit there, we can, indirectly, understand some of the dynamics that characterize these movements. (shrink)
WINNER BEST SOCIAL PHILOSOPHY BOOK IN 2021 / NASSP BOOK AWARD 2022 -/- Together we can often achieve things that are impossible to do on our own. We can prevent something bad from happening or we can produce something good, even if none of us could do it by herself. But when are we morally required to do something of moral importance together with others? This book develops an original theory of collective moral obligations. These are obligations that individual moral (...) agents hold jointly, but not as unified collective agents. To think of some of our obligations as joint or collective is the best way of making sense of our intuitions regarding collective moral action problems. Where we have reason to believe that our efforts are most efficient as part of a collective endeavor we may incur collective obligations together with others who are similarly placed as long as we are able to establish compossible individual contributory strategies towards that goal. The book concludes with a discussion of “massively shared obligations” to large-scale moral problems such as global poverty. (shrink)
Humans are prone to producing morally suboptimal and even disastrous outcomes out of ignorance. Ignorance is generally thought to excuse agents from wrongdoing, but little attention has been paid to group-based ignorance as the reason for some of our collective failings. I distinguish between different types of first-order and higher order group-based ignorance and examine how these can variously lead to problematic inaction. I will make two suggestions regarding our epistemic obligations vis-a-vis collective (in)action problems: (1) that our epistemic obligations (...) concern not just our own knowledge and beliefs but those of others, too and (2) that our epistemic obligations can be held collectively where the epistemic tasks cannot be performed by individuals acting in isolation, for example, when we are required to produce joint epistemic goods. (shrink)
It is often argued that our obligations to address structural injustice are collective in character. But what exactly does it mean for ‘ordinary citizens’ to have collective obligations visà- vis large-scale injustice? In this paper, I propose to pay closer attention to the different kinds of collective action needed in addressing some of these structural injustices and the extent to which these are available to large, unorganised groups of people. I argue that large, dispersed and unorganised groups of people are (...) often in a position to perform distributive collective actions. As such, ordinary citizens can have massively shared obligations to address structural injustice through distributive action, but, ultimately, such obligations are ‘collective’ only in a fairly weak sense. (shrink)
Moral duties concerning climate change mitigation are – for good reasons – conventionally construed as duties of institutional agents, usually states. Yet, in both scholarly debate and political discourse, it has occasionally been argued that the moral duties lie not only with states and institutional agents, but also with individual citizens. This argument has been made with regard to mitigation efforts, especially those reducing greenhouse gases. This paper focuses on the question of whether individuals in industrialized countries have duties to (...) reduce their individual carbon footprint. To this end it will examine three kinds of arguments that have been brought forward against individuals having such duties: the view that individual emissions cause no harm; the view that individual mitigation efforts would have no morally significant effect; and the view that lifestyle changes would be overly-demanding. The paper shows how all three arguments fail to convince. While collective endeavours may be most efficient and effective in bringing about significant changes, there are still good reasons to contribute individually to reducing emission. After all, for most people the choice is between reducing one’s individual emissions and not doing anything. The author hopes this paper shows that one should not opt for the latter. (shrink)
There are countless circumstances under which random individuals COULD act together to prevent something morally bad from happening or to remedy a morally bad situation. But when OUGHT individuals to act together in order to bring about a morally important outcome? Building on Philip Pettit’s and David Schweikard’s account of joint action, I will put forward the notion of joint duties: duties to perform an action together that individuals in so-called random or unstructured groups can jointly hold. I will show (...) how this account of joint duties is preferable to one which defends individual duties to cooperate. I then discuss the limits of joint duties and the ways in which one can fail to comply with them. It will become apparent that the circumstances under which individuals in random collectives acquire such joint duties are rare. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.